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welcome 
Thanks for purchasing the MEAP for Grokking Deep Reinforcement Learning. My vision is that 
by buying this book, you will not only learn deep reinforcement learning but also become 
an active contributor to the field. Deep reinforcement learning has the potential to 
revolutionize the world as we know it. By removing humans from decision-making 
processes, we set ourselves up to succeed. Humans can't match the stamina and work ethic 
of a computer; we also have biases that make us less than perfect. Imagine how many 
decision-making applications could be improved with the objectivity and optimal decision 
making of a machine—healthcare, education, finance, defense, robotics, etc. Think of any 
process in which a human repeatedly makes decisions; deep reinforcement learning can 
help in most of them. Deep reinforcement learning can do great things as it is today, but the 
field is still not perfect. That should excite you, because it means we need people with the 
interest and skills to push the boundaries of this field forward. We are lucky to be part of this 
world at this point, and we should take advantage of it and make history. Are you up for the 
challenge? 

I've been involved in Reinforcement Learning for a few years now. I first studied the topic 
in a course at Georgia Tech: Reinforcement Learning and Decision Making, which was co-
taught by Drs. Charles Isbell and Michael Littman. It was inspiring to hear from top 
researchers in the field, interact with them daily, and listen to their perspectives.  The 
following semester, I became a Teaching Assistant for the course and never looked back. 
Today, I'm an Instructional Associate at Georgia Tech and continue to help with the class 
daily. I've been privileged to interact with top researchers in the field and with hundreds of 
students, and I've become a bridge between the experts and the students for almost two 
years now. I understand the gaps in knowledge, the topics that are often the source of 
confusion, the students' interests, the foundational knowledge that is classic yet necessary, 
the classical papers that can be skipped, and many other things that put me in a position to 
write this book. In addition to teaching at Georgia Tech, I work full-time for Lockheed Martin, 
Missile and Fire Control - Autonomous Systems. We do top autonomy work, part of which 
involves the use of autonomous decision-making such as in deep reinforcement learning. I 
felt inspired to take my passion for both teaching and deep reinforcement learning to the 
next level by making this field available to anyone who is willing to put in the work. 

I partnered with Manning to deliver a great book to you. Our goal is to help readers 
understand how deep learning makes reinforcement learning a more effective approach. In 
the first part of the book, we will dive into the foundational knowledge specific to 
reinforcement learning. Here you'll gain the necessary expertise to solve more complex 
decision-making problems.  In the second part, I'll teach you to use deep learning 
techniques to solve massive, complex reinforcement learning problems. We will dive into 
the top deep reinforcement learning algorithms and dissect them one at a time. Finally, in 
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the third part, we will look at advanced applications of these techniques. We will put 
everything together then and help you see the potential of this technology. 

Again, it is an honor to have you with me; I hope that I can inspire you to give your best 
and apply the knowledge you will obtain in this book to solve complex decision-making 
problems and make this a better place. Humans may be sub-optimal decision makers, but 
buying this book was without a doubt the right thing to do. Let's get working. 

—Miguel Morales 
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introduction to
deep reinforcement learning 1

In this chapter

• You learn what deep reinforcement learning is and how 
it is different from other machine learning approaches.

• You learn about the recent progress in deep 
reinforcement learning and what it can do for a variety 
of problems.

• You know what to expect from this book, and how to 
get the most out of it.

I visualize a time when we will be to robots what 
dogs are to humans, and I'm rooting for the 
machines. 

— Claude Shannon 
Father of the Information Age 

and contributor to the field of Artificial Intelligence
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2 Chapter 1 I introduction to deep reinforcement learning

Humans naturally pursue feelings of happiness. From picking out our meals to advancing 
our careers, every action we choose is derived from our drive to experience rewarding 
moments in life. Whether these moments are self-centered pleasures or the more generous 
of goals, whether they bring us immediate gratification or long-term success, they are still 
our perception of how important and valuable they are. And to some extent, these moments 
are the reason for our existence.

Our ability to achieve these precious moments seems to be correlated with intelligence; 
"Intelligence" is defined as the ability to acquire and apply knowledge and skills. People 
that are deemed by society as intelligent are not only capable of trading-off immediate 
satisfaction for long-term goals, but also a good, certain future for a possibly better, yet 
uncertain one. Goals that take longer to materialize and that have unknown long-term value 
are usually the hardest to achieve, and it is those who can withstand the challenges along the 
way that are the exception, the leaders, the intellectuals of society.

In this book, you learn about an approach, known as deep reinforcement learning, involved 
with creating computer programs that can achieve goals that require intelligence. In this 
chapter, you are introduced to deep reinforcement learning and learn how to get the most 
out of this book.

What is deep reinforcement learning?
Deep reinforcement learning (DRL) is a machine learning approach to artificial 
intelligence concerned with creating computer programs that can solve problems requiring 
intelligence. The distinct property of DRL programs is the learning through trial and error 
from feedback that is simultaneously sequential, evaluative, and sampled by leveraging 
powerful non-linear function approximation.

I want to unpack this definition for you one bit at a time. But, don't get too caught up with 
the details as it'll take me the whole book to get you grokking deep reinforcement learning. 
The following is just the introduction of what you learn about in this book. As such, it's 
repeated and explained in detail in the chapters ahead.

If I succeed with my goal for this book, after you complete it, you should be able to come 
back to this definition and understand it precisely. You should be able to tell why I used the 
words that I used, why I didn't use more or fewer words. But, for this chapter, simply sit 
back and plow through it.
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3What is deep reinforcement learning?

Deep reinforcement learning is a machine learning approach  
to artificial intelligence
Artificial intelligence (AI) is a branch of computer science involved in the creation of 
computer programs capable of demonstrating intelligence. Traditionally, any piece of 
software that displays cognitive abilities such as perception, search, planning, and learning is 
considered part of AI. Some examples of functionality produced by AI software are:

• The pages returned by a search engine.
• The route produced by a GPS app.
• The voice recognition and the synthetic voice of a smart-assistant software.
• The recommended products shown on e-commerce sites.
• The follow-me feature in drones.

All computer programs that display intelligence are considered AI, but not all examples of 
AI can learn. Machine learning (ML) is the area of AI concerned with creating computer 
programs that can solve problems requiring intelligence by learning from data. There are 
three main branches of ML: supervised, unsupervised, and reinforcement learning.

Subfields of Artificial Intelligence

(1) Some of the most important 
areas of study under the field of 
Artificial Intelligence.

Artificial Intelligence

Perception

Expert Systems

Machine Learning

Planning

Natural Language Processing

Computer Vision
Robotics

Logic

Search

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

3



4 Chapter 1 I introduction to deep reinforcement learning

Supervised learning (SL) is the task of learning from labeled data. In SL, a human decides 
which data to collect and how to label it. The goal in SL is to generalize. A classic example of 
SL is a handwritten-digit recognition application; a human gathers images with handwritten 
digits, labels those images, and trains a model to recognize and classify digits in images 
correctly. The trained model is expected to generalize and correctly classify handwritten 
digits in new images.

Unsupervised learning (UL) is the task of learning from unlabeled data. Even though data 
no longer needs labeling, the methods used by the computer to gather data still need to be 
designed by a human. The goal in UL is to compress. A classic example of UL is a customer 
segmentation application; a human collects customer data and trains a model to group 
customers into clusters. These clusters compress the information uncovering underlying 
relationships in customers.

Reinforcement learning (RL) is the task of learning through trial and error. In this type 
of task, no human labels data, and no human collects or explicitly designs the collection 
of data. The goal in RL is to act. A classic example of RL is a Pong-playing agent; the agent 
repeatedly interacts with a Pong emulator and learns by taking actions and observing its 
effects. The trained agent is expected to act in such a way that it successfully plays Pong.

Main branches of Machine Learning

(1) These types of 
Machine Learning tasks 
are all important, and they 
are not mutually exclusive.

Artificial Intelligence

Machine Learning

Supervised 
Learning

Reinforcement 
Learning

Unsupervised 
Learning

(2) In fact, the best 
examples of Artificial 
Intelligence combine many 
different techniques.
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5What is deep reinforcement learning?

A powerful recent approach to ML, called deep learning (DL), involves using multi-
layered non-linear function approximation, typically neural networks. DL is not a separate 
branch of ML, so it's not a different task than those described above. DL is a collection of 
techniques and methods for using neural networks to solve ML tasks, whether SL, UL, or 
RL. DRL is simply the use of DL to solve RL tasks.

The bottom line is that DRL is an approach to a problem. The field of AI defines the 
problem: Creating intelligent machines. One of the approaches to solving that problem is 
DRL. Throughout the book, you'll find comparisons between RL and other ML approaches, 
but only in this chapter, you'll find definitions and a historical overview of AI in general. It's 
important to note that the field of RL includes the field of DRL, so while I'll try to make the 
distinction when necessary when I refer to RL, DRL is included.

(1) The important thing here is Deep Learning is a 
toolbox, and any advancement in the field of Deep 
Learning is felt in all of Machine Learning.

(2) Deep Reinforcement Learning is the intersection 
of Reinforcement Learning and Deep Learning.

Deep Learning is a powerful toolbox

Artificial Intelligence

Machine Learning

Deep 
Learning

Supervised 
Learning

Reinforcement 
Learning

Unsupervised 
Learning
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6 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning is concerned  
with creating computer programs
At its core, DRL is about complex sequential decision-making problems under uncertainty. 
But, this is a topic of interest to many fields; for instance, control theory (CT) studies ways 
to control complex known dynamical systems. In CT, the dynamics of the systems we try 
to control are usually known in advance. Operations research (OR), another instance, 
also studies decision-making under uncertainty, but problems in this field often have 
much larger action spaces than those commonly seen in DRL. Psychology studies human 
behavior, which is partly the same "complex sequential decision-making under uncertainty" 
problem.

The bottom line is that you have come to a field that is influenced by a variety of others. 
Although this is a good thing, it also brings some inconsistencies in terminologies, notations 
and so on. My take is the computer science approach to this problem, so this book is 
about building computer programs that solve complex decision-making problems under 
uncertainty, and as such, you can find code examples throughout the book.

In DRL, these computer programs are called agents. An agent is a decision-maker only and 
nothing else. That means if you are training a robot to pick up objects, the robot arm is not 
part of the agent. Only the code that makes decisions is referred to as the agent.

(1) All of these fields (and 
many more) study complex 
sequential decision-making 
under uncertainty.

(2) As a result, there is a 
synergy between these fields. 
For instance, Reinforcement 
Learning and  Optimal Control 
both contribute to the research 
of model-based methods.
(3) Or Reinforcement Learning and 
Operations Research both  contribute 
to the study of problems with large 
action spaces.
(4) The downside is an inconsistency in 
notation, definitions, etc. that make it hard 
for newcomers to find their way around.

The synergy between similar fields

Operations 
Research

Reinforcement 
Learning

Model-
based 
methods

Large 
action-
space 
methods

Optimal 
Control
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7What is deep reinforcement learning?

Deep reinforcement learning agents  
can solve problems that require intelligence
On the other side of the agent is the environment. The environment is everything outside 
the agent; everything the agent has no total control over. Again, imagine you are training 
a robot to pick up objects. The objects to be picked up, the tray where the objects lay, the 
wind, and everything outside the decision-maker are part of the environment. That means 
the robot arm is also part of the environment because it is not part of the agent. And even 
though the agent can decide to move the arm, the actual arm movement is noisy, and thus 
the arm is part of the environment.

This strict boundary between the agent and the environment is counterintuitive at first, but 
the decision-maker, the agent, can only have a single role: making decisions. Everything that 
comes after the decision gets bundled into the environment.

Chapter 2 provides an in-depth survey of all the components of DRL. The following is just a 
preview of what you'll learn in chapter 2:

Boundary between agent and environment

EnvironmentAgent

Code

(1) An agent is the 
decision-making 
portion of the code.

(2) The environment is everything outside the 
agent. In this case that includes network latencies, 
the motors noise, the camera noise, and so on. This 
may seem counter-intuitive at first, but it actually 
helps understanding the algorithms.
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8 Chapter 1 I introduction to deep reinforcement learning

The environment is represented by a set of variables related to the problem. For instance, in 
the manipulator example, the location and velocities of the arm would be the variables that 
make up the environment. This set of variables and all the possible values that they can take 
are referred to as the state space. A state is an instantiation of the state space, a set of values 
the variables take.

Interestingly, often, agents don't have access to the actual full state of the environment. The 
part of the state that the agent can observe is called an observation. Observations depend 
on states but are what the agent can see. For instance, in the manipulator example, the agent 
may only have access to camera images. So, while there is an exact location of each object, 
the agent doesn't have access to this specific state. Instead, an observation derived from the 
state. You'll often see in the literature observations and states being used interchangeably. 
But know that the observations may or may not be equal to the states.

0.2 5.1

2.8

2.7
3.52 5.2

States vs. observations

State:  
true locations

Observation:  
just an image

(1) States are the perfect and complete 
information related to the task at hand. 

(2) While observations are the information 
the agent receives. This could be noisy or 
incomplete information.
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9What is deep reinforcement learning?

At each state, the environment makes available a set of actions the agent can choose from. 
The agent influences the environment through these actions. The environment may change 
states as a response to the agent's action. The function that is responsible for this mapping 
is called the transition function. The environment may also provide a reward signal as 
a response. The function responsible for this mapping is called the reward function or 
reward signal. The set of transition and reward functions is referred to as the model of the 
environment.

The environment commonly has a well-defined task. The goal of this task is defined 
through the reward function. The reward-function signals can be simultaneously sequential, 
evaluative, and sampled. So, to achieve the goal, the agent needs to demonstrate intelligence, 
or at least cognitive abilities commonly associated with intelligence, such as long-term 
thinking, information gathering, and generalization.

The agent has a three-step process: the agent interacts with the environment, the agent 
evaluates its behavior, and the agent improves its responses. The agent may be designed to 
learn mappings from observations to actions called policies. The agent may be designed to 
learn the model of the environment on mappings called models. The agent may be designed 
to learn to estimate the reward to go on mappings called value functions.

The reinforcement learning cycle

Improve

AgentEnvironment

Observation 
and Reward

State

Transition

Action

(1) The cycle begins with 
the agent observing the 
environment.

(2) The agent uses this 
observation  and reward to 
attempt improve at the task.

(3) It then sends an 
action to the environment 
in an attempt to control 
it in a favorable way.

(4) Finally, the 
environment transitions 
and its internal state 
[likely] changes as a 
consequence of the 
previous state and the 
agent's action. Then, 
the cycle repeats.
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10 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning agents  
improve their behavior through trial-and-error learning

The interactions between the agent and the environment go on for several cycles. Each cycle 
is called a time step. At each time step, the agent observes the environment, takes action, 
and receives a new observation and reward. The set of the state, the action, the reward, and 
the new state is called an experience. Every experience has an opportunity for learning and 
improving performance.

The task the agent is trying to solve may or may not have a natural ending. Tasks that have 
a natural ending, such as a game, are called episodic tasks. Conversely, tasks that do not are 
called continuing tasks, such as learning forward motion. The sequence of time steps from 
the beginning to the end of an episodic task is called an episode. Agents may take several 
time steps and episodes to learn to solve a task. Agents learn through trial and error: they 
try something, observe, learn, try something else, and so on.

You'll start learning more about this cycle in chapter 4, which contains a type of 
environment with a single step per episode. Starting with chapter 5, you'll learn to deal with 
environments that require more than a single interaction cycle per episode.

Experience tuples

Agent Environment Time step

Action a

Action a'

Action a''

Experiences: 
t,       (s,  a,  r',   s') 
t+1,  (s',  a',  r'',  s'') 
t+2,  (s'', a'', r''', s''') 
...

State s
Reward r

t+3

t+2

t+1

t

State s'
Reward r'

State s''
Reward r''

State s'''...
...

...
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11What is deep reinforcement learning?

Deep reinforcement learning agents  
learn from sequential feedback
The action taken by the agent may have delayed consequences. The reward may be sparse
and only manifest after several time steps. Thus the agent must be able to learn from 
sequential feedback. Sequential feedback gives rise to a problem referred to as the temporal 
credit assignment problem. The temporal credit assignment problem is the challenge of 
determining which state and/or action is responsible for a reward. When there is a temporal 
component to a problem, and actions have delayed consequences, it becomes challenging to 
assign credit for rewards.

In chapter 3, we'll study the ins and outs of sequential feedback in isolation. That is, your 
programs learn from simultaneously sequential, supervised (as opposed to evaluative) and 
exhaustive (as opposed to sampled) feedback.

The difficulty of the temporal credit assignment problem

(1) You are in state 0.

(2) OK. I'll take action A.

(3) You got +23. 
(4) You are in state 3.

Agent Environment

(5) Nice! Action A again, please.

(6) No problem, -100. 
(7) You are in state 3.

(8) Ouch! Get me out of here! 
(9) Action B?!

(10) Sure, -100.
(11) You are in state 3.

(12) Was it taking action A in state 0 to be blamed for the -100?
Sure, choosing action A in state0 gave me a good immediate reward, 
but maybe that is what sent me to state 3, which is terrible.
Should I have chosen action B in state 0?
Oh, man... Temporal credit assignment is hard...

Time

Agent

Agent

Agent

Environment

Environment

...
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12 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning agents  
learn from evaluative feedback
The reward received by the agent may be weak, in the sense that it may provide no 
supervision. The reward may indicate goodness and not correctness, meaning it may 
contain no information about other potential rewards. Thus the agent must be able to learn 
from evaluative feedback. Evaluative feedback gives rise to the need for exploration. The 
agent must be able to balance the gathering of information with the exploitation of current 
information. This is also referred to as the exploration vs. exploitation tradeoff.

In chapter 4, we'll study the ins and outs of evaluative feedback in isolation. That is, 
your programs will learn from feedback that is simultaneously one-shot (as opposed to 
sequential,) evaluative, and exhaustive (as opposed to sampled).

The difficulty of the exploration vs. exploitation tradeoff

(1) You are in state 0.

(2) OK. I'll take action A.

(3) You got +50. 
(4) You are in state 0.

Agent Environment

(5) Sweet! Action A again, please.

(6) No problem, +20. 
(7) You are in state 0.

(8) I've received lots of rewards.
(9) Now, let me try action B!

(10) Sure, +1,000.
(11) You are in state 0.

(12) Well, action A doesn't seem 
that rewarding after all... I regret 
choosing action A all this time!

Time

Agent

Agent

Agent

Environment

Environment

...
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13What is deep reinforcement learning?

Deep reinforcement learning agents  
learn from sampled feedback
The reward received by the agent is merely a sample, and the agent does not have access to 
the reward function. Also, the state and action spaces are commonly large, even infinite, so 
trying to learn from sparse and weak feedback becomes a harder challenge with samples. 
Therefore, the agent must be able to learn from sampled feedback, it must be able to 
generalize.

Agents that are designed to approximate policies are called policy-based, agents that are 
designed to approximate value functions are called value-based, agents that are designed to 
approximate models are called model-based, and agents that are designed to approximate 
both policies and value functions are called actor-critic. Agents can be designed to 
approximate one or more of these components.

The difficulty of learning from sampled feedback
(1) You are in state (0.1, 1.3, -1.2, 7.3).

(2) What? What is that? 
(3) OK. I'll take action A.
(4) You got +1. 
(5) You are in (1.5, 1.3, -4.4, 5.1).

Agent Environment

(6) No idea. Action B?
(7) You got +1. 
(8) You are in (1.5, 1.7, -5.4, 1.1).

(9) Still no clue... 
(10) Action A?! I guess!?
(11) You got +1. 
(12) You are in (1.2, 1.1, 1.4, 1.4).

(13) I have no idea what's going on.
I need function approximation... Perhaps, 
I can get a fancy deep neural network!

Time

Agent

Agent

Agent

Environment

Environment

...
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14 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning agents  
utilize powerful non-linear function approximation
The agent can approximate functions using a variety of ML methods and techniques, from 
decision trees to SVMs, to neural networks. However, in this book, we only use neural 
networks; this is what the "deep" part of DRL refers to after all. Neural networks are not 
necessarily the best solution to every problem; neural networks are very data-hungry and 
challenging to interpret, and you must have these facts in mind. However, neural networks 
are also one of the most potent function approximation available, and their performance is 
often the best.

Artificial neural networks (ANN) are multi-layered non-linear function approximators 
loosely inspired by the biological neural networks in animal brains. An ANN is not an 
algorithm, but a structure composed of multiple layers of mathematical transformations 
applied to input values.

From chapter 3 to chapter 7, we will only deal with problems in which agents learn from 
exhaustive (as opposed to sampled) feedback. Starting with chapter 8, we study the full DRL 
problem; that is using deep neural networks so that agents can learn from sampled feedback. 
Remember, DRL agents learn from feedback that is simultaneously sequential, evaluative, 
and sampled.

A simple feed-forward neural network

Input Layer

(1) You are likely familiar with these! 
Well, you better be!

Hidden Layers Output Layer
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15The past, present, and future of deep reinforcement learning 

The past, present, and future  
of deep reinforcement learning
History is not necessary to gain skills, but it can allow you to understand the context around 
a topic, which in turn can help you gain motivation, and therefore skills. The history of AI 
and DRL should help you set expectations about the future of this powerful technology. At 
times I feel the hype surrounding AI is actually productive; people get interested. But right 
after that, when it's time to put in work, hype no longer helps, and it is actually a problem. 
So, while I'd like to be excited about AI, I also need to set some realistic expectations.

Recent history of artificial intelligence  
and deep reinforcement learning
The beginnings of DRL could be traced many years back as humans have been intrigued 
by the possibility of intelligent creatures other than ourselves since antiquity. But a good 
beginning could be Alan Turing's work in the 1930s, 1940s, and 1950s which paved the way 
for modern computer science and AI by laying down critical theoretical foundations that 
later scientists leveraged.

The most well-known of these is the Turing Test, which proposes a standard for measuring 
machine intelligence: if a human interrogator is unable to distinguish a machine from 
another human on a chat Q&A session, then the computer is said to count as intelligent. 
Though rudimentary, the Turing Test allowed generations to wonder about the possibilities 
of creating smart machines by setting a goal that researchers could pursue.

The formal beginnings of AI as an academic discipline can be attributed to John McCarthy, 
an influential AI researcher who made several notable contributions to the field. To name a 
few, McCarthy is credited with coining the term "artificial intelligence" in 1955, leading the 
first AI conference in 1956, inventing the Lisp programming language in 1958, co-founding 
the MIT AI Lab in 1959, and contributing important papers to the development AI as a field 
over several decades.

Artificial intelligence winters
All the work and progress of AI early on created a great deal of excitement, but there were 
also significant setbacks. Prominent AI researchers suggested we would be able to create 
human-like machine intelligence within years, but this never came. Things got worse when 
a well-known researcher named James Lighthill compiled a report criticizing the state of 
academic research in AI. All of these developments contributed to a long period of reduced 
funding and interest in AI research known as the first AI winter. 
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16 Chapter 1 I introduction to deep reinforcement learning

The field continued this pattern throughout the years: Researchers making progress, people 
getting overly optimistic, then overestimating, and this leading to reduced fundings by 
government and industry partners.

The current state of artificial intelligence
We are likely in another highly-optimistic time in AI history, and thus we must be careful. 
Practitioners understand that AI is just a powerful tool, but some people think of AI as this 
magic black box that can take any problem in and out comes the best solution ever. Nothing 
can be further from the truth. Some people even worry about AI gaining consciousness, like 
if that was relevant, as Edsger Dijkstra famously said: "The question of whether a computer 
can think is no more interesting than the question of whether a submarine can swim."

But, if we set aside this Hollywood-instilled vision of AI, we can allow ourselves to get 
excited about the recent progress in this field. Today, the most influential companies in the 
world make the most substantial investments to AI research. Companies such as Google, 
Facebook, Microsoft, Amazon, and Apple have invested in AI research and have become 
highly profitable thanks, in part, to AI systems. Their significant and steady investments 
have created the perfect environment for the current pace of AI research. Contemporary 
researchers have the best computing power available and tremendous amounts of data for 
their research, and teams of top researchers are working together, on the same problems, in 
the same location, at the same time. Current AI research has become more stable and more 
productive. We have been witnessing one AI success after another, and it doesn't seem likely 
to stop anytime soon.

Al funding pattern through the years

(1) Beyond actual numbers, 
AI has followed a pattern of 
hype and disillusion for years. 
What does the future hold?

AI 
Winter

Hype

Disillusion Is it hype, again?

1955-1975
Time

1975-1980
1980-1987

1987-1993
2000- Present

AI 
funding
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17The past, present, and future of deep reinforcement learning 

Progress in deep reinforcement learning
The use of artificial neural networks for RL problems started around the 1990s. One of 
the classics is Gerald Tesauro et al.'s backgammon-playing computer program, called 
TD-Gammon. TD-Gammon learned to play backgammon by learning to evaluate table 
positions on its own through RL. Even though the techniques implemented are not precisely 
considered DRL, TD-Gammon was one of the first widely-reported success stories using 
ANNs to solve complex RL problems.

In 2004, Andrew Ng et al. developed an autonomous helicopter that taught itself to fly stunts 
by observing hours of human-experts flights. They used a technique known as inverse 
reinforcement learning, in which an agent learns from expert demonstrations. The same 
year, Kohl and Stone used a class of DRL methods known as policy-gradient methods to 
develop a soccer playing robot for the RoboCup tournament. They used RL to teach the 
agent forward motion. After only three hours of training, the robot achieved the fastest 
forward moving speed of any other robot of the same hardware.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

21
16

17
18

19
20

21
22

23
24

...
...

TD-Gammon architecture

(1) Handcrafted features, 
not Deep Learning. (2) Not a "deep" 

network, but arguably 
the beginnings of DRL.

(3) The output of 
the network was the 
predicted probability 
of winning given the 
current game state.
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18 Chapter 1 I introduction to deep reinforcement learning

There were other successes in the 2000s, but the field of DRL really only started growing 
after the DL field took off around 2010. In 2013 and 2015, Mnih et al. published a couple of 
papers presenting the DQN algorithm. DQN learned to play ATARI games from raw pixels. 
Using a convolutional neural network (CNN) and a single set of hyperparameters, DQN 
performed better than a professional human player in 22 out of almost 50 of the games.

This accomplishment started a revolution in the DRL community: In 2014, Silver et al. 
released the DPG algorithm and just a year later Lillicrap et al. improved it with DDPG. In 
2016, Schulman et al. released TRPO and GAE methods, Sergey Levine et al. published GPS, 
and Silver et al. demoed AlphaGo. The following year, Silver et al. demonstrated AlphaZero. 
Many other algorithms were released during these years: DDQN, PER, PPO, ACER, A3C, 
A2C, ACKTR, Rainbow, Unicorn (these are actual names, BTW), and so on. In 2019, Oriol 
Vinyals et al. showed the AlphaStar agent beat professional players at the game of StarCraft 
II. And a few months later, Jakub Pachocki et al. saw their team of Dota-2-playing bots, 
called Five, become the first AI to beat the world champions in an e-sports game.

ATARI DQN network architecture

(1) Last 4 frames 
needed to infer 
velocities of the 
ball, paddles, etc.

(2) Learned 
features through 
Deep Learning.

(3) The feed-forward 
ANN used the learned 
features as inputs.

(4) The output 
layer return the 
estimated expected 
value for each action.

Last 4 frames 
as input

Convolutions Feed-forward layers Output

UP

DOWN

FIRE
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19The past, present, and future of deep reinforcement learning 

Thanks to the progress in DRL, we've gone in just two decades from solving backgammon, 
with its 1020 perfect-information states, to solving the game of Go, with its 10170 perfect-
information states, or better yet, to solving StarCraft II, with its 10270 imperfect-information 
states. It's hard to try to conceive a better time to enter the field. Can you imagine what the 
next two decades will bring us? Will you be part of it? DRL is a booming field, and I expect 
its rate of progress to continue.

Game of Go enormous branching factor

(1) From an empty 
board, there are many 
possible initial positions. 

(2) Out of each initial 
position, there are also many 
possible additional moves.

(3) The branching continues until we have a total 
of 10127 states! That's more than the number of 
atoms in the observable universe.
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20 Chapter 1 I introduction to deep reinforcement learning

Opportunities ahead
I believe AI is a field with unlimited potential for positive change regardless of what fear-
mongers say. Back in the 1750s, there was chaos due to the start of the industrial revolution. 
Powerful machines were replacing repetitive manual labor and mercilessly displacing 
humans. Everybody was concerned; Machines that can work faster, more effectively, and 
cheaply than humans? These machines will take all our jobs! What are we going to do for 
a living now? And it actually happened. But the fact is many of these jobs were not only 
unfulfilling, but many of them were also dangerous.

One hundred years after the industrial revolution, the long-term effects of these changes 
were benefiting communities. People that usually owned only a couple of shirts and a pair 
of pants were now able to get much more for a fraction of the cost. Indeed, change was 
difficult, but the long-term effects benefited the entire world.

The digital revolution started in the 1970s with the introduction of personal computers. 
Then, the Internet changed the way we do things. Because of the Internet, we got big data 
and cloud computing. ML used this fertile ground for sprouting into what it is today. In the 
next couple of decades, the changes and impact of AI to society may be difficult to accept at 
first, but the long-lasting effects will be far superior to any setback along the way. I expect 
in a few decades humans will not even need to work for food, clothing, or shelter as these 
things will be automatically produced by AI. We will thrive with abundance.

Workforce revolutions

(1) Revolutions have proven to disrupt industries and societies. 
But in the long term, they bring abundance and progress.

Mechanical 
Engine

Electricity

1750 1800 1850 1900 1950 2000 2050

Personal 
Computer

Artificial 
Intelligence?
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21The past, present, and future of deep reinforcement learning 

As we continue to push the intelligence of machines to higher levels, some AI researchers 
think we might find an AI with superior intelligence to that of ours. At this point, we unlock 
a phenomenon known as the singularity; an AI more intelligent than humans allows for the 
improvement of AI at a much faster pace, given that the self-improvement cycle no longer 
has the bottleneck, namely, humans. But we must be prudent, this is more of an ideal than a 
practical aspect to worry about. 

While one must be always aware of the implications of AI and strive for AI safety, the 
singularity is not an issue today. On the other hand, there are a lot of issues with the current 
state of DRL as you'll see in this book. These issues make a better use of our time.

Singularity could be just a few decades away
Brace yourself,
It could be bumpy ride

Singularity

Fun Included

You are here

Human Intelligence

Self-
improving AI

Human-
produced AIArtificial Intelligence

Compute 
power

0 1950
Time

(1) More than me saying that singularity will 
happen, this graph is meant to explain what 
people refer to when they say "singularity."

(2) One of the most scientific graphs you'll ever see. What? Sources? What?
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22 Chapter 1 I introduction to deep reinforcement learning

The suitability of deep reinforcement learning
You could formulate any ML problem as a DRL problem, but this is not always a good idea 
for multiple reasons. You should know the pros and cons of using DRL in general, and you 
should be able to identify what kind of problems and settings DRL is good and not so good 
for.

What are the pros and cons?
Beyond a technological comparison, I would like you to think about the inherent advantages 
and disadvantages of using DRL for your next project. You will see that each of the points 
highlighted can be either a pro or a con depending on what kind of problem you are trying 
to solve. For instance, this field is about letting the machine take control. Is this good or 
bad? Are you OK with letting the computer make the decisions for you? There is a reason 
why DRL research environments of choice are games: it could be very costly and dangerous 
to have agents training directly in the real world. Can you imagine a self-driving car agent 
learning not to crash by crashing? In DRL, the agents will have to make mistakes. Are you 
able to afford that? Are you willing to risk the negative consequences—actual harm—to 
humans? Considered these questions before starting your next DRL project.

Deep reinforcement learning agents will explore! 
Can you afford mistakes?

(1) Oh look! Stocks are 
the lowest they have 
been in years!

(2) I wonder what 
would happen if I sell 
all my positions now?

(3) Yep, give it a try. 
Sell all!!!

Agent
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23The suitability of deep reinforcement learning

You will also need to consider how your agent will explore its environment. For instance, 
most value-based methods explore by randomly selecting an action. But other methods can 
have more strategic exploration strategies. Now, there are pros and cons to each, and this is a 
tradeoff you will have to become familiar with.

Finally, training from scratch every time can be daunting, time-consuming and resource 
intensive. However, there are a couple of areas that study how to bootstrap previously 
acquired knowledge. First, there is transfer learning which is about transferring knowledge 
gained in tasks to new ones. For example, if you want to teach a robot to use a hammer and 
a screwdriver, you could reuse low-level actions learned on the "pick up the hammer" task 
and apply this knowledge to start learning the "pick up the screwdriver" task. This should 
make intuitive sense to you as humans don't have to relearn low-level motions each time 
they learn a new task. Humans seem to form hierarchies of actions as we learn. The field of 
hierarchical reinforcement learning tries to replicate this in DRL agents.

Deep reinforcement learning's strengths
DRL is about mastering specific tasks. Unlike SL, in which generalization is the goal, RL is 
good at concrete, well-specified tasks. For instance, each ATARI game has a particular task. 
DRL agents are not good generalizing behavior across different tasks; not because you train 
an agent to play Pong, can this agent play Breakout. And if you naively try to teach your 
agent Pong and Breakout simultaneously, you will likely end up with an agent that is not 
good at either. SL, on the other hand, is pretty good a classifying multiple objects at once. 
The point is the strength of DRL is well-defined single tasks.

In DRL, we use generalization techniques to learn simple skills directly from raw sensory 
input. The performance of generalization techniques, new tips, and tricks on training deeper 
networks, etc., are some of the main improvements we've seen in recent years. Lucky for us, 
most DL advancements directly enable new research paths in DRL.

Deep reinforcement learning's weaknesses
Of course, DRL is not perfect. One of the most significant issues you will find is that in 
most problems agents need millions of samples to learn good-performing policies. Humans, 
on the other hand, can learn from very few interactions. Sample efficiency is probably one 
of the top areas of DRL that could use some improvements. We will touch on this topic in 
several chapters as it is a crucial one.
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24 Chapter 1 I introduction to deep reinforcement learning

Another issue with DRL is with reward functions and understanding the meaning of 
rewards. If a human expert will be defining the rewards the agent is trying to maximize, 
does that mean that we are somewhat "supervising" this agent? And is this something good? 
Should the reward be as dense as possible, which makes learning faster, or as sparse as 
possible, which makes the solutions more exciting and unique?

We, as humans, don't seem to have explicitly defined rewards. Often, the same person can 
see an event as positive or negative with only changing their perspective. Additionally, a 
reward function for a task such as walking is not very straightforward to design. Is it the 
forward motion that we should target, or is it not falling? What is the "perfect" reward 
function for a human walk?! 

There is ongoing interesting research on reward signals. One I'm particularly interested in 
is called intrinsic motivation. Intrinsic motivation allows the agent to explore new actions 
just for the sake of it, out of curiosity. Agents that use intrinsic motivation show improved 
learning performance in environments with sparse rewards, which mean we get to keep 
exciting and unique solutions. The point is if you are trying to solve a task that hasn't been 
modeled or doesn't have a distinct reward function, you will face challenges.

Deep reinforcement learning agents need 
lots of interaction samples!

Episode 2,324,532

I almost drove inside the lanes that last time, boss.
Let me drive just one more car!Agent
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Setting clear two-way expectations
Let's now touch on another important point going forward. What to expect? Honestly, to 
me, this is very important. First, I want you to know what to expect from the book so that 
there are no surprises later on. I don't want people to think that from this book, they will be 
able to come up with a trading agent that will make them rich. Sorry, I wouldn't be writing 
this book if it was that simple. Also, I also expect that people who are looking to learn put 
in the work. The fact is, learning will come from the combination of me putting the effort to 
make concepts understandable and you putting the effort to understand them. I did put in 
the effort. But, if you decide to skip a box you didn't think was necessary, we both lose.

What to expect from the book?
My goal for this book is to take you, an ML enthusiast, from no prior DRL experience to 
capable of developing state-of-the-art DRL algorithms. For this, the book is organized into 
roughly two parts. In chapters 3 to 7, you learn about agents that can learn from sequential 
and evaluative feedback, first in isolation, and then in interplay. In chapters 8 to 14, you 
dive into core DRL algorithms, methods, and techniques. Chapters 1 and 2 are about 
introductory concepts applicable to DRL in general, and chapter 15 has concluding remarks.

My goal for the first part (chapters 3 to 7) is for you to understand 'tabular' RL. That is, RL 
problems that can be exhaustively sampled, problems in which there is no need for neural 
networks or function approximation of any kind. Chapter 3 is about the sequential aspect 
of RL and the temporal credit assignment problem. Then, we'll study, also in isolation, the 
challenge of learning from evaluative feedback and the exploration vs. exploitation tradeoff 
in chapter 4. Lastly, you learn about methods that can deal with these two challenges 
simultaneously. In chapter 5, you study agents that learn to estimate the results of fixed 
behavior. Chapter 6 deals with learning to improve behavior, and chapter 7 shows you 
techniques that make RL more effective and efficient.

My goal for the second part (chapters 8 to 14) is for you to grasp the details of core DRL 
algorithms. We dive deep into the details; you can be sure of that. You learn about the many 
different types of agents from value- and policy-based to actor-critic methods. In chapters 8 
through 10, we go deep into value-based DRL. In chapter 11, you learn about policy-based 
DRL. Chapter 12 is about actor-critic, and 13 is about Deterministic Policy Gradient (DPG) 
methods. Finally, and 14 is about Natural Policy Gradient (NPG) methods.
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26 Chapter 1 I introduction to deep reinforcement learning

The examples in these chapters are repeated throughout agents of the same type to make 
comparing and contrasting agents more accessible. You still explore fundamentally different 
kinds of problems, from small continuous to image-based state spaces, and from discrete to 
continuous action spaces. But, this book focus is not about modeling problems, which is a 
skill of its own; instead, the focus is about solving already modeled environments.

Comparison of different algorithmic 
approaches to deep reinforcement learning

Policy-basedDerivative-free Actor-critic Value-based Model-based

Less sample efficiency More sample efficiency

Less computationally expensive More computationally expensive

Less direct learning More direct learning

More direct use of learned function Less direct use of learned function

(1) In this book you learn about all these algorithmic approaches to deep 
reinforcement learning. In fact, to me, the algorithms are the focus and not so 
much the problems. Why? Because in DRL, once you know the algorithm, you 
can apply that same algorithm to similar problems with only hyperparameter 
tuning. Learning the algorithm is where you make the most out of your time.
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How to get the most out of the book?
There are a few things you need to bring to the table to come out grokking deep 
reinforcement learning. You need to bring some prior basic knowledge of ML and DL. You 
need to be comfortable with Python code and simple math. And most importantly, you 
must be willing to put in the work.

I assume that the reader has a solid basic understanding of ML. You should know what ML 
is beyond what is covered in this chapter, you should know how to train simple SL models, 
perhaps the Iris or Titanic datasets, you should be familiar with DL concepts such as tensors 
and matrices, and you should have trained at least one DL model, say a convolutional neural 
network (CNN) on the MNIST dataset.

This book is focused on DRL topics, and there is no DL in isolation. There are many useful 
resources out there that you can leverage. But, again, you just need a basic understanding; 
If you have trained a CNN before, then you are fine. Otherwise, I highly recommend you 
follow a couple of DL tutorials before starting the second part of the book.

Another assumption I'm making is that the reader is comfortable with Python code. Python 
is a somewhat clear programming language that is so easy to understand that even people 
not familiar with it will get something out of reading it. Now, my point is you should be 
comfortable with it, willing and looking forward to reading the code. If you just don't, then 
you will miss out on a lot.

Likewise, there are lots of math equations in this book, and that is a good thing. Math is the 
perfect language, and there is nothing that can replace it. However, I'm just asking for people 
to be comfortable with math, willing to read, and nothing else. The equations I show are 
heavily annotated so that people "not into math" can still take advantage of the resources.

Finally, I'm assuming you are willing to put in the work. By that I mean you really want to 
learn DRL. If you decide to skip the math boxes, or the Python snippets, or a section, or one 
page, or chapter, or whatever, you will miss out on a lot of relevant information. To get the 
most out of this book, I recommend you read the entire book front to back. Because of the 
different style, figures and "side" boxes are actually part of the main narrative in this book.

Also, make sure you run the book source code (next section provides more details on how 
to do this), and play around and extend the ones you find most interesting. 

Sometimes I'll repeat myself, or leave out details, or be confusing and intriguing, or make 
an unrelated point, just stay with me. I do these things for a reason. Sometimes you need to 
be primed and reminded of some concepts, sometimes you need a high-level overview and 
nothing else, sometimes you need to get motivated, sometimes you need a break. I do these 
things, albeit not perfect, for a reason.
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Deep reinforcement learning development environment
Along with this book, you are provided with a fully-tested environment and code to 
reproduce my results. I created a Docker image and several Jupyter Notebooks so that you 
don't have to mess around with installing packages and configuring software, or copying 
and pasting code. The only prerequisite is Docker. Please, go ahead and follow the directions 
at https://github.com/mimoralea/gdrl on running the code. It's pretty straightforward.

The code is written in Python, and I make heavy use of Numpy and PyTorch. I chose 
PyTorch, instead of Keras, or TensorFlow, because I found PyTorch to be a very "pythonic" 
library. Using PyTorch feels very natural if you have used Numpy. Unlike TensorFlow, for 
instance, which feels like a whole new programming paradigm. Now, my intention is not to 
start a "PyTorch vs. TensorFlow" debate. But, in my experience from using both libraries, 
PyTorch is a library much better suited for research and teaching.

DRL is about algorithms, methods, techniques, tricks, and so on, so there is no point for 
us to re-write a "Numpy" or a "PyTorch" library. But, also, in this book, we write DRL 
algorithms from scratch; I'm not teaching you how to use a DRL library, such as Keras-RL, 
or Baselines, or RLlib. I want you to learn DRL, and therefore we write DRL code. In the 
years that I've been teaching RL, I've noticed those who write RL code are more likely to 
understand RL. Now, this is not a book on PyTorch either; there is no separate PyTorch 
review or anything like that, just PyTorch code that I explain as we move along. If you are 
somewhat familiar with DL concepts, you'll be able to follow along with the PyTorch code I 
use in this book. So, don't worry, you don't need a separate PyTorch resource before you get 
to this book. I explain everything in detail as we move along.

As for the environments we use for training the agents, we use the popular OpenAI Gym 
package and a few other libraries that I developed for this book. But we're also not going 
into the ins and outs of Gym. Just know that Gym is a library that provides environments 
for training RL agents. Beyond that, remember our focus is the RL algorithms, the solutions, 
not the environments, or modeling problems. Which needless to say, it is also a critical skill.

Since you should be familiar with DL, I presume you know what a GPU is. DRL 
architectures do not need the level of computation commonly seen on DL models. For 
this reason, the use of a GPU, while a good thing, is not required. Conversely, unlike DL 
models, some DRL agents make heavy use of CPU and thread count. So, if you are planning 
on investing in a machine, make sure to account for CPU power (well, technically number 
of cores, not speed) as well. As you'll see later, some algorithms massively parallelize 
processing, and in those cases, it is the CPU that becomes the bottleneck, not the GPU. 
However, the code runs fine in the container regardless of your CPU or GPU. But, if your 
hardware is severely limited, I recommend checking out cloud platforms. I've seen services, 
such as Google Colab, that offer DL hardware for free.
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Summary
Deep reinforcement learning is challenging because agents must learn from feedback that 
is simultaneously sequential, evaluative, and sampled. Learning from sequential feedback 
forces the agent to learn how to balance immediate and long-term goals. Learning from 
evaluative feedback makes the agent learn to balance the gathering and utilization of 
information. Learning from sampled feedback forces the agent to generalize from old to new 
experiences.

Artificial intelligence, the main field of computer science in which reinforcement learning 
falls into, is a discipline concerned with creating computer programs that display human-
like intelligence. This goal is shared across many other disciplines, such as control theory, 
operations research, to name a few. Machine learning is one of the most popular and 
successful approaches to artificial intelligence. Reinforcement learning is one of the three 
branches of machine learning, along with supervised learning, and unsupervised learning. 
Deep learning, an approach to machine learning, is not tied to any specific branch, but its 
power instead helps advance the entire machine learning community.

Deep reinforcement learning is simply the use of multiple layers of powerful function 
approximators known as neural networks (deep learning) to solve complex sequential 
decision-making problems under uncertainty. Deep reinforcement learning has performed 
well in many control problems, but nevertheless, it's essential to have in mind that releasing 
human control for critical decision making should not be taken lightly. Some of the core 
needs in deep reinforcement learning are algorithms with better sample complexity, better-
performance exploration strategies, and safe algorithms.

Still, the future of deep reinforcement learning is bright, there are perhaps dangers ahead 
as the technology matures, but more importantly, there is potential in this field, and you 
should feel excited and compelled to bring your best and embark in this journey. The 
opportunity to be part of a potential change this big happens only every few generations. 
You should be glad you're living these times. Now, let's be part of it.

By now you:

• Understand what deep reinforcement learning is and how it began.
• Know how a larger field of related approaches share interests and concepts with deep 

reinforcement learning and how these relationships influence the field.
• Recognize why deep reinforcement learning is important and how it is different than 

other approaches to machine learning.
• Can identify what deep reinforcement learning can do for different kinds of problems.
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mathematical foundations of
reinforcement learning 2

In this chapter

• You learn about the core components of reinforcement 
learning.

• You learn to represent sequential decision-making 
problems as reinforcement learning environments 
using a mathematical framework known as Markov 
Decision Processes.

• You build from scratch environments that 
reinforcement learning agents learn to solve in later 
chapters.

Mankind's history has been a struggle against a hostile 
environment. We finally have reached a point where we can begin 
to dominate our environment [...]. As soon as we understand 
this fact, our mathematical interests necessarily shift in many 
areas from descriptive analysis to control theory. 

— Richard Bellman 
American applied mathematician 
an IEEE medal of honor recipient
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2 Chapter 2 I mathematical foundations of reinforcement learning

You pick up this book and decide to read one more chapter despite having limited free 
time, a coach benches their best player for tonight's match ignoring the press criticism, a 
parent invests long hours of hard work and unlimited patience in teaching their child good 
manners. These are all examples of complex sequential decision-making under uncertainty.

I want to bring to your attention three of the words in play in this sentence: complex 
sequential decision-making under uncertainty. The first word, "complex," refers to the fact 
that agents may be learning in environments with vast state and action spaces. So, in the 
coaching example, even if you discover that your best player needs to rest every so often, 
perhaps resting in a match with a specific opponent is different. Learning to generalize 
accurately is challenging because we learn from sampled feedback.

The second word I used is "sequential," and this one refers to the fact that in many problems 
there are delayed consequences. In the coaching example, let's say the coach benched their 
best player for a seemingly unimportant match midway through the season. But, what if 
resting players lowers their morale and performance that only manifest in finals? Assigning 
credit to your past decisions is challenging because we learn from sequential feedback.

Finally, the word "uncertainty" refers to the fact that we don't know the actual inner 
workings of the world; we are left to interpret it. Let's say the coach did bench their best 
player, but they got injured in the next match. Was the benching decision bad? What if the 
injury motivates the rest of the team and they end up winning the final? So, was benching 
the right decision? This uncertainty gives rise to the need for exploration. Finding the 
appropriate balance between exploration and exploitation is challenging because we learn 
from evaluative feedback.

In this chapter, you'll learn to represent these kinds of problems using a mathematical 
framework known as Markov Decision Processes (MDPs). The general framework of 
MDPs allows us to model virtually any complex sequential decision-making problem under 
uncertainty in a way that RL agents can interact with and learn to solve solely through 
experience.

We'll dive deep into the challenges of learning from sequential feedback in chapter 3, 
then into the challenges of learning from evaluative feedback in chapter 4, then into the 
challenges of learning from feedback that is simultaneously sequential and evaluative in 
chapters 5 through 7, and then chapters 8 through 14 will add "complex" into the mix.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

31



3Components of reinforcement learning

Components of reinforcement learning
The two core components in RL are the agent and the environment. The agent is the 
decision maker, a solution, the environment is the representation of a problem. One of the 
fundamental distinctions between RL from other ML approaches is that the agent and the 
environment interact; the agent attempts to influence the environment through actions, and 
the environment reacts to the agent's actions.

The reinforcement learning 
interaction cycle

(1) Agent perceives the environment.

(4) The environment reacts 
with new observation.

(3) The environment goes through internal state 
change as a consequence of the agent's action.

Observation Action

Agent

Environment

(2) Agent takes an action.
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4 Chapter 2 I mathematical foundations of reinforcement learning

! Miguel's AnAlogy

The parable of a Chinese farmer

There is an excellent parable that shows how difficult it is to interpret feedback that is 
simultaneously sequential, evaluative, and sampled. The parable goes like this:

A Chinese farmer gets a horse, which soon runs away. A neighbor says, "So, sad. That's bad 
news." The farmer replies, "Good news, bad news, who can say?"

The horse comes back and brings another horse with him. The neighbor says. "How lucky. 
That's good news." The farmer replies, "Good news, bad news, who can say?"

The farmer gives the second horse to his son, who rides it, then is thrown and badly breaks 
his leg. The neighbor says, "So sorry for your son. This is definitely bad news." The farmer 
replies, "Good news, bad news, who can say?"

In a week or so, the emperor's men come and take every healthy young man to fight in a 
war. The farmer's son is spared.

So, good news or bad news? Who can say?

Interesting story, right? In life, it is challenging to know with certainty what are the long-
term consequences of events and our actions. Often, we find misfortune responsible for our 
later good fortune, or our good fortune responsible for our later misfortune.

Even though this story could be interpreted as a lesson that beauty is in the eye of the 
beholder, in reinforcement learning, we assume there is a correlation, just that it is so 
complicated that it is difficult for humans to connect the dots with certainty. But, perhaps 
this is something that computers can help us figure out. Exciting, right?

Have in mind that when feedback is simultaneously evaluative, sequential, and sampled, 
learning is a hard problem. And, deep reinforcement learning is a computational approach 
to learning in these kinds of problems.

Welcome to the world of deep reinforcement learning!
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5Components of reinforcement learning

Examples of problems, agents, and environments
The following are abbreviated examples of RL problems, agents, environments, possible 
actions and reactions:

• Problem: you are training your dog to sit. Agent: the part of your brain that makes 
decisions. Environment: your dog, the treats, your dog's paws, the loud neighbor, etc. 
Actions: Talk to your dog. Wait for dog's reaction. Move your hand. Show treat. Give 
treat. Pet. Reactions: Your dog is paying attention to you. Your dog is getting tired. 
Your dog sat on command.

• Problem: your dog wants the treats you have. Agent: the part of your dog's brain that 
makes decisions. Environment: you, the treats, your dog's paws, the loud neighbor, 
etc. Actions: Stare at owner. Bark. Jump at owner. Try to steal the treat. Run. Sit. Reac-
tions: Owner keeps talking loud at me. Owner is showing the treat. Owner is hiding 
the treat. Owner gave me the treat.

• Problem: a trading agent investing in the stock market. Agent: the executing DRL 
code in memory and in the CPU. Environment: your Internet connection, the ma-
chine the code is running on, the stock prices, the geopolitical uncertainty, other 
investors, day-traders, etc. Actions: Sell n stocks of y company. Buy n stocks of y com-
pany. Hold. Reactions: Market is going up. Market is going down. There are economic 
tensions between two powerful nations. There is danger of war in the continent.

• Problem: you are driving your car. Agent: the part of your brain that makes decisions. 
Environment: the make and model of your car, other cars, other drivers, the weather, 
the roads, the tires, etc. Actions: Steer by x, Accelerate by y. Break by z. Turn the head-
lights on. Defog windows. Play music. Reactions: You are approaching your destina-
tion. There is a traffic jam on Main Street. The car next to you is driving recklessly. It's 
starting to rain. There is a cop driving in front of you.

As you can see, problems can take many forms: from high-level decision-making problems 
that require long-term thinking and broad general knowledge, such as investing in the stock 
market, to low-level control problems, in which geopolitical tensions don't seem to play a 
direct role, such as driving a car.

Also, you can represent a problem from multiple agents' perspective. In the dog training 
example, in reality, there are two agents each interested in a different goal and trying to solve 
a different problem.

Let's dig in some more. Let's zoom into each of these components independently.
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6 Chapter 2 I mathematical foundations of reinforcement learning

The agent: The decision-maker
As I mentioned in chapter 1, this whole book is about agents, except for this chapter, though. 
Starting with chapter 3, you'll dig deep into the inner workings of agents, their components, 
their processes, and techniques to create agents that are effective and efficient.

For now, the only important thing for you to know about agents is that there are agents and 
that they are the decision-makers in the RL big picture. They have internal components and 
processes of their own, and that is what makes each of them unique and good at solving 
specific problems.

If we were to zoom in, we would see that most agents have a three-step process: all agents 
have an interaction component, a way to gather data for learning, all agents evaluate their 
current behavior, and all agents improve something in their inner components that allows 
them to improve their overall performance (or at least attempt to improve).

But, before we get too far into the agents, let's spend some time thinking about the 
environments. That's the goal of this chapter.

Observation Action

The three internal steps that every 
reinforcement learning agent goes through

Agent

Interact

Ev
al

ua
te

Im
prove

(1) All agents evaluate 
their behavior.

(3) One of the 
coolest things 
of reinforcement 
learning is 
agents interact 
with the problem.

(2) Reinforcement learning
means, well, agents have 
to learn something.
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7Components of reinforcement learning

The environment: Everything else
Most real-world problems can be expressed as RL environments. The way to represent 
decision-making processes in RL is by modeling the problem using the framework of MDPs. 
In RL, we assume all environments have an MDP working under the hood. Whether an 
ATARI game, the stock market, a self-driving car, your significant other, you name it, every 
problem has an MDP running under the hood (at least in the RL world, whether right or 
wrong).

The environment is represented by a set of variables related to the problem. The 
combination of all the possible values this set of variables can take is referred to as the state 
space. A state is a specific set of values the variables take at any given time.

Agents may or may not have access to the environment's state; however, one way or another, 
agents can observe something from the environment. The set of variables the agent sees at 
any given time is called an observation.

The combination of all possible values these variables can take is the observation space. 
Know that "state" and "observation" are terms used interchangeably in the RL community. 
This is because very often agents are allowed to see the internal state of the environment, but 
this is not always the case.

At every state, the environment makes available a set of actions the agent can choose from. 
Often the set of actions is the same for all states, but this is not required. The set of all 
actions in all states is referred to as the action space.

The agent attempts to influence the environment through these actions. The environment 
may change states as a response to the agent's action. The function that is responsible for 
this transition is called the transition function.

After a transition, the environment emits a new observation. The environment may also 
provide a reward signal as a response. The function responsible for this mapping is called 
the reward function. The set of transition and reward function is referred to as the model
of the environment.
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8 Chapter 2 I mathematical foundations of reinforcement learning

A ConCrete exAMple

The Bandit Walk environment

Let's make these concepts concrete with our first RL environment: I created this very simple 
environment for this book; I call it the Bandit Walk (BW).

BW is a very simple grid-world (GW) environment. GWs are a common type of environments 
for studying RL algorithms that are grids of any size. GWs can have any model (transition 
and reward functions) you can think of, and can make any kind of actions available.

But, they all commonly make move actions available to the agent: LEFT, DOWN, RIGHT, UP 
(or WEST, SOUTH, EAST, NORTH, which is more precise because the agent has no heading 
and usually has no visibility of the full grid, but cardinal directions can also be more 
confusing). And, of course, each action with the logical transitions; E.g. a left moves the 
agent left most of the time, etc. Also, they all tend to have a fully-observable discrete state 
and observation spaces (that is state == observation) with integers representing the cell 
id location of the agent. A "Walk" is a special case of grid-world environments with a single 
row.

BW is a walk with 3 states, but only 1 non-terminal state. Environments that have a single 
non-terminal state are called "bandit" environments. "Bandit" here is an analogy to slot 
machines, which are also known as "one-armed bandits"; they have one arm and, if you like 
gambling, can empty your pockets, just like a bandit would.

BW has just 2 actions available: a left (action 0) and an right (action 1) action. BW has a 
deterministic transition function: a left actions moves the agent to the left, and a right 
action moves the agent to the right. The reward signal is a +1 when landing on the right-
most cell, 0 otherwise. The agent starts in the middle cell.

The bandit walk (BW) environment

(2) The leftmost 
state is a hole.

(3) The rightmost 
state is the goal, and 
provides a +1 reward. 

(1) The agent starts in the middle of the walk.

H S G
0 21
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9Components of reinforcement learning

A graphical representation of the BW environment would look like this:

I hope this raises some questions, but you will find the answers throughout this chapter. 
For instance, why do the terminal states have actions that transition to themselves, seem 
wasteful, doesn't? Any other questions? Like, what if the environment is stochastic? Keep 
reading...

We can also represent this environment in a table form:

State Action Next state Transition probability Reward signal

0 (Hole) 0 (Left) 0 (Hole) 1.0 0

0 (Hole) 1 (Right) 0 (Hole) 1.0 0

1 (Start) 0 (Left) 0 (Hole) 1.0 0

1 (Start) 1 (Right) 2 (Goal) 1.0 +1

2 (Goal) 0 (Left) 2 (Goal) 1.0 0

2 (Goal) 1 (Right) 2 (Goal) 1.0 0

Interesting, right? Let's look at another simple example.

0 1 2
10 1.0

+1
1.0

Bandit Walk graph 

(8) "H" is a hole, a bad 
terminal state.

(7) Transition 
of the left 
action is 
deterministic.

(4) Transition of 
the right action 
is deterministic.

(3) "G" is a goal 
terminal state.

(1) Starting state.
(2) Reward 
signal.

(6) Action 0, 
"Left".

(5) Action 1, 
"Right".
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10 Chapter 2 I mathematical foundations of reinforcement learning

A ConCrete exAMple

The Bandit Slippery Walk environment

OK, so how about we make this environment stochastic?

Let's say the surface of the walk is slippery and each action has 20% chance of sending the 
agent backwards. I call this environment the Bandit Slippery Walk (BSW).

BSW is a one-row grid world, a walk, with only left and right actions available. So, again 3 
states and 2 actions. The reward is the same as before, +1 when landing at the right-most 
state (except when coming from the right-most state -- itself ), 0 otherwise.

However, the transition function is different: 80% of the time the agent moves to the 
intended cell, 20% of time in the opposite direction. 

A depiction of this environment would look as follows:

Identical to the BW! Interesting...

So, how do we know it the action effects are stochastic? How do we represent the "slippery" 
part?

The graphical and table representations can help with that. 

H S G
0 21

The Bandit Slippery Walk (BSW) environment

(3) The leftmost 
state is a hole.

(2) The rightmost state is the 
goal, and provides a +1 reward.  

(1) The agent starts in 
the middle of the walk.
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11Components of reinforcement learning

A graphical representation of the BSW environment would look like this:

See how the transition function is different now? But, we can still represent this 
environment in a table form:

State Action Next state Transition probability Reward signal

0 (Hole) 0 (Left) 0 (Hole) 1.0 0

0 (Hole) 1 (Right) 0 (Hole) 1.0 0

1 (Start) 0 (Left) 0 (Hole) 0.8 0

1 (Start) 0 (Left) 2 (Goal) 0.2 +1

1 (Start) 1 (Right) 2 (Goal) 0.8 +1

1 (Start) 1 (Right) 0 (Hole) 0.2 0

2 (Goal) 0 (Left) 2 (Goal) 1.0 0

2 (Goal) 1 (Right) 2 (Goal) 1.0 0

And of course, don't limit yourself to thinking about environments with discrete state 
and action spaces, or even just walks, bandits, and grid worlds. This way of representing 
environments is surprisingly powerful and simple.

Let's look at a few examples of different kinds of environments to make these definitions 
more concrete:

10.8

0.2

0.8
+1

+10.2

0 1
0 2

Bandit Slippery Walk graph
(1) Same as before: a hole, starting, and goal states.

(2) But the transition function is different! With an 80% 
chance, we move forward, and 20% chance, we more backward!
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12 Chapter 2 I mathematical foundations of reinforcement learning

Description Observation space
Sample 

observation
Action space

Sample 
action

Reward 
function

Hotter 
Colder:
Guess a 

randomly 
selected 
number 

using hints.

Int range 0-3.

0 means no guess yet 
submitted, 1 means 
guess is lower than 
the target, 2 means 

guess is equal to the 
target and 3 means 
guess is higher than 

the target.

2

Float from 
-2000.0-
2000.0. 

The float 
number 

the agent is 
guessing.

-909.37

The reward 
is the 

squared 
percentage 
of the way 
the agent 

has guessed 
toward the 

target.

Cart Pole: 
Balance a 
pole in a 

cart.

A 4-element vector 
with ranges: from 

[-4.8, -Inf, -4.2, -Inf ] to 
[4.8, Inf, 4.2, Inf ].

First element is the 
cart position, second 

is the cart velocity, 
third is pole angle in 
radians, fourth is the 
pole velocity at tip.

[-0.16, -1.61,  
0.17,  2.44]

Int range 0-1.

0 means push 
cart left, 1 

means push 
cart right.

0

The reward 
is 1 for every 
step taken, 
including 

the 
termination 

step.

Lunar 
Lander: 

Navigate a 
lander to 

its landing 
pad.

An 8-element vector 
with ranges: from 

[-Inf, -Inf, -Inf, -Inf, -Inf, 
-Inf, 0, 0] to [Inf, Inf, 
Inf, Inf, Inf, Inf, 1, 1].

First element is the x 
position, the second 

the y position, the 
third is the x velocity, 

the fourth is the 
y velocity, fifth is 

the vehicle's angle, 
sixth is the angular 

velocity, last two 
values are booleans 

indicating legs 
contact with the 

ground.

[ 0.36 ,  0.23, 
-0.63, -0.10, 
-0.97, -1.73 , 

1.0, 0.0]

Int range 0-3.

No-op (do 
nothing), fire 
left engine, 

fire main 
engine, fire 

right engine.

2

Reward for 
landing is 
200. There 
is reward 
shaping 

for moving 
from the 

top to the 
landing pad, 
for crashing 
or coming to 
rest, for each 
leg touching 
the ground, 

and for 
firing the 
engines.
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13Components of reinforcement learning

Pong: 
Bounce the 
ball past the 
opponent, 
and avoid 
letting the 
ball pass 

you.

A tensor of shape 
210, 160, 3.

Values ranging 0-255.

Represents a game 
screen image.

[[[246, 217, 
64], [ 55, 

184, 230], 
[ 46, 231, 

179], ..., [ 28, 
104, 249], 
[ 25, 5, 22], 
[173, 186,   

1]],...]]

Int range 0-5.

Action 0 is 
No-op, 1 is 
Fire, 2 is up, 
3 is right, 4 
is left, 5 is 

down.

Notice how 
some actions 
don't affect 
the game in 
any way. In 
reality the 

paddle can 
only move 

up, down or 
not move.

3

The reward 
is a 1 when 

the ball goes 
beyond the 
opponent, 

and a -1 
when your 

agent's 
paddle 

misses the 
ball.

Humanoid: 
Make robot 
run as fast 
as possible 
and not fall.

A 44-element (or 
more, depending on 
the implementation) 

vector.

Values ranging from 
-Inf to Inf.

Represents the 
positions and 

velocities of the 
robot's joints.

[ 0.6, 0.08, 
0.9, 0. , 0., 0., 
0., 0., 0.045, 
0., 0.47, ..., 

0.32, 0., 
-0.22,..., 0.]

A 17-element 
vector.

Values 
ranging from 

-Inf to Inf.

Represents 
the forces to 
apply to the 

robot's joints.

 [-0.9, 
-0.06, 
0.6, 

0.6, 0.6, 
-0.06, 

-0.4, -0.9, 
0.5, -0.2, 
0.7, -0.9, 
0.4, -0.8, 
-0.1, 0.8, 

-0.03]

The reward 
is calculated 

based on 
forward 
motion 

with a small 
penalty to 
shape the 
gait of the 

robot.

Notice I didn't add the transition function to this table. That is because, while you can look 
at the code implementing the dynamics for some environments, other implementations are 
not easily accessible. For instance, the transition function of the Cart Pole environment is a 
small Python file defining the mass of the cart and the pole and implementing basic physics 
equations, while the dynamics of ATARI games, such as Pong, are hidden inside an ATARI 
emulator and the corresponding game-specific ROM file.
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14 Chapter 2 I mathematical foundations of reinforcement learning

What we are trying to represent here is the fact that the environment "reacts" to the agent's 
actions in some way, perhaps even by ignoring the agent's actions. But at the end of the day, 
there is an internal process that is uncertain (except in this and next chapter). To represent 
the ability to interact with an environment we need states, observations, actions, a transition 
function and a reward signal.

Agent-environment interaction cycle

The environment commonly has a well-defined task. The goal of this task is defined 
through the reward signal. The reward signal can be dense, sparse, or anything in between. 
The more dense, the more supervision the agent will have, and the faster the agent will 
learn, but the more of your bias you will inject into your agent, and the less likely the 
agent will come up with unexpected behaviors. The more sparse, the less supervision, and 
therefore, the higher the chance of new emerging behaviors, but the longer it'll take the 
agent to learn.

The interactions between the agent and the environment go on for several cycles. Each cycle 
is called a time step. A time step is a unit of time which can be a millisecond, a second, 
1.2563 seconds, a minute, a day, or any other period of time.

At each time step, the agent observes the environment, takes action, and receives a new 
observation and reward. Notice that, even though rewards can be negative values, they are 
still called rewards in the RL world. The set of the observation (or state), the action, the 
reward, and the new observation (or new state) is called an experience tuple.

Process the environment goes through 
as a consequence of agent's actions

(5) Finally, the 
reaction is passed 
back to be agent.

(3) ...the environment 
will transition to a new 
internal state.

(2) ...and depending on the 
current environment state,  
and the agent's chosen action...

(1) Environment 
receives the last 
action taken by  
the agent.

Next 
state

Action

Environment Observation 
Reward

(4) The new state and 
reward are passed 
through a filter: some 
problems don't let 
the true state of the 
environment be seen 
by the agent! 

Transition

Reward State
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15MDPs: The engine of the environment

The task the agent is trying to solve may or may not have a natural ending. Tasks that have a 
natural ending, such as a game, are called episodic tasks. Tasks that do not, such as learning 
forward motion, are called continuing tasks. The sequence of time steps from the beginning 
to the end of an episodic task is called an episode. Agents may take several time steps and 
episodes to learn to solve a task. The sum of rewards collected in a single episode is called a 
return. Agents are often designed to maximize the return. Continuing tasks are often added 
a time step limit, so they become episodic tasks, and agents can maximize the return.

Every experience has an opportunity for learning and improving performance. The agent 
may have one or more components to aid learning. The agent may be designed to learn 
mappings from observations to actions called policies. The agent may be designed to learn 
mappings from observations to new observations and/or rewards called models. The agent 
may be designed to learn mappings from observations (and possibly actions) to reward-to-
go estimates (a slice of the return) called value functions.

For the rest of this chapter, we'll put aside the agent and the interactions, and we'll examine 
the environment and inner MDP in depth. In chapter 3, we'll pick back up the agent, but 
there will be no interactions because the agent won't need them as it'll have access to the 
MDPs. In chapter 4, we'll remove the agent's access to MDPs and add interactions back into 
the equation, but it'll be in single-state environments (bandits). Chapter 5 is about learning 
to estimate returns in multi-state environments when agents have no access to MDPs. 
Chapter 6 and 7 are about optimizing behavior, which is the full reinforcement learning 
problem. Chapters 5, 6 and 7 are about agents learning in environments where there is no 
need for function approximation, however. After, the rest of the book is all about agents that 
use neural networks for learning.

MDPs: The engine of the environment
Let's build MDPs for a few environments as we learn about the components that make them 
up. We'll create Python dictionaries representing MDPs from descriptions of the problems. 
In the next chapter, we'll study algorithms for planning on MDPs. These methods can devise 
solutions to MDP and will allow us to find optimal solutions to all problems in this chapter.

The ability to build environments yourself is an important skill to have. However, often 
you will find environments for which somebody else has already created the MDP. Also, 
often, the dynamics of the environments are hidden behind a simulation engine and are too 
complex to explore in the detail we will in this chapter, some dynamics are even inaccessible 
and hidden behind the real world. In reality, RL agents do not need to know the precise 
MDP of a problem to learn robust behaviors, but knowing about MDPs is important for you
as agents are commonly designed with the assumption that an MDP, even if inaccessible, is 
running under the hood.
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16 Chapter 2 I mathematical foundations of reinforcement learning

A ConCrete exAMple

The Frozen Lake environment

This is another, more-challenging problem we will build an MDP for. This environment is 
called the Frozen Lake (FL). 

FL is a simple grid-world (GW) environment. It also has discrete state and action spaces. 
However, this time, the full 4 actions are available, move LEFT, DOWN, RIGHT, or UP.  

In FL, the goal of the agent is very similar to the BW and BSW environments: to go from a 
start location to a goal location while avoiding falling into holes. The challenge is, though, 
similarly to the BSW, the surface of the lake is frozen, and therefore slippery.

The FL is a 4x4 grid (has 16 cells, 0-15). The agent will show up in the START cell and 
reaching the GOAL gives a +1 reward, anything else is 0. But because the surface is very 
slippery, the agent moves only a third of the time as intended. The other two-thirds is split 
evenly in orthogonal directions. For example, if the agent chooses to move DOWN, there is 
a 33.3% chance it will, 33.3% chance it will move LEFT and 33.3% chance it will move RIGHT. 

There is a fence around the lake, so if the agent tries to move out of the grid world, it will 
just bounce back to the cell from which it tried to move. There are four holes in the lake. 
If the agent falls into one of these holes, it's game over. Are you ready to start building a 
representation of these dynamics? We need a Python dictionary representing the MDP 
described here.

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) Agent 
starts each 
trial here.

(2) Slippery frozen 
surface may send 
the agent to 
unintended places.

(3) Agents gets a +1 
when he arrives here.

(4) These are holes 
that will end the trial 
if the agent falls into 
any of them.

The Frozen Lake (FL) environment
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17MDPs: The engine of the environment

States: Specific configurations of the environment
A state is a unique and self-contained configuration of the problem. The set of all possible 
states, the state space, is defined as the set S. The state space can be finite or infinite. But, 
notice that the state space is different than the set of variables that compose a single state. 
This other set must always be finite and of constant size from state to state. In the end, the 
state space is a set of sets. The inner sets must be of equal size and finite, as it contains the 
number of variables representing the states, but the outer set can be infinite depending on 
the types of elements of the inner sets.

For the BW, BSW and FL environments, the state is composed of a single variable containing 
the id of the cell the agent is at any given time. The agent's location cell id is a discrete
variable. But state variables can be of any kind, and the set of variables can be larger than 
one. We could have the euclidean distance, that would be a continuous variable and an 
infinite state space. E.g.: 2.124, 2.12456, 5.1, 5.1239458, and so on. We could also have 
multiple variables defining the state, like the number of cell away from the goal in the x 
and y axis. That would be two variables representing a single state. Both variables would be 
discrete, therefore the state space finite. But, we could also have variables of mixed types like 
one could be discrete, the other continuous, another one boolean, and so on. 

With this state representation for the BW, BSW, and FL environments, the size of the state 
space is 3, 3, and 16 respectively. Given we have 3, 3, or 16 cells the agent can be at any given 
time, we have 3, 3, and 16 states. We can simply set the ids of each cell starting from zero 
going left to right, top to bottom.

(1) The inner set (the number of variables that compose the states) must be finite.
The size of the inner set must be a positive integer.

[  [0],    [1],    [2],    [3],
     [4],   [5],    [6],    [7],
     [8],   [9],    [10], [11],
     [12],[13],[14], [15]  ]

[   [0.12,        -1.24, 0, -1, 1.44],
     [0.121,    -1.24, 0, -1, 1.44],
     [0.1211, -1.24, 0, -1, 1.44],
      ...                                                           ]

(2) But the outer set may be infinite.
If any of the inner sets elements is 
continuous, for instance.

State space: A set of sets

FL state space Some other state space
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In the FL, for instance, we set the ids from zero to fifteen, left to right, top to bottom. 
You could set the ids in any other way: in a random order, or group cells by proximity, or 
whatever. It's up to you, as long as you keep them constant throughout training, it would 
work. However, this representation is good enough, and it works well, so it is what we'll use.

In the case of MDPs, the states are fully-observable: We can see the internal state of 
the environment at each time step, that is, the observations and the states are the same. 
Partially-Observable Markov Decision Processes (POMDPs), is a more general framework 
for modeling environments in which observations, which still depend on the internal state 
of the environment, are the only thing the agent can see instead of the state. Notice that for 
the BW, BSW and FL environments, we are creating an MDP, so the agent will be able to 
observe the internal state of the environment.

States must contain of all necessary variables needed to make them independent of all other 
states. In the FL environment, you only need to know the current state of the agent to tell 
its next possible states. That is, you don't need the history of states visited by the agent for 
anything. You know that from state 2 the agent can only transition to state 1, 3, 6, or 2 and 
this is true regardless of whether the agent's previous state was 1, 3, 6, or 2.

1 2 3

4 5

0

7

8 9 10 11

6

12 13 14 15

States in the Frozen Lake environment are 
just the i, j coordinates of the Grid World

(1) It's just a 4x4 grid!
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The probability of the next state, given the current state and action, is independent of 
the history of interactions. This memoryless property of MDPs is known as the Markov 
property: the probability of moving from one state s to another state s' on two separate 
occasions, given the same action a, is the same regardless of all previous states or actions 
encountered before that point.

But why do you care about this? Well, in the environments we've explored so far is not that 
obvious and not that important. But because most RL (and DRL) agents are designed to take 
advantage of the Markov assumption, you must make sure you feed your agent the necessary 
variables to make it hold as tightly as possible (completely keeping the Markov assumption 
is impractical, perhaps impossible).

For example, if you are designing an agent to learn to land a spacecraft, the agent must 
be fed variables that indicate velocities along with its locations. Locations along are not 
sufficient to land a spacecraft safely, and because you must assume the agent is memoryless, 
you need to feed the agent more information than just its x, y, z coordinates away from the 
landing pad.

But, you probably know that acceleration is to velocity what velocity is to position: 
the derivative. You probably also know that you can keep taking derivatives beyond 
acceleration. So, to make the MDP completely Markovian, how deep do you have to go? 
This more an art than a science, the more variables you add, the longer it takes to train an 
agent, but the fewer variables, the higher the chance the information fed to the agent is not 
sufficient and the harder it is to learn anything useful. For the spacecraft example, often 
locations and velocities are adequate, and for grid-world environments, only the state id 
location of the agent is sufficient.

show Me the MAth

The Markov property
(1) The probability 
of the next state.

(2) Given the 
current state 
and current 
action.

(3) Will be 
the same.

(4) As if you give it 
the entire history of 
interactions.
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The set of all states in the MDP is denoted S+. There is a subset of S+ called the set of 
starting or initial states, denoted Si. To begin interacting with an MDP, we draw a state 
from Si from a probability distribution. This distribution can be anything, but it must be 
fixed throughout training, that is the probabilities must be the same from the first to the last 
episode of training and for agent evaluation.

There is a unique state called the absorbing or terminal state, and the set of all non-
terminal states is denoted S. Now, while it's common practice to create a single terminal 
state (a sink state) to which all terminal transitions go to, this is not always implemented this 
way. What you'll see more often is multiple terminal states, and that is OK. It doesn't really 
matter under the hood if you make all terminal states behave as expected.

As expected? Yes. A terminal state is a special state: it must have all available actions 
transitioning, with probability 1, to itself, and these transitions must provide no reward. 
Note that I'm referring to the transitions from the terminal state, not to the terminal state.

It is very common the case that the end of an episode provides a non-zero reward. For 
instance, in a chess game you win, you lose or you draw, a logical reward signal would be 
+1, -1, and 0 respectively. But it is a compatibility convention which allows for all algorithms 
to converge to the same solution to make all actions available in a terminal state transition 
from that terminal state to itself with probability 1 and reward 0. Otherwise, you run the risk 
of infinite sums and algorithms may not work altogether. Remember how the BW and BSW 
environments had these terminal states?

In the FL environment, for instance, there is only one starting state (which is state 0) and 
five terminal states (or five states that transition to a single terminal state, whichever you 
prefer). For clarity, I use the convention of multiple terminal states (5, 7, 11, 12 and 15) for 
the illustrations and code; again, each terminal state is a separate terminal state.

4 5 6

8 9 10

13 14

0 1 2 3

7

11

1512

States in the frozen lake environment 

(1) There is one initial state

(2) And five 
terminal states.
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Action: A mechanism to influence the environment
MDPs make available a set of actions A that depends on the state. That is, there might be 
some actions that are simply not allowed in a state—in fact, A is a function that takes a state 
as an argument, that is A(s). This function returns the set of available actions for state s. If 
needed, you can define this set to be constant across the state space, that is all actions are 
available at every state. You can also set all transitions from a state-action pair to zero if you 
want to deny an action in a given state. You could also set all transitions from state s and 
action a to the same state s to denote action a as a no-intervene or no-op action.

Just as with the state, the action space may be finite or infinite, and the set of variables of 
a single action may contain more than one element and must be finite. However, unlike 
the number of state variables, the number of variables that compose an action may not be 
constant. The actions available in a state may change depending on that state. For simplicity, 
most environments are designed with the same number of actions in all states. 

The environment makes the set of all available actions known in advance. Agents can 
select actions either deterministically or stochastically. And, this is different than saying 
the environment reacts deterministically or stochastically to agent's actions. Both are true 
statements, but I'm referring here to the fact that agents can either select actions from a look-
up table or from a per-state probability distributions.

In the BW, BSW and FL environments, actions are singletons representing the direction the 
agent will attempt to move. In FL, there are four available actions in all states: UP, DOWN, 
RIGHT, or LEFT. There is only one variable per action and the size of the state space is four.

4 6

8 9 10

1312 14

0 1 2 3
0

1
2

3

5 7

11

15

The Frozen Lake environment has four simple move actions

Left
Up

Down Right

(2) From now 
on, I'm drawing 
terminal states 
without the 
actions for 
simplicity.

(1) Actions

(3) But have in mind 
that terminal states 
are defined as states 
with all actions 
with deterministic 
transitions to itself.
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Transition function: Consequences of agent actions

The way the environment changes as a response to actions is referred to as the state-
transition probabilities or more simply the transition function and is denoted by T(s, a, 
s'). The transition function T maps a transition tuple s, a, s' to a probability; that is you pass 
in a state s an action a and a next state s', and it'll return the corresponding probability of 
transition from state s to state s' when taking action a. You could also represent it as T(s, a)
and return a dictionary with the next states for its keys and probabilities for its values.

Notice that T also describes a probability distribution p(.|s,a) determining how the system 
will evolve in an interaction cycle from selecting action a in state s. So, when integrating 
over the next states s', as any probability distribution, the sum of these probabilities must 
equal one.

The BW environment was deterministic, that is, the probability of the next state s' given the 
current state s and action a was always 1. There was always a single possible next state s'. The 
BSW and FL environments are stochastic, that is, the probability of the next state s' given the 
current state s and action a is less than 1. There are more than one possible next state s'.

show Me the MAth

The transition function

(1) The transition 
function is defined.

(2) As the probability of 
transitioning to state 
s' at time step t.

(3) Given action a was 
selected on state s in the 
previous time step t-1.

(4) Given these are probabilities, we 
expect the sum of the probabilities across 
all possible next states to sum to 1.

(5) That's true for all states s in the set 
of states S, and all actions a in the set of 
actions available in state s.
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One key assumption of many RL (and DRL) algorithms is that this distribution is 
stationary. That is, while there may be highly-stochastic transitions, the probability 
distribution may not change during training or evaluation. Just as with the Markov 
assumption, the stationarity assumption is often relaxed to some extent. However, it is 
important for most agents to interact with environments that at least appear to be stationary.
In the FL environment, we know that there is a 33.3% chance we will transition to the 
intended cell (state) and a 66.6% chance we will transition to orthogonal directions. There is 
also a chance we will bounce back to the state we are coming from if next to the wall. 

For simplicity and clarity, I have added to the image below only the transition function for 
all actions of states 0, 2, 5, 7, 11, 12, 13, and 15 of the FL environment. This subset of states 
allows for the illustration of all possible transition without too much clutter.

It might still be a bit confusing, but look at it this way: for consistency each action in 
non-terminal states has three separate transitions (some actions in corner states could be 
represented with only two, but again, let me be consistent): one to the intended cell and two 
to the cells in orthogonal directions. 

4 6

8 9 10

13 14

1 2 30

1

3
0 2

0.33
0.33

0.33
0.33

0.33

0.33

0.33
0.33

0.33

0.33

1

3
0

2

0.33

0.33

5 7

11

1512

The transition function of the Frozen Lake environment

(2) Notice that the 
corner states are special. 
You bounce back from 
the horizontal and the 
vertical walls. 

(5) This environment 
is highly stochastic!

(1) Without probabilities for clarity.

(3) Remember that terminal 
states have all transitions 
from all actions looping back 
to itself with probability 1.

(4) I'm not drawing all the 
transitions, of course. This 
state, for instance, is not 
complete.
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Reward signal: Carrots and sticks
The reward function R maps a transition tuple s, a, s' to a scalar. The reward function gives 
a numeric signal of goodness to transitions. When the signal is positive, we can think of the 
reward as an income or a reward. Most problems have at least one positive signal—winning 
a chess match or reaching the desired destination, for example. But, rewards can also be 
negative, and we can see these as cost, punishment or penalty. In robotics, adding a time 
step cost is a common practice because we usually want to reach a goal, but within a number 
of time steps. One thing to clarify is that whether positive of negative the scalar coming out 
of the reward function is always referred to as the reward. RL folks are happy folks.

It is also important to highlight that while the reward function can be represented as 
R(s,a,s'), which is very explicit, we could also use R(s,a), or even R(s), depending on our 
needs. Sometimes rewarding the agent based on state is what we need, sometimes it makes 
more sense to use the action and the state. However, the most explicit way to represent 
the reward function is to use a state, action and next state triplet. With that, we can 
simply compute the marginalization over next states in R(s,a,s') to obtain R(s,a), and the 
marginalization over actions in R(s,a) to get R(s). But, once we are in R(s) we can't recover 
R(s,a) or R(s,a,s'), and once we are on R(s,a) we can't recover R(s,a,s').

In the FL environment, the reward function is simply +1 for landing in state 15, 0 otherwise. 
Again, for clarity, I've only added to the following image the reward signal to transitions that 
give a non-zero reward; landing on the final state (state 15.)

show Me the MAth

The reward function

(2) It can be 
defined as a 
function that 
takes in a state-
action pair.

(1) The reward function can be 
defined as follows.

(3) And, it is the expectation of reward at 
time step t, given the state-action pair in the 
previous time step.

(4) But, it can also be defined as a function 
that takes a full transition tuple s, a, s'.

(5) And it is also defined as 
the expectation, but now 
given that transition tuple.

(6) The reward at time step t comes from a set of 
all rewards R, which is a subset of all real numbers.
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There are only three ways to land on 15. (1) Selecting the RIGHT action in state 14 will 
transition the agent with 33.3% chance there (33.3% to state 10 and 33.3% back to 14). 
But, (2) selecting the UP and (3) the DOWN action from state 14 will unintentionally also 
transition the agent there with 33.3% probability for each action. See the difference between 
actions and transitions? It's interesting to see how stochasticity complicates things, right?

Expanding the transition and reward functions into a table form is also very useful. The 
following is the format I recommend for most problems. Notice that I've only added a subset 
of the transitions (rows) to the table to illustrate the exercise. Also notice that I'm being 
explicit and some of these transitions could be grouped and refactored (E.g. corner cells).

State Action Next state Transition probability Reward signal

0 LEFT 0 0.33 0

0 LEFT 0 0.33 0

0 LEFT 4 0.33 0

0 DOWN 0 0.33 0

0 DOWN 4 0.33 0

0 DOWN 1 0.33 0

0 RIGHT 4 0.33 0

0 RIGHT 1 0.33 0

0 RIGHT 0 0.33 0

4 6

8 9 10

13 14

1 2 30

0.33

0.33
0.33

0.33
0.33

+1

+1

+1

0.33

0.33

0.33

0.33

1

3

0 2

0.33
0.33

0.33

7

11

15

5

12

Reward signal for states with non-zero reward transitions

(3) Notice how I'm using the most 
explicit form, the full transition 
R(s,a,s').

(1) State 14's actions transitions 
function, and reward signal. 

(2) Every other reward in this 
environment is zero, so I'm omitting 
all except state 14's.
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0 UP 1 0.33 0

0 UP 0 0.33 0

0 UP 0 0.33 0

1 LEFT 1 0.33 0

1 LEFT 0 0.33 0

1 LEFT 5 0.33 0

1 DOWN 0 0.33 0

1 DOWN 5 0.33 0

1 DOWN 2 0.33 0

1 RIGHT 5 0.33 0

1 RIGHT 2 0.33 0

1 RIGHT 1 0.33 0

2 LEFT 1 0.33 0

2 LEFT 2 0.33 0

2 LEFT 6 0.33 0

2 DOWN 1 0.33 0

... ... ... ... ...

14 DOWN 14 0.33 0

14 DOWN 15 0.33 1

14 RIGHT 14 0.33 0

14 RIGHT 15 0.33 1

14 RIGHT 10 0.33 0

14 UP 15 0.33 1

14 UP 10 0.33 0

... ... ... ... ...

15 LEFT 15 1.0 0

15 DOWN 15 1.0 0

15 RIGHT 15 1.0 0

15 UP 15 1.0 0
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Horizon: Time changes what's optimal
We can represent time in MDPs as well. A time step, also referred to as epoch, cycle, 
iteration, or even interaction, is a global clock syncing all parties and discretizing time. 
Having a clock gives rise to a couple of possible types of tasks. An episodic task is a task in 
which there is a finite number of time steps, either because the clock stops or because the 
agent reaches a terminal state. There are also continuing tasks, which are tasks that go on 
forever; there are no terminal states, so there is an infinite number of time steps. In this type 
of task, the agent must be stopped manually.

Episodic and continuing tasks can also be defined from the agent's perspective. We call it 
the planning horizon. On the one hand, a finite horizon is a planning horizon in which 
the agent knows the task will terminate in a finite number of time steps: if we forced the 
agent to complete the Frozen Lake environment in fifteen steps, for example. A special case 
of this kind of planning horizon is called a greedy horizon, in which the planning horizon 
is one. The BW and BSW have both a greedy planning horizon, the episode terminates 
immediately after one interaction. In fact, all bandit environments have greedy horizons.

On the other hand, an infinite horizon is when the agent doesn't have a predetermined 
time step limit, so agents plan for an infinite number of time steps. Such task may still be 
episodic and therefore terminate, but from the perspective of the agent, its planning horizon 
is infinite. We refer to this type of infinite planning horizon tasks as an indefinite horizon 
task. The agent plans for infinite, but interactions may stop at any time by the environment. 

For tasks in which there is a high chance the agent gets stuck in a loop and never terminate, 
it's common practice to add an artificial terminal state based on the time step; a hard time 
step limit using the transition function. These cases require special handling of time step 
limit terminal state. The environment for chapters 8, 9 and 10, the Cart Pole environment, 
has this kind of artificial terminal step, and you'll learn to handle these special cases there.

The BW, BSW and FL environment are episodic tasks, because there are terminal states; 
there is a clear goal and failure states. FL is an indefinite planning horizon; the agent plans 
for infinite number of steps, but interactions may stop at any time. We won't add a time 
step limit to the FL environment because there is a high chance the agent will terminate 
naturally; the environment is highly stochastic. This kind of task is the most common in RL.

We refer to the sequence of consecutive time steps from the beginning to the end of an 
episodic task as an episode, trial, period or stage. In indefinite planning horizons, an 
episode is a collection containing all interactions between an initial and a terminal state.
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Discount: The future is uncertain, value it less
Because of the possibility of infinite sequences of time steps in infinite horizon tasks, we 
need a way to discount the value of rewards over time; that is, we need a way for telling the 
agent that getting +1's is better sooner than later. So, we commonly use a positive real value 
less than one to exponentially discount the value of future rewards. The further into the 
future we receive the reward, the less valuable in the present.

This number is called the discount factor, or gamma. The discount factor adjusts the 
importance of rewards over time. The later we receive rewards, the less attractive they are to 
present calculations. Another important reason why the discount factor is commonly used 
is to reduce the variance of return estimates. Given that the future is uncertain, and that the 
later into the future we look at, the more stochasticity we accumulate and the more variance 
our value estimates will have, the discount factor helps reducing the degree to which future 
reward affect our value function estimates which stabilizes learning for most agents.

Interestingly, gamma is actually part of the MDP definition, the problem, and not the agent. 
However, very often you'll find no guidance for the proper value of gamma to use for a given 
environment. Again, this is also because gamma is used as a hyperparameter for reducing 
variance, and therefore left for the agent to tune.

You can also use gamma as a way to give a sense of "urgency" to the agent. For instance, in 
the FL environment, if the agent would always select the UP action in every state, it would 
get stuck in the top row of the grid world. We can make the agent sacrifice safety for reward 
by setting gamma to a number less than one. But, notice the behavior of the agent will 
depend on this number!

For the BW and BSW environments a gamma of 1 is appropriate, for the FL environment, 
however, we will use a gamma of 0.99, a commonly used value.

1

0
Time step

Value of a 
+1 reward

10000

(1) The discount factor will 
exponentially decay the value 
of later rewards.

(2) The value of a +1 reward 
at time step 0 is not the 
same value as a +1 reward at 
time step 1000. 

Effect of discount factor and time on the value of rewards
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Extensions to MDPs
There are many extensions to the MDP framework we just discussed. They allow us to target 
slightly different types of RL problems. The following list is not comprehensive, but it should 
give you an idea of how large the field is. Know that the acronym "MDPs" is often used to 
refer to all types of MDPs. We are currently looking only at the tip of the iceberg.

• Partially-Observable Markov Decision Process (POMDP): When the agent cannot 
fully observe the environment state.

• Factored Markov Decision Process (FMDP): Allows the representation of the transi-
tion and reward function more compactly so that we can represent very large MDPs.

• Continuous [Time|Action|State] Markov Decision Process: When either time, action, 
state or any combination of them are continuous.

• Relational Markov Decision Process (RMDP): Allows the combination of probabilistic 
and relational knowledge.

• Semi-Markov Decision Process (SMDP): Allows the inclusion of abstract actions that 
can take multiple time steps to complete.

• Multi-Agent Markov Decision Process (MMDP): Allows the inclusion of multiple 
agents in the same environment. 

• Decentralized Markov Decision Process (Dec-MDP): Allows for multiple agents to 
collaborate and maximize a common reward.

show Me the MAth

The discount factor (gamma)

(1) The sum of all rewards obtained during the course of an episode is referred to as the return.

(2) But we can also use the discount factor this way and obtain the discounted return. The 
discounted return will down weight rewards that occur later during the episode.

(3) We can simplify the equation and have a more general 
equation, such as this one.

(4) Finally, take a look a this interesting recursive 
definition. In the next chapter, we spend some time 
exploiting this form.
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i speAk python

The Bandit Walk MDP

P = {
     0: {
         0: [(1.0, 0, 0.0, True)],
         1: [(1.0, 0, 0.0, True)]
     },
     1: {
         0: [(1.0, 0, 0.0, True)],
         1: [(1.0, 2, 1.0, True)]
     },
     2: {
         0: [(1.0, 2, 0.0, True)],
         1: [(1.0, 2, 0.0, True)]
     }
}

# import gym, gym_walk
# P = gym.make('BanditWalk-v0').env.P

(1) The outer dictionary keys are the states.
(2) The inner dictionary keys are the actions.

(3) The value of the inner dictionary 
are the possible transitions for the 
state-action pair.

(4) The transition tuples have four values: 
the probability of that transition,  
the next state,  
the reward,  
and a flag indicating whether the next 
state is terminal.

(5) You can also load 
the MDP this way.

i speAk python

The Bandit Slippery Walk MDP

P = {
     0: {
         0: [(1.0, 0, 0.0, True)],
         1: [(1.0, 0, 0.0, True)]
     },
     1: {
         0: [(0.8, 0, 0.0, True), (0.2, 2, 1.0, True)],
         1: [(0.8, 2, 1.0, True), (0.2, 0, 0.0, True)]
     },
     2: {
         0: [(1.0, 2, 0.0, True)],
         1: [(1.0, 2, 0.0, True)]
     }
}
# import gym, gym_walk
# P = gym.make('BanditSlipperyWalk-v0').env.P

(1) Look at the terminal state. States 0 and 2 are terminal.

(4) This is how you can load 
the Bandit Slippery Walk in 
the Notebook. Make sure 
to check them out!

(2) This is how you build stochastic transitions. This is state 1, action 0.

(3) These are the transitions after taking action 1 in state 1.
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31MDPs: The engine of the environment

i speAk python

The Frozen Lake MDP

P = {
    0: {
        0: [(0.6666666666666666, 0, 0.0, False),

            (0.3333333333333333, 4, 0.0, False)
        ],
        <...>
        3: [(0.3333333333333333, 1, 0.0, False),
            (0.3333333333333333, 0, 0.0, False),
            (0.3333333333333333, 0, 0.0, False)
        ]
    },
    <...>
    14: {
        <...>
        1: [(0.3333333333333333, 13, 0.0, False),
            (0.3333333333333333, 14, 0.0, False),
            (0.3333333333333333, 15, 1.0, True)
        ],
        2: [(0.3333333333333333, 14, 0.0, False),
            (0.3333333333333333, 15, 1.0, True),
            (0.3333333333333333, 10, 0.0, False)
        ],
        3: [(0.3333333333333333, 15, 1.0, True),
            (0.3333333333333333, 10, 0.0, False),
            (0.3333333333333333, 13, 0.0, False)
        ]
    },
    15: {
        0: [(1.0, 15, 0, True)],
        1: [(1.0, 15, 0, True)],
        2: [(1.0, 15, 0, True)],
        3: [(1.0, 15, 0, True)]
    }
}

# import gym
# P = gym.make('FrozenLake-v0').env.P

(1) Probability of landing in state 0 when selecting action 0 in state 0.

(3) You can group the probabilities such as in this line.

(4) Or be explicit, such as in these two lines.
It works fine either way.

(5) Lots removed from this example for clarity.
(6) Go to the Notebook for the complete FL MDP.

(7) State 14 is 
the only state 
that provides a 
non-zero reward. 
Three out of four 
actions have a 
single transition 
that leads 
to state 15. 
Landing on state 
15 provides a 
+1 reward.

(8) State 15 is a terminal state.

(9) Again, you can load the MDP like so.

(2) Probability of landing in state 4 when selecting action 0 in state 0.
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Putting it all together
Unfortunately, when you go out to the real world, you'll find many different ways that MDPs 
are defined. Moreover, some sources describe POMDPs and refer to them as MDPs without 
the full disclosure. All of this creates confusion to the newcomer, so I have a few points to 
clarify for you going forward. First, what you see above as Python code is not a complete 
MDP, but instead only the transition functions and reward signals. From these, we can easily 
infer the state and action spaces. These code snippets come from a few packages containing 
several environments I developed for the OpenAI Gym framework, and the FL environment 
is part of the OpenAI Gym core. Some of the additional components of an MDP that are 
missing from the dictionaries above, such as the initial state distribution Sθ that comes from 
the set of initial state Si, are handled internally by the Gym framework and not shown here. 
Further, other components, such as the discount factor γ and the horizon H, are not shown 
in the dictionary above, and the OpenAI Gym framework doesn't provide them to you. 
Like I said before, discount factors are commonly considered hyperparameters, for better or 
worse. And the horizon is very often assumed to be infinity.

But do not worry about this. First, to calculate optimal policies for the MDPs presented 
in this chapter, which we'll do in the next chapter, we will only need the dictionary shown 
above containing the transition function and reward signal; from these, we can infer the 
state and action spaces, and I will provide you with the discount factors. We will assume 
horizons of infinity, and won't need the initial state distribution. Additionally, the most 
crucial part of this chapter is to give you an awareness of the components of MDPs and 
POMDPs. Remember, you won't have to do much more building MDPs than what you've 
done in this chapter. Nevertheless, let me define MDPs and POMDPs the way I prefer.

show Me the MAth

MDPs vs. POMDPs

(1) MDPs have state space S, action space A, transition function T, reward signal R.
It also has a set of initial states distribution Sθ, the discount factor γ, and the horizon H.

(2) To define a POMDP you just add the observation space O and a emission probability 
E that defines the probability of showing an observation ot given a state st. Very simple.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

61



33Summary

Summary
OK. I know this chapter is heavy on new terms, but that's its intent. The best summary 
for this chapter is on the previous page, more specifically, the definition of an MDP. Take 
another look at the last two equations and try to remember what each letter means. Once 
you do so, you know you got out of this chapter what you need to proceed.

At the highest level, a reinforcement learning problem is about the interactions between 
an agent and the environment in which the agent exists. A large variety of issues can be 
modeled under this setting. Markov decision process is a mathematical framework for 
representing complex decision-making problems under uncertainty.

Markov decision processes (MDPs) are composed of a set of systems states, a set of per-state 
actions, a transition function, a reward signal, a horizon, a discount factor, and an initial state 
distribution. States describe the configuration of the environment. Actions allow agents to 
interact with the environment. The transition function tells how the environment evolves 
and reacts to the agents' actions. The reward signal encodes the goal to be achieved by the 
agent. The horizon and discount factor add a notion to time to the interactions.

The state space, the set of all possible states, can be infinite or finite. The number of 
variables that make up a single state, however, must be finite. States can be fully observable, 
but in a more general case of MDPs, a POMDP, the states are partially observable. This 
means the agent is not able to observe the full state of the system, but a noisy state instead, 
called an observation.

The action space is a set of actions which can vary from state to state. However, the 
convention is to use the same set for all states. Actions can be composed with more than one 
variable, just like the states. Action variables may be discrete or continuous.

The transition function links a state (a next state) to a state-action pair, and it defines the 
probability of reaching that future state given the state-action pair.  The reward signal, in 
its more general form, maps a transition tuple s, a, s' to scalar and it indicates the goodness 
of the transition. Both, the transition function and reward signal, define the model of the 
environment and assume to be stationary, meaning probabilities stay the same throughout.

By now you:

• Understand the components of a reinforcement learning problem and how they inter-
act with each other.

• Recognize Markov Decision Processes and know what are they composed from and 
how they work.

• Can represent sequential decision-making problems as MDPs.
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balancing immediate
and long-term goals 3

In this chapter

• You learn about the challenges of learning from 
sequential feedback and how to properly balance 
immediate and long-term goals.

• You develop algorithms that can find the best policies 
of behavior in sequential decision-making problems 
modeled with MDPs.

• You find the optimal policies for all environments you 
built MDPs for in the previous chapter.

In preparing for battle I have always found that 
plans are useless, but planning is indispensable. 

— Dwight D. Eisenhower 
United States Army five-star general and 

34th President of the United States
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2 Chapter 3 I balancing immediate and long-term goals

In the last chapter, you built an MDP for the BW, BSW, and FL environments. MDPs are the 
motors moving RL environments. They define the problem: they describe how the agent 
interacts with the environment through state and action spaces, what is the agent's goal 
through the reward function, how the environment reacts from the agent's actions through 
the transition function, and how time should impact behavior through the discount factor.

In this chapter, you'll learn about algorithms for solving MDPs. We first discuss the objective 
of an agent and why simple plans are not sufficient to solve MDPs. We then talk about 
the two fundamental algorithms for solving MDPs under a technique called Dynamic 
Programming: Value Iteration (VI) and Policy Iteration (PI).

You'll soon notice that these methods in a way "cheat": they require full access to the MDP, 
they depend on knowing the dynamics of the environment, which is something we can't 
always obtain. However, the fundamentals you'll learn are still useful for learning about 
more advanced algorithms. In the end, VI and PI are the foundations from which virtually 
every other RL (and DRL) algorithm originates.

You'll also notice that when an agent has full access to an MDP, there is no uncertainty as 
you can look at the dynamics and rewards and calculate expectations directly. Being able to 
calculate expectations directly means that there is no need for exploration; that is, there is 
no need to balance exploration and exploitation. There is no need for interaction, so there 
is no need for trial-and-error learning. All of this is because the feedback we are using for 
learning in this chapter is not evaluative but supervised instead.

Remember, in DRL, agents learn from feedback that is simultaneously sequential (as 
opposed to one shot), evaluative (as opposed to supervised) and sampled (as opposed 
to exhaustive). What I'm doing in this chapter is eliminating the complexity that comes 
along when learning from evaluative and sampled feedback and study sequential feedback 
in isolation: In this chapter, we learn from feedback that is sequential, supervised and 
exhaustive.

The objective of a decision-making agent
At first, it seems the agent's goal is to find a sequence of actions that will maximize the 
return: the sum of rewards (discounted or undiscounted—depending on the value of 
gamma) during an episode or the entire life of the agent, depending on the task.

Let me introduce a new environment to explain these concepts more concretely.
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3The objective of a decision-making agent

ConCrete example

The Slippery Walk Five (SWF) environment

The Slippery Walk Five (SWF) is a one-row grid-world environment (a walk), that is 
stochastic, similar to the Frozen Lake, and it has only five non-terminal states (seven total if 
we count the two terminal).

The agent starts in S, H is a hole, G is the goal and provides a +1 reward.

(2) 50% action success.
(3) 33.33% Stays in place.

(4) 16.66% goes backwards.

H S
0 1 2 4 5

G
6

+1

3

The slippery walk five environment
(1) This environment is stochastic 
and even if the agent selects the right
action, there is a chance it goes left!

Show me the math

The return G

(1) The return is the sum of rewards encounter from step t, until the final step T.

(2) As I mentioned in the previous chapter, we can combine the return and time using the 
discount factor, gamma. This is then the discounted return, which prioritizes early rewards.

(3) We can simplify the equation and have a 
more general equation, such as this one.

(4) And stare at this recursive definition of G for a while.
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4 Chapter 3 I balancing immediate and long-term goals

You can think of returns as backward looking: "how much you got" from a past time step, 
but another way to look at it is as a "reward to go." Basically, forward looking. For example, 
imagine an episode in the SWF environment went this way:

State 3 (0 reward), state 4 (0 reward), state 5 (0 reward), state 4 (0 reward), state 5 (0 reward), 
state 6 (+1 reward). We can shorten it: 3/0, 4/0, 5/0, 4/0, 5/0, 6/1. So, what is the return of 
this trajectory/episode?

Well, if we use discounting the math would work out this way:

If we don't use discounting, well, the return would just be 1 for this trajectory and all 
trajectories that end in the right-most cell, state 6, and 0 for all trajectories that terminate in 
the left-most cell, state 0.

In the SWF environment, it is evident that going RIGHT is the best thing to do. It may 
seem, therefore, that all the agent must find is something called a plan—that is a sequence 
of actions from the START state to the GOAL state. But this not always works.

H
0 1 2 S 4 5

G
63

A solid plan in the SWF environment

(1) This is a solid plan, but is a plan enough? 

(1) Calculating the return at time step t=0
(2) This is the reward obtained at time step t+1 (0) discounted by gamma (0.990).

(3) Reward at t+2, discounted by gamma raise to the power 1.
(4) Discounted reward at t+3.

(5) and soon...

(6) This is the 
discounted 
reward at 
time step T 
 (final step).

Discounted return in the slippery walk five environment

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

66



5The objective of a decision-making agent

In the FL environment a plan would look like this:

But this is not enough! The problem with plans is they do not account for stochasticity in 
environments, and both the SWF and FL are stochastic; actions taken will not always work 
the way we intend. What would happen if, due to the environment's stochasticity, our agent 
lands on a cell not covered by our plan?

Same happens in the FL environment:

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) This is a solid plan. But, in a 
stochastic environment, even the best of 
plans fail.
Remember that in the FL environment, 
unintended actions affects have even 
higher probability: 66.66% vs. 33.33%! 
You need to plan for the unexpected.

A solid plan in the FL environment

H
0 1 2 S 4 5

G
63

A possible "hole" in our plan

(1) Say the agent followed the plan, but on the first environment 
transition the agent was sent backward to state 2!

(2) Now, what? You didn't plan an action for 
state 2. Maybe you need a plan B? C? D?

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) Here I'm showing the action and the possible action 
effects. Notice that there is a 66.66% chance that an 
unintended consequence actually happens!

Plans are not enough in stochastic environments

(2) Imagine that the agent is following the plan, but in 
state10, the agent is sent to state 9, even if it selected 
the down action, as it apparently is the right thing to do.
(3) What we need is a plan for every possible state, a 
Universal Plan, a Policy.
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6 Chapter 3 I balancing immediate and long-term goals

What the agent needs to come up with is called a policy. Policies are universal plans; policies 
cover all possible states. We need to plan for every possible state. Policies can be stochastic 
or deterministic: the policy can return action-probability distributions or single actions for 
a given state (or observation). For now, we are working with deterministic policies, which is 
simply a lookup table that maps actions to states.

In the SWF environment, the optimal policy is always going RIGHT, not just going RIGHT, 
but going RIGHT for every single state.

Great, but there are still many unanswered questions. For instance, how much reward 
should I expect from this policy? Because, even though we know how to act optimally, 
the environment might send our agent backward to the hole even if we always select to 
go towards the goal. This is why returns are not enough. The agent is really looking to 
maximize the expected return; that means the return taking into account the environment's 
stochasticity.

Also, we need a method to automatically find optimal policies, because in the FL example, 
for instance, it is not at all obvious what the optimal policy looks like!

There are a few components that are kept internal to the agent and can help it find optimal 
behavior: there are policies, there can be multiple policies for a given environment, and in 
fact, in some environments, there may be multiple optimal policies. Also, there are value 
functions to help us keep track of return estimates. There is a single optimal value function 
for a given MDP, but there may be multiple value functions in general.

Let's look at all the components internal to a reinforcement learning agent that allows them 
to learn and find optimal policies with some examples to make all of this more concrete.

H
0 1 2

START

4 5
G

63

Optimal policy in the SWF environment

(1) It's kind of obvious that going always RIGHT 
is the best we can do in this environment.

(2) And notice that it doesn't really matter what we do in terminal states. 
Policies prescribe action only for non-terminal states. For terminal states, 
any action is the same as all transitions from all actions in terminal states 
just loop back to the same terminal state.
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7The objective of a decision-making agent

Policies: Per-state action prescriptions
Given the stochasticity in the Frozen Lake environment (and most reinforcement 
learning problems,) the agent needs to find a policy, denoted as π. A policy is a function 
that prescribes actions to take for a given nonterminal state (remember, policies can be 
stochastic. So, either directly an action, or probability distribution over actions. We will 
expand on stochastic policies in later chapters.) 

Here is a sample policy:

One immediate question that arises when looking at a policy is: How good is this policy? If 
we find a way to put a number to policies, we could also ask the question: How much better 
is this policy compared to this other policy?

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

A randomly generated policy

(1) A policy generated 
uniformly at random. 
Nothing special so far...

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) Policy:
"Go get it"

(3) Pick your favorite! Seriously, do it now...

(2) Policy:
"Careful"

How can we compare policies?
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8 Chapter 3 I balancing immediate and long-term goals

State-value function: What to expect from here?
Something that'd help us compare policies is to put numbers to states for a given policy. 
That is, if we are given a policy and the MDP, we should be able to calculate the expected 
return starting from every single state (we care mostly about the START state). So, how can 
we calculate how valuable being in a state is? For instance, if our agent is in state 14 (to the 
left of the GOAL,) how is that better than being in state 13 (to the left of 14)? And precisely 
how much better is it? More importantly, under which policy we'd have better results, the 
"Go get it" or the "Careful" policy?

Let's give it a quick try with the "Go get it" policy. What is the value of being in state 14 
under the "Go get it" policy?

Okay, so it is not that straightforward to calculate the value of state 14 when following the 
"Go get it" policy because of the dependence on the values of other states (10 and 14 in this 
case), which we don't have either. It's like the chicken or the egg problem. Let's keep going.

We defined the return as the sum of rewards the agent obtains from a trajectory. Now, this 
return can be calculated without paying attention to the policy the agent is following, you 
just sum all of the rewards obtained, and you are good to go. The number we are looking 
now is the expectation of returns (from state 14) if we follow a given policy π. Remember, 
we are under stochastic environments, so we must account for all the possible ways the 
environment can react to our policy! That's what an expectation gives us.

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

What's the value of being in state 14 
when running the "Go get it" policy?

(4) It'll take me this chapter to explain how to obtain the 
right answer. But, look at this! A third of the time, we get 
a +1 and end the episode, another third we land in state 
10, and the last third, back in state 14. The 0.33 is only 
part of the answer, but we need to take into account the 
other two thirds were the agents doesn't get the +1.

Left Down Right Up

0 0 000 0 000 +1 +1+1

(2) According to the policy, the agent 
selects action RIGHT in state 14. 14

10 13 13 10 1014 14 14 1315 15 15

(1) Recall the 
"Go get it" policy.

(3) So, what's the 
value of RIGHT on 14? 
Is it 1? 0.33? Sure?

1/31/31/3
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9The objective of a decision-making agent

We now define the value of a state s when following a policy π: the value of a state s under 
policy π is the expectation of returns if the agent follows policy π starting from state s. 
Calculate this for every state and you get the state-value function, or V-function or value 
function. It represents the expected return when following policy π from state s.

This is interesting... A bit of a mess, given the recursive dependencies, but still very 
interesting. Notice how the value of a state depends recursively on the value of possibly 
many other states, which values may also depend on others, including the original state!

The recursive relationship between states and successive states will come back in the next 
section when we look at algorithms that can iteratively solve these equations and obtain the 
state-value function of any policy in the FL environment (or any other environment, really).

For now, let's continue exploring some of the other components commonly found in RL 
agents. We'll learn how to calculate these values later in this chapter. Note that the state-
value function is often referred to as the "value function," or even the V-function, or more 
simply Vπ(s). It may be confusing, but you'll get used to it.

Show me the math

The state-value function V

(1) The value of a state s.

(2) Under policy π.

(3) Is the expectation over π.

(4) Of returns at time step t.

(5) Given you select 
state s at time step t.

(6) Remember that returns are sum of discounted rewards.

(7) And that we can defined 
them recursively like so.

(8) This equation is called the Bellman equation and it tells us how to find the value of states.

(9) We get the action 
(or actions,if the policy 
stochastic) prescribed 
for state s. And do a 
weighted sum...

(10) We also weight 
the sum over the 
probability of next 
states and rewards.

(11) We add the reward 
and the discounted value of 
the landing states, weight 
that by the probabilities.

(12) Do this 
for all states 
in the state 
space.
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10 Chapter 3 I balancing immediate and long-term goals

Action-value function: What to expect from here if I do this?
Another important question that we often need to ask, is not simply about the value of a 
state, but the value of taking action a in a state s. Answers to this kind of question would 
help us decide between actions.

For instance, notice that the "Go get it" policy goes RIGHT when in state 14, but the 
"Careful" policy goes DOWN. But which action is better? More specifically, which action is 
better under each policy? That is, what is the value of going DOWN, instead of RIGHT, and 
then follow the "Go get it" policy and what is the value of going RIGHT, instead of DOWN, 
and then follow the "Careful" policy?

By being able to compare between different actions under the same policy, we can select 
better actions, and therefore improve our policies. The action-value function, also known 
as Q-function or Qπ(s,a), captures precisely this: the expected return if the agent follows 
policy π after taking action a in state s.

In fact, when we care about improving policies, which is often referred to as the "control 
problem," we need action-value functions. Think about it, if you don't have an MDP, how 
can you decide what action to take merely by knowing the values of all states? V-functions 
don't capture the dynamics of the environment. The Q-function, on the other hand, does 
somewhat capture the dynamics of the environment and allows you to improve policies 
without the need for MDPs. We expand on this fact in later chapters.

Show me the math

The action-value function Q

(1) The value of action a
in state s under policy π.

(2) Is the expectation of returns given we select 
action a in state s and follow policy π thereafter.

(3) And just as before we can define this equation recursively like so.

(4) The Bellman equation for action values is defined as follows.

(5) Notice we don't weigh 
over actions because we 
are interested only in a 
specific action.

(6) We do weigh, 
however, by the 
probabilities of next 
states and rewards.

(7) What do we weigh? 
The sum of the reward 
and the discounted 
value of the next state.

(8) We do 
that for 
all state-
action pairs.
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11The objective of a decision-making agent

Action-advantage function: How much better if I do that?
There is another type of value function that is derived from the previous two. The action-
advantage function, also known as advantage function, A-function or Aπ(s, a), is the 
difference between the action-value function of action a in state s and the state-value
function of state s under policy π.

The advantage function describes how much better it is to take action a instead of following 
policy π. Basically, what is the advantage of choosing action a over the default action.

Take a look at the different value functions for a (dumb) policy in the SWF environment. 
Remember, these values depend on the policy. In other words, the Qπ(s, a) assumes you will 
follow policy π (always LEFT in the example below) right after taking action a in state s.

Show me the math

The action-advantage function A

(1) The advantage 
of action a in state 
s under policy π.

(2) Is the difference 
between the value of that 
action, and the value of the 
state s, both under policy π.

6

6

0

1

0

1

0 1 2 4 53
H G

START

0.002 0.011 0.036 0.11 0.332
0 1 2 4 53

0.002 0.011 0.036 0.11 0.332
0 0 0 0 00

0.006 0.022 0.069 0.209 0.629
1 1 1 1 11

0 0 0 0 00

0.004 0.011 0.033 0.099 0.297
1 1 1 1 11

0.0 0.00.0 0.0 0.0 0.00.0

0.0 0.0

0.00.0

0.0 0.0

0.00.0

60 1 2 4 53

60 1 2 4 53

State-value, action-value, and action-advantage functions
(1) Notice how 
Qπ(s,a) allows 
us to improve 
policy π, by 
showing the 
highest valued 
action under 
the policy.

(2) Also 
notice there is 
no advantage 
for taking the 
same action 
as policy π
recommends.

π

Vπ(s)

Qπ(s, a)

Aπ(s, a)
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12 Chapter 3 I balancing immediate and long-term goals

Optimality
Policies, state-value functions, action-value functions, and action-advantage functions are 
the components we use to describe, evaluate, and improve behaviors. We call it optimality
when these components are the best they can be.

An optimal policy is a policy that for every state can obtain expected returns greater than or 
equal to any other policy. An optimal state-value function is a state-value function with the 
maximum value across all policies for all states. Likewise, an optimal action-value function 
is an action-value function with the maximum value across all policies for all state-action 
pairs. The optimal action-advantage function follows a similar pattern, but notice an 
optimal advantage function would be equal or less than zero for all state-action pairs since 
no action could have any advantage from the optimal state-value function.

Also, notice that although there could be more than one optimal policy for a given MDP, 
there can only be one optimal state-value function, optimal action-value function, and 
optimal action-advantage function.

You may also notice that if you had the optimal V-function, you could simply use the MDP 
to do a one-step search for the optimal Q-function and then use this to build the optimal 
policy. On the other hand, if you had the optimal Q-function you don't need the MDP at 
all. You could use the optimal Q-function to find the optimal V-function by merely taking 
the maximum over the actions. And you could obtain the optimal policy using the optimal 
Q-function by taking the argmax over the actions.

Show me the math

The Bellman optimality equations

(1) The optimal 
state-value function.

(2) Is the state-value 
function with the highest 
value across all policies.(3) Likewise, the optimal action-

value function is the action-value 
function with the highest values.

(4) The optimal state-value 
function can be obtained this way.

(5) We take the max action. (6) Of the weighted sum of the reward and 
discounted optimal value of the next state.

(7) Similarly, the 
optimal action-value 
function can be 
obtained this way.

(8) Notice how the max is now on the inside.
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Planning optimal sequences of actions
So far, we have state-value functions to keep track of the values of states; action-value 
functions to keep track of the values of state-action pairs; and action-advantage functions, 
which are the difference between the action-value and state-value functions and therefore 
show the "advantage" of taking actions. We have equations for all of these to evaluate current
policies, that is, to go from policies to value functions, but we also have equations to calculate 
and find optimal value functions and therefore optimal policies, which is excellent.

Now that we have discussed the reinforcement learning problem formulation, and we have 
defined the objective we are after, we can start exploring methods for finding this objective. 
Iteratively computing the equations presented in the previous section is one of the most 
common ways to solve a reinforcement learning problem and obtain optimal policies when 
the dynamics of the environment, the MDPs, are known. Let's take a look at the methods.

Policy Evaluation: Rating policies
We talked about comparing policies in the previous section. We establish that policy π is 
better than or equal to policy π' if the expected return is better than or equal to π' for all 
states. Before we can use this definition, however, we must devise an algorithm for actually 
evaluating an arbitrary policy. Such an algorithm is known as iterative policy evaluation or 
just policy evaluation. 

The policy evaluation algorithm consists of calculating the V-function for a given policy by 
sweeping through the state space and iteratively improving estimates. We refer to the type of 
algorithm that takes in a policy and outputs a value function as an algorithm that solves the 
prediction problem; calculating the values of a pre-determined policies.

Show me the math

The policy-evaluation equation

(1) The policy evaluation algorithm consist on the iterative approximation of the state-value 
function of the policy under evaluation. The algorithm converges as k approaches infinity.

(2) Initialize v0(s) for all s in S arbitrarily, and to 0 if s is terminal. Then, increase 
k and iteratively improve the estimates simply by following the equation below.

(3) Calculate the value of a state s as the weighted sum of the 
reward and the discounted estimated value of the next state s'.
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Using this equation, we can iteratively approximate the true V-function of an arbitrary 
policy. The iterative policy evaluation algorithm is guaranteed to converge to the value 
function of the policy if given enough iterations, more concretely as we approach infinity. In 
practice, however, we use a small threshold to check for changes in the value function we are 
approximating. Once the changes in the value function are less than this threshold, we stop.

Let's see how this algorithm works in the SWF environment, for the "always LEFT" policy.

You then calculate the values for all states 0-6, and when done, move to the next iteration. 
Notice that to calculate V2

π(s) you would have to use the estimates obtained in the previous 
iteration, V1

π(s). This technique of calculating an estimate from an estimate is referred to as 
bootstrapping, and it is a widely used technique in RL (including DRL).

Also, very important to notice that the k's here are iterations across estimates, but they are 
not interactions with the environment. These are not episodes that the agent is out and 
about selecting actions and observing the environment. These are not time steps either. 
Instead, these are simply the iterations of the iterative policy evaluation algorithm. Do a 
couple more of these estimates. The following table shows you the results you should get.

H
0 1 2

START

4 5
G

63

Initial calculations of policy evaluation

vπ
1
(5)= p(s' = 4 | s = 5, a = LEFT) * [ R(5, LEFT, 4) + vπ

0
(4) ]  +

(4) Yep, this is the 
value of state 5 after 
1 iteration of policy 
evaluation (v

π
1

(5)).

p(s' = 5 | s = 5, a = LEFT) * [ R(5, LEFT, 5) + vπ
0
(5) ]  +

p(s' = 6 | s = 5, a = LEFT) * [ R(5, LEFT, 6) + vπ
0
(6) ]

vπ
1
(5)= 0.50 * (0+0)   +   0.33 * (0+0)   +   0.166 * (1+0)  =  0.166

(1) We have a deterministic 
policy, so this part here is 1.

(3) An "Always 
LEFT" policy. π

State 5, Iteration 1 (initialized to 0 in iteration 0):

(2) Let's use gamma of 1.
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k Vπ(0) Vπ(1) Vπ(2) Vπ(3) Vπ(4) Vπ(5) Vπ(6)

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0.1667 0

2 0 0 0 0 0.0278 0.2222 0

3 0 0 0 0.0046 0.0463 0.2546 0

4 0 0 0.0008 0.0093 0.0602 0.2747 0

5 0 0.0001 0.0018 0.0135 0.0705 0.2883 0

6 0 0.0003 0.0029 0.0171 0.0783 0.2980 0

7 0 0.0006 0.0040 0.0202 0.0843 0.3052 0

8 0 0.0009 0.0050 0.0228 0.0891 0.3106 0

9 0 0.0011 0.0059 0.0249 0.0929 0.3147 0

10 0 0.0014 0.0067 0.0267 0.0959 0.318 0

... ... ... ... ... ... ... ...

104 0 0.0027 0.011 0.0357 0.1099 0.3324 0

What are some of the things the resulting state-value function tells us?

Well, to begin with, we can say we get a return of 0.0357 in expectation when starting an 
episode in this environment and following the "always LEFT" policy. Pretty low.

We can also say, that even when we find ourselves in state 1 (the leftmost non-terminal 
state), we still have a chance, albeit less than one percent, to end up in the GOAL cell (state 
6). To be exact, we have a 0.27% chance of ending up in the GOAL state when we are in state 
1. And we select LEFT all the time! Pretty interesting.

Interestingly also, due to the stochasticity of this environment, we have a 3.57% chance of 
reaching the GOAL cell (remember this environment has 50% action success, 33.33% no 
effects, and 16.66% backward). Again, this is when under an "always LEFT" policy. Still, 
the LEFT action could send us RIGHT, then RIGHT and RIGHT again, or LEFT, RIGHT, 
RIGHT, RIGHT, RIGHT, and so on.

Think about how the probabilities of trajectories combine. Also, pay attention to the 
iterations and how the values propagate backward from the reward (transition from state 
5 to state 6) one step at a time. This backward propagation of the values is a common 
characteristic among RL algorithms and comes up again several times.
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I Speak python

The policy-evaluation algorithm

def policy_evaluation(pi, P, gamma=1.0, theta=1e-10):

    prev_V = np.zeros(len(P))

    while True:

        V = np.zeros(len(P))

        for s in range(len(P)):

            for prob, next_state, reward, done in P[s][pi(s)]:

                V[s] += prob * (reward + gamma * \
                              prev_V[next_state] * (not done))

        if np.max(np.abs(prev_V - V)) < theta:
            break

        prev_V = V.copy()
    return V

(1) This is a full implementation of the policy-evaluation algorithm. 
All we need is the policy we are trying to evaluate and the MDP the 
policy runs on. The discount factor, gamma, defaults to 1, and theta 
is a very small number that we use to check for convergence.

(2) Here we initialize the first-iteration estimates of the state-value function to zero.

(3) We begin by looping "forever"...

(4) We initialize the current-iteration estimates to zero as well.

(5) And then loop through all states to estimate the state-value function.

(6) See here how we use the policy pi to get the possible transitions.

(7) Each transition tuple has a probability, next state, reward and a 
done flag indicating whether the `next_state` is terminal or not.

(8) We calculate the value of that state by summing 
up the weighted value of that transition. 

(9) Notice how we use the 'done' flag to ensure the value of the next state 
when landing on a terminal state is zero. We don't want infinite sums.

(10) At the end of each iteration (a state sweep), 
we make sure that the state-value functions are 
changing, otherwise, we call it converged.
(11) Finally, 'copy' to get ready for the next 
iteration or return the latest state-value function.
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Let's now run policy evaluation in the randomly generated policy presented earlier for the 
FL environment.

This is the progress policy evaluation makes on accurately estimating the state-value 
function of the randomly generated policy after only 8 iterations:

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

Recall the randomly generated policy

(1) A policy generated randomly

(2) Is the same as before. 
No need to flip pages!

G 0.440.110.33 G 0.520.18

0.04

G 0.560.24

0.060.01 0.01

G

0.600.29

0.02 0.09 0.02

G 0.630.32

0.04 0.11 0.03

0.01 0.01

G 0.650.35

0.130.05

0.010.02

G 0.660.37

0.140.06

0.02

0.01

0.05

0.01

G

0.04

(1) Values start propagating with every iteration.
k=1

k=5

k=2

k=6 k=7

k=4

k=8
(2) The values continue to propagate and become more and more accurate.

Policy evaluation on the randomly 
generated policy for the FL environment

k=3
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This final state-value function is the state-value function for this policy. Note that even 
though this is still an estimate, because we are in a discrete state and action spaces, we can 
assume this to be the actual value function when using gamma of 0.99.

In case you are wondering the state-value functions of the two policies presented earlier, 
here are the results:

It seems being a "Go get it" doesn't pay well in the FL environment! Fascinating results, 
right? But a question arises: Are there any better policies for this environment?

START

GOAL

0.0955 0.0471

0.2647

0.0470

0.1469 0.0498

0.2028 0.1038

0.4957 0.7417

0.0456

(1) After 218 interactions 
policy evaluation converges to 
these values (using a 1e-10 
minimum change in values as 
stopping condition).

State-value function of the randomly generated policy

START

0.0342

GOAL

START

GOAL

0.0231 0.0468

0.0940 0.2386 0.2901

0.4329 0.6404

0.0231 0.4079 0.3754 0.3543

0.4454 0.4840 0.4328

0.5884 0.7107

0.4263 0.1169

0.3438

0.0463 0.0957

(1) The state-value function of this policy 
converges after 66 iterations. The policy 
reaches the goal state a mere 3.4% of the time.

(2) For this policy, the state-value function 
converges after 546 iterations. The policy 
reaches the goal 53.70% of the time!

The "Careful" policy:

Results of policy evolution
The "Go get it" policy: 

(3) By the way, I calculate these values empirically by running the policies 
100 times. Therefore, these values are noisy, but you get the idea.
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Policy Improvement: Using ratings to get better
The motivation is clear now. You have a way of evaluating any policy... This already gives 
you some freedom: you can evaluate many policies and rank them by the state-value 
function of the START state. After all, that number tells you the expected cumulative reward 
the policy in question will obtain if you run many episodes, cool right?

No! Makes no sense. Why would you randomly generate a bunch of policies and evaluate 
them all? First, that is a total waste of computing resources, but more importantly, it gives 
you no guarantee that you're finding better and better policies. There has to be a better way.

The key to unlocking this problem is the action-value function, the Q-function. Using the 
V-function and the MDP, you get an estimate of the Q-function. The Q-function will give 
you a glimpse of the values of all actions for all states, and these values, in turn, can hint how 
to improve policies. Take a look at the Q-function of the "Careful" policy and ways we can 
improve this policy:

Notice how if we act greedily with respect to the Q-function of the policy, we obtain a new 
policy: "Careful+". Is this policy any better? Well, policy evaluation can tell us! Let's find out!

START

GOAL

0.40

0.39
0.38

0.41 0.40 0.26 0.24

0.25

0.29

0.34 0.34

0.48

0.27

0.42 0.28

0.29

0.45

0.29 0.30

0.31

0.35

0.28 0.27

0.28

0.12

0.26 0.26

0.14

0.2

0.43 0.27

0.39

0.39

0.35 0.59

0.43

0.67

0.57 0.71

0.76

0.34

0.23 0.23

0.23

G

START

G

START

How can the Q-function help us improve policies ?

(1) This is the 
"Careful" policy.

(2) Action-value function 
of the "Careful" policy. (3) The greedy policy over 

the "Careful" Q-function.

(4) I'm calling this 
new policy "Careful+"
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The new policy is better than the original policy. This is great! So, we used the state-value 
function of the original policy and the MDP to calculate its action-value function. Then, 
acting greedily with respect to the action-value function gave us an improved policy. This is 
what the policy improvement algorithm does: it calculates an action-value function using 
the state-value function and the MDP, and it returns a greedy policy with respect to the 
action-value function of the original policy. Let that sink in, it's pretty important.

Show me the math

The policy-improvement equation

(1) To improve a policy, we use a state-value function and an MDP to get a one-step lookahead 
and determine which of the actions lead to the highest value. This is policy improvement equation.

(2) We obtain a new policy π' by 
taking the highest-valued action.

(3) How, do we get the highest-
valued action?

(4) By calculating, for each action, the weighted sum 
of all rewards and values of all possible next states.

(5) Notice that this is simply using the action with the highest-valued Q-function.

START

0.5420 0.4988

0.6431

0.4707

0.5585 0.3583

0.5918 0.6152

0.7417 0.8628

0.4569

G

START

+0.1341 +0.1234

+0.1591

+0.1164

+0.1381 +0.2414

+0.1464 +0.1824

+0.1533 +0.1521

+0.1130

G

State-value function of the "careful" policy

(2) This is the 
difference between 
"Careful+" and 
"Careful" V-functions. 
What an improvement!

(1) After 574 iterations policy 
evaluation converges to this state-
value function for the "Careful+" policy.

(3) This new policy, "Careful+" can 
reach the goal state 73.20% of 
the time. An improvement!(4) Also empirically.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

82



21Planning optimal sequences of actions

This is how the policy improvement algorithm looks like in Python:

The natural next question is: 

Is there a better policy than this one? Like, can we do any better than "Careful+"? 

Can we evaluate the "Careful+" policy, and then improve it again?

Maybe! But, there is only a way to find out... Let's give it a try!

I Speak python

The policy-improvement algorithm

def policy_improvement(V, P, gamma=1.0):

    Q = np.zeros((len(P), len(P[0])), dtype=np.float64)

    for s in range(len(P)):
        for a in range(len(P[s])):
            for prob, next_state, reward, done in P[s][a]:

                Q[s][a] += prob * (reward + gamma * \
                                 V[next_state] * (not done))

    new_pi = lambda s: {s:a for s, a in enumerate(
                                     np.argmax(Q, axis=1))}[s]

    return new_pi

(1) Very simple algorithm. It takes the state-value function of the policy 
you would like to improve 'V', and the MDP 'P' (and gamma -- optionally.).

(2) Then, initialize the Q-function to zero (technically you 
can initialize these randomly, but let's keep things simple.

(3) Then loop through the states, 
actions and transitions.

(5) We use those values to calculate the Q-function.

(6) Finally, we obtain a new, greedy policy simply by taking the argmax of the 
Q-function of the original policy. And there, you have a likely improved policy.

(4) Flag indicating whether 
`next_state` is terminal or not.
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I ran policy evaluation on the "Careful+" policy, and then policy improvement. The 
Q-functions of the "Careful" and "Careful+" are different, but the greedy policies over the 
Q-functions are identical... In other words, there is no improvement this time.

There is no improvement because the "Careful+" policy is an optimal policy of the FL 
environment (with gamma 0.99). We only needed one improvement over the "Careful" 
policy because this policy was good, to begin with.

Now, even if we start with an adversarial policy designed to perform poorly, alternating over 
policy evaluation and improvement would still end up with an optimal policy. Want proof? 
Let's do it! Let's make up an adversarial policy for FL environment and see what happens.

START

GOAL

Adversarial policy for the FL environment

(1) This Policy is so mean, that the 
agent has 0% chance of reaching 
the GOAL. Look at the top row! 

(2) It has a state-value function 
of 0 for all states!!! Mean! 

START

GOAL

0.53

0.52
0.50

0.54 0.53 0.34 0.32

0.33

0.40

0.44 0.45

0.64

0.36

0.56 0.37

0.38

0.59

0.38 0.40

0.41

0.47

0.44 0.42

0.43

0.16

0.36 0.36

0.20

0.33

0.62 0.40

0.50

0.50

0.46 0.74

0.53

0.78

0.73 0.82

0.86

0.46

0.31 0.30

0.31

G

START

G

START

Can we improve over the "Careful+" policy ?

(1) This is the 
"Careful+" policy.

(2) Action-value function 
of the "Careful+" policy.

(3) Greedy policy over 
the "Careful+" Q-function.

(4) Notice, the greedy policy is 
the same as the original policy. 
There is no improvement now.
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Policy Iteration: Improving upon improved behaviors
The plan with this adversarial policy is to alternate between policy evaluation and policy 
improvement until the policy coming out of the policy improvement phase no longer yields 
a different policy. The fact is, if instead of starting with an adversarial policy, we start with a 
randomly generated policy, this is what an algorithm called policy iteration does.

Great! But, let's first try it starting with the adversarial policy and see what happens.

I Speak python

The policy-iteration algorithm

def policy_iteration(P, gamma=1.0, theta=1e-10):

    random_actions = np.random.choice(
                                  tuple(P[0].keys()), len(P))
    pi = lambda s: {s:a for s, a in enumerate(
                                  random_actions)}[s]

    while True:

        old_pi = {s:pi(s) for s in range(len(P))}

        V = policy_evaluation(pi, P, gamma, theta)

        pi = policy_improvement(V, P, gamma)

        if old_pi == {s:pi(s) for s in range(len(P))}:
            break

    return V, pi

(1) Policy iteration is very simple and it just needs the MDP (including gamma).

(2) The first step is to create a randomly generated policy... Anything here should do.
I create a list of random actions, and then map them to states.

(3) Here I'm keeping a copy of the policy before we modify it.

(4) Get the state-value function of the policy.

(5) Get an improved policy.

(6) The check if the new policy is any different.

(7) If it is different, we do it all over again.
(8) If it is not, we break out of the loop and return an optimal 
policy and the optimal state-value function.
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G

S

G

S

G

S

G

S
0.00

0.00

0.00 0.00

0.00

0.00 0.00 0.00

0.00 0.00

0.00

G

S
0.00

0.00

0.00 0.04

0.07

0.00 0.00 0.19

0.00 0.50

0.02

G

S
0.00

0.00

0.05 0.16

0.17

0.00 0.22 0.35

0.33 0.67

0.15

G

S

G

S
0.12

0.15

0.09 0.19

0.20

0.19 0.38 0.43

0.53 0.71

0.19

Improving upon the adversarial policy 1/2

Adversarial policy

Policy 
evaluation

Policy improvement

0.00% success

13.60% success

Policy 
evaluation

Policy improvement

Policy 
evaluation

Policy improvement

0.00% success

0.00% success

Policy 
evaluation

Policy improvement
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G

S

G

S

G

S
0.52

0.54

0.38 0.26

0.28

0.57 0.62 0.58

0.72 0.85

0.25

G

S

G

S
0.53

0.55

0.45 0.38

0.32

0.58 0.63 0.60

0.73 0.86

0.37

G

S
0.54

0.56

0.50 0.47

0.36

0.59 0.64 0.62

0.74 0.86

0.46

G

S

Improving upon the adversarial policy 2/2

69.20% success

72.00% success

73.20% success

Optimal policy

Policy 
evaluation

Policy improvement

Policy 
evaluation

Policy improvement

Policy 
evaluation

Policy improvement

73.20% success
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And as mentioned, alternating policy evaluating and policy improvement yields an optimal 
policy and state-value function regardless of the policy you start with. Now a few points I'd 
like to make about this sentence.

Notice how I use "an optimal policy," but also use "the optimal state-value function." This is 
not a coincidence or a poor choice of words, this is, in fact, a property that I'd to highlight 
again. An MDP can have more than one optimal policy, but it can only have a single optimal 
state-value function. It's not too hard to wrap your head around that.

State-value functions are a collection of numbers. Numbers can have infinitesimal accuracy, 
they are numbers. So, there will be only one optimal state-value function (the collection 
with the highest numbers for all states). However, a state-value function may have actions 
that are equally valued for a given state, this includes the optimal state-value function. In 
this case, there could be multiple optimal policies, each optimal policy selecting a different, 
but equally valued action. Take a look, the FL environment is a great example of this.

BTW, not shown here, but all actions in a terminal state have the same value, zero, and 
therefore a similar issue that in state 6.

A final note, I want to highlight that policy iteration is guaranteed to converge to the exact 
optimal policy, the mathematical proof shows it will not get stuck in local optima. However, 
as a practical consideration, there is one thing to be careful about. If the action-value 
function has a tie (for example RIGHT/LEFT in state 6), we must make sure not to break 
ties randomly. Otherwise, policy improvement could keep returning different policies, even 
without any real improvement. With that out of the way, let's now look at another essential 
algorithm for finding optimal state-value functions and optimal policies.

START

GOAL

0.53

0.52
0.50

0.54 0.53 0.34 0.32

0.33

0.40

0.44 0.45

0.64

0.36

0.56 0.37

0.38

0.59

0.38 0.40

0.41

0.47

0.44 0.42

0.43

0.16

0.36 0.36

0.20

0.33

0.62 0.40

0.50

0.50

0.46 0.74

0.53

0.78

0.73 0.82

0.86

0.46

0.31 0.30

0.31

G

START

G

START

The FL environment has multiple optimal policies
(1) Optimal action-
value function.

(3) But, look at state 6.

(4) So, there is a policy that 
goes RIGHT in state 6 and 
it's as good, and also optimal!

(2) A policy going LEFT 
in state 6 is optimal!
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27Planning optimal sequences of actions

Value Iteration: Improving behaviors early
You probably notice the way policy evaluation works: values propagate consistently on each 
iteration, but slowly. Take a look.

The image shows a single state-space sweep of policy evaluation followed by an estimation 
of the Q-function. We do this by using, on each iteration, the truncated estimate of the 
V-function and the MDP. By doing so, we can more easily see that even after the first 
iteration, a greedy policy over the early Q-function estimates would be an improvement: 
Look at the Q-values for state 5 in the first iteration; changing the action to point towards 
the GOAL state is obviously already better.

In other words, even if we truncated policy evaluation after a single iteration, we would still 
be able to improve upon the initial policy by taking the greedy policy of the Q-function 
estimation after a single state-space sweep of policy evaluation. This algorithm is another 
fundamental algorithm in RL: it is called value iteration (VI).

0 1 2 4 5 63
H G

START

0.0      0.0 0.17   0.56
0 1 2 4 5 63

H G
START

0.0    0.01 0.18   0.58
0 1 2 4 5 63

H G
START

0.01  0.01 0.03   0.04 0.24   0.63
0 1 2 4 5 63

H G
START

0.0      0.0 0.0      0.0 0.0      0.0

0.0      0.0 0.0      0.0 0.0      0.0

0.0      0.0 0.0      0.0

Policy evaluation on the "Always 
LEFT" policy on the SWF environment

(1) Calculating the Q-function 
after each state sweep.

(2) See how 
even after 
the first 
iteration the 
greedy policy 
over the 
Q-function 
was already 
a different 
and better 
policy!

104th Iteration

2nd Iteration

1st Iteration

...

(3) The fully-converged state-value 
function for the "Always LEFT" policy.
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28 Chapter 3 I balancing immediate and long-term goals

VI can be thought of "greedily greedifying policies," because we calculate the greedy policy 
as soon as we can, greedily. VI doesn't wait until we have an accurate estimate of the policy 
before it improves it, but instead, VI truncates the policy evaluation phase after a single state 
sweep. Take a look at what I mean by "greedily greedifying policies."

H G
START

H G
START

H G
START

H G
START

H G
START

0.0     0.0 0.17    0.5H G
START

0.0     0.0 0.0     0.0 0.0     0.0

0.08  0.25 0.33  0.67H G
START

0.04  0.13 0.20  0.42 0.51  0.76H G
START

0.02  0.06 0.11   0.25 0.33  0.54 0.63  0.82H G
START

0.0     0.0 0.0     0.0 0.0     0.0

0.0     0.0 0.0     0.0

0.0     0.0

0.37  0.67  0.79  0.89  0.93  0.96  0.98  0.99  0.99  1.00

Greedily greedifying the "Always 
LEFT" policy of the SFW environment

Truncated 
policy 
evaluation 

(1) This is the optimal action-value function and optimal policy

1st Iteration

2nd Iteration

3rd Iteration

4th Iteration

Policy 
improvement

Truncated 
policy 
evaluation 

Truncated 
policy 
evaluation 

Truncated 
policy 
evaluation 

Policy 
improvement

Policy 
improvement

122nd Iteration
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29Planning optimal sequences of actions

If we start with a randomly generated policy, instead of this adversarial policy "Always 
LEFT" for the SWF environment, VI would still converge to the optimal state-value 
function. VI is a straightforward algorithm that can be expressed in a single equation.

Notice that in practice, in VI, we don't have to deal with policies at all. VI doesn't have any 
separate evaluation phase that runs to convergence. While the goal of VI is the same as the 
goal of PI: to find the optimal policy for a given MDP, VI happens to do this through the 
value functions, thus the name value iteration.

So, again, we only have to keep track of a V-function and a Q-function (depending on 
implementation). Remember that to get the greedy policy over a Q-function, we simply 
take the arguments of the maxima (argmax) over the actions of that Q-function. So, instead 
of improving the policy by taking the argmax to get a better policy and then evaluating this 
improved policy to obtain a value function again, we directly calculate the maximum (max, 
instead of argmax) value across the actions to be used for the next sweep over the states.

Only at the end of the VI algorithm, after the Q-function converges to the optimal values, 
we extract the optimal policy by taking the argmax over the actions of the Q-function, just 
as before. You'll see it more clearly in the code snippet on the next page.

One important thing to highlight is that while VI and PI are two different algorithms, in a 
more general view, they are two instances of Generalized Policy Iteration (GPI). GPI is a 
general idea in RL in which policies are improved using their value function estimates and 
value function estimates are improved towards the actual value function for the current 
policy. Whether you wait for the perfect estimates or not is just the details.

Show me the math

The value-iteration equation

(1) We can merge a truncated policy evaluation step 
and a policy improvement into the same equation.

(2) We calculate 
the value of each 
action.

(7) Then, we take 
the max over the 
values of actions.

(5) Multiply by the 
probability of each 
possible transition.

(3) Using the 
sum of the 
weighted sum...

(6) And add for all 
transitions in the action.

(4) Of the reward 
and the discounted 
estimated value of the 
next state.
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I Speak python

The value-iteration algorithm

def value_iteration(P, gamma=1.0, theta=1e-10):

    V = np.zeros(len(P), dtype=np.float64)

    while True:

        Q = np.zeros((len(P), len(P[0])), dtype=np.float64)

        for s in range(len(P)):
            for a in range(len(P[s])):
                for prob, next_state, reward, done in P[s][a]:

                    Q[s][a] += prob * (reward + gamma * \
                                    V[next_state] * (not done))

        if np.max(np.abs(V - np.max(Q, axis=1))) < theta:
            break

        V = np.max(Q, axis=1)

    pi = lambda s: {s:a for s, a in enumerate(
                                      np.argmax(Q, axis=1))}[s]
    return V, pi

(1) So just like policy iteration, value iteration is a method for obtaining 
optimal policies. For this, we just need an MDP (including gamma). 
Theta is just the convergence criteria. 1e-10 is sufficiently accurate...

(2) First thing is to initialize a state-value function.
Know that a V-function with random numbers should work just fine.

(3) We get in this loop and initialize a Q-function to zero.
(4) Notice this one over here has to be zero. Otherwise the estimate would be incorrect.

(5) Then, the for every transition of every action in every state...

(6) We calculate the action-value function...

(7) Notice, using V, which is the old "truncated" estimate.

(8) After each sweep over the state space, we make sure the state-value function 
keeps changing. Otherwise, we found the optimal V-function and should break out.

(9) Thanks to this short line, we don't need a separate policy improvement phase. It is 
not a directly replacement, but instead a combination of improvement and evaluation.

(10) Only at the end, we extract the optimal policy and 
return it along with the optimal state-value function.
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Summary
The objective of a reinforcement learning agent is to maximize the expected return, which 
is the total reward over multiple episodes. For this, agents must use policies, which can be 
thought of as universal plans. Policies prescribe actions for states. They can be deterministic, 
meaning they return single actions, or stochastic, they return probability distributions. To 
obtain policies, agents usually keep track of several summary values. The main ones are 
state-value, action-value, and action-advantage functions.

State-value functions summarize the expected return from a state. They indicate how much 
reward the agent will obtain from a state until the end of an episode in expectation. Action-
value function summarize the expected return from a state-action pair. This type of value 
function tells the expected reward to go after an agent selects a specific action in a given 
state. Action-value functions allow the agent to compare across actions and therefore solve 
the control problem. Action-advantage functions show the agent how much better than the 
default it can do if it were to opt for a specific state-action pair. All of these value functions 
are mapped to specific policies, perhaps an optimal policy. This means that they depend on 
following what the policies prescribe until the end of the episode.

Policy evaluation is a method for estimating a value function from a policy and an MDP. 
Policy improvement is a method for extracting a greedy policy from a value function and 
an MDP. Policy iteration consists of alternating between policy evaluation and policy 
improvement to obtain an optimal policy from an MDP. The policy evaluation phase may 
run for several iterations before it accurately estimates the value function for the given 
policy. In policy iteration, we wait until policy evaluation finds this accurate estimate. An 
alternative method, called value iteration, truncates the policy evaluation phase and exits it 
entering the policy improvement phase early.

The more general view of these methods is generalized policy iteration, which describes the 
interaction of two processes to optimize policies: one moves value-function estimates closer 
to the real value function of the current policy, another improves the current policy using 
its value-function estimates, getting progressively better and better policies as this cycle 
continues.

By now you:

• Know the objective of a reinforcement learning agent and the different statistics it may 
hold at any given time.

• Understand methods for estimating value functions from policies, and methods for 
improving policies from value functions.

• Can find optimal policies in sequential decision-making problems modeled by MDPs.
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balancing the gathering
and utilization of information 4

In this chapter

• You learn about the challenges of learning from 
evaluative feedback and how to properly balance the 
gathering and utilization of information.

• You develop exploration strategies that accumulate 
low levels of regret in problems with unknown 
transition function and reward signals.

• You write code with trial-and-error learning agents 
that learn to optimize their behavior through their own 
experiences in many-options one-choice environments 
known as multi-armed bandits.

Our ultimate objective is to make programs that 
learn from their experience as effectively as 
humans do. 

— John McCarthy 
Founder of the field of Artificial Intelligence 
Inventor of the Lisp programming Language
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2 Chapter 4 I balancing the gathering and utilization of information

No matter how small and unimportant a decision may seem, every decision you make is a 
tradeoff between information gathering and information exploitation. For example, when 
you go to your favorite restaurant, should you order your favorite dish, yet again, or should 
you request that dish you have been meaning to try? If a Silicon Valley startup offers you a 
job, should you make a career move, or should you stay put in your current role?

These kinds of questions illustrate the exploration-exploitation dilemma and are at the core 
of the reinforcement learning problem. It boils down to deciding when to acquire knowledge
and when to capitalize on knowledge previously learned. It is a challenge to know whether the 
good we already have is good enough. When do we settle? When do we go for more? What 
are your thoughts, is a bird in the hand worth two in the bush or not?

The main issue is that rewarding moments in life are relative; you need to be able to 
compare events to see a clear picture of their value. For example, I bet you felt amazed when 
you got offered your first job. You perhaps even thought that was the best thing that ever 
happened to you. But, then life continues, and you experience things that appear even more 
rewarding. Maybe, when you get a promotion, a raise, or get married, who knows!

And that's the core issue: even if you rank moments, you have experienced so far by 
"how amazing" the felt. You won't be able to know what's the most amazing moment you 
could experience in your life— life is uncertain; you don't have life's transition function 
and reward signal, so you must keep on exploring. In this chapter, you learn about how 
important it is for your agent to explore when interacting with uncertain environments, 
problems in which the MDP is not available for planning.

In the previous chapter, you learned about the challenges of learning from sequential
feedback and how to properly balance immediate and long-term goals. In this chapter, we 
examine the challenges of learning from evaluative feedback, and we do so in environments 
that are not sequential, but one shot instead: Multi-Armed Bandits (MAB). 

MABs isolate and expose the challenges of learning from evaluative feedback. We'll dive into 
many different techniques for balancing exploration and exploitation in these particular 
type of environments: single-state environments with multiple options, but a single choice. 
Agents will operate under uncertainty, that is, they will not have access to the MDP. 
However, they will do so in one-shot environments, without the sequential component.

Remember, in DRL, agents learn from feedback that is simultaneously sequential (as 
opposed to one shot), evaluative (as opposed to supervised) and sampled (as opposed to 
exhaustive). In this chapter, I'm eliminating the complexity that comes along when learning 
from sequential and sampled feedback, and we'll study the intricacies of evaluative feedback 
in isolation. Let's get to it.
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3The challenge of interpreting evaluative feedback

The challenge of interpreting evaluative feedback
In the last chapter when we solved the FL environment, we knew beforehand how the 
environment would react to any of our actions. Knowing the exact transition function and 
reward signal of an environment allows us to compute an optimal policy using planning 
algorithms, such as PI and VI, without having to interact with the environment at all.

But, knowing an MDP in advance oversimplifies things, perhaps unrealistically. We cannot 
always assume we will know with precision how an environment will react to our actions—
that's simply not how the world works. We could opt for learning such things, as you'll learn 
in later chapters, but the bottom line is we need to let our agents interact and experience the 
environment by themselves, learning this way to behave optimally, solely from their own 
experience. This is what is called trial-and-error learning.

In RL, when the agent learns to behave from interaction with the environment, the 
environment asks the agent the same question over and over: what do you want to do now? 
This question presents a fundamental challenge to a decision-making agent. What action 
should it do now? Should the agent exploit its current knowledge and select the action with 
the highest current estimate? Or should it explore actions that it hasn't tried enough? But 
many additional questions follow: When do you know your estimates are good enough? 
How do you know you have tried an apparently bad action enough? And so on.

This is the key intuition: Exploration builds the knowledge that allows for effective 
exploitation, and maximum exploitation is the ultimate goal of any decision maker.

Exploration Exploitation

You will learn more effective ways for dealing 
with the exploration-exploitation tradeoff
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4 Chapter 4 I balancing the gathering and utilization of information

Bandits: Single state decision problems
Multi-armed bandits (MAB) are a special case of a RL problem in which the size of the 
state space and horizon equal one. MAB have multiple actions, a single state, and a greedy 
horizon; you can also think of it as a "many-options single-choice" environment. The name 
comes from slot machines (bandits) with multiple arms to choose from (more realistically: 
multiple slot machines to choose from).

There are many commercial applications for 
the methods coming out of MAB research: 
Advertising companies need to find the right way 
for balancing showing you an ad they predict 
you are likely to click on and showing you a new 
ad with the potential of being even a better fit 
for you. Websites that are raising money, such as 
charities or political campaigns, need to balance 
between showing the layout that has led to most 
contributions and new designs that haven't been 
sufficiently utilized but still have potential for even better outcomes. Likewise, e-commerce 
websites need to balance recommending you best-sellers products and promising new 
products. In medical trials, there is a need to learn the effects of medicines in patients 
as quickly as possible. Many other problems benefit from the study of the exploration-
exploitation tradeoff: oil drilling, game playing, search engines, just to name a few. Our 
reason for studying MAB is not so much a direct application to the real world, but instead 
how to integrate a suitable method for balancing exploration and exploitation in RL agents.

Multi-armed bandit problem

(1) A 2-armed bandit is a decision-making 
problem with two choices. You need to try 
them both sufficient to correctly asses 
each option. So, how do you best hand the 
exploration-exploitation tradeoff?

Show Me the Math

Multi-armed bandit

(1) MABs are MDPs with a single non-terminal state, and a single time step per episode.

(2) The Q-function of action a is 
the expected reward  
given a was sampled. 

(3) The best we can do in a MAB is represented 
by the optimal V-function, or selecting the 
action that maximizes the Q-function.

(4) The optimal action, is the action 
that maximizes the optimal Q-function, 
and optimal V-function (only 1 state).
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5The challenge of interpreting evaluative feedback

Regret: The cost of exploration
The goal in MAB is very similar to that of RL. In RL, the agent needs to maximize the 
expected cumulative discounted reward (maximize the expected return). That is, to get as 
much reward (maximize) through the course of an episode (cumulative) as soon as possible 
(if discounted – later rewards are discounted more) despite the environment's stochasticity 
(expected). This makes sense when the environment has multiple states and the agent 
interacts with it for multiple time steps per episode. But in MAB, while there are multiple 
episodes, we only have a single chance of selecting an action in each episode.

Therefore, we can exclude the words that do not apply to the MAB case from the RL 
goal: we remove "cumulative" because there is only a single time step per episode, and 
"discounted" because there are no next states to account for. This means, in MAB, the goal is 
for the agent to simply maximize the expected reward. Notice that the word "expected" stays 
there because there is stochasticity in the environment; in fact, that's what MAB agents need 
to learn: the underlying probability distribution of the reward signal.

However, if we leave the goal to just that: "maximize the expected reward," it wouldn't be 
straightforward to compare agents. For instance, let's say an agent learns to maximize the 
expected reward by selecting random actions in all but the final episode. While a much 
more sample-efficient agent uses some clever strategy to determine the optimal action 
quickly. If we only compare the final-episode performance of these agents, which is not 
uncommon to see in RL, these two agents would have equally good performance, which is 
obviously not what we want.

A robust way to capture a more complete goal is for the agent to maximize the per-episode 
expected reward still while minimizing the total expected reward loss of rewards across all 
episodes. To calculate this value, called total regret, we simply add up all of the per-episode 
difference of the true expected reward of the optimal action and the true expected reward 
of the selected action. Obviously, the lower the total regret, the better. Notice I use the word 
true here; to calculate the regret, you must have access to the MDP. That doesn't mean your 
agent needs the MDP, only you need it to compare agents' exploration strategy efficiency.

Show Me the Math

Total regret equation

(2) The difference between 
the optimal value of the 
MAB, and the true value of 
the action selected. 

(1) To calculate the 
total regret T, you 
need to add up for all 
episodes.
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Approaches to solving MAB environments
There are three major kinds of approaches to tackling MABs. The most popular and most 
straightforward approach involves exploring by injecting randomness in our action selection 
process; that is, our agent will exploit most of the time, and sometimes it'll explore using 
randomness. This family of approaches is called random exploration strategies. A basic 
example of this family would be a strategy that selects the greedy action most of the time, 
and with an epsilon threshold, it chooses uniformly at random. Now, multiple questions 
arise from this strategy; for instance, should we keep this epsilon value constant throughout 
the episodes? Should we maximize exploration early on? Should we periodically increase the 
epsilon value to ensure the agent always explores?

Another approach to dealing with the exploration-exploitation dilemma is to be optimistic. 
Yep, your mom was right. The family of optimistic exploration strategies is a more 
systematic approach that quantifies the uncertainty in the decision-making problem and 
increases the preference for states with the highest uncertainty. The bottom line is that being 
optimistic will naturally drive you toward uncertain states because you will assume that 
states you haven't experienced yet are the best they can be. This assumption will help you 
explore, and as you explore and come face to face with reality, your estimates will get lower 
and lower as they approach their true values.

The third approach to dealing with the exploration-exploitation dilemma is the family 
of information state-space exploration strategies. These strategies will model the 
information state of the agent as part of the environment. Encoding the uncertainty as part 
of the state space means that an environment state will be seen differently when unexplored 
or explored. Encoding the uncertainty as part of the environment is a sound approach but 
can also considerably increase the size of the state space and, therefore, its complexity.

In this chapter, we will explore a few instances of the first two approaches. We will do this in 
a handful of different MAB environments with different properties, pros and cons, and this 
will allow us to compare the strategies in depth.

It's important to notice that the estimation of the Q-function in MAB environments is 
pretty straightforward and something all strategies will have in common. Because MABs are 
one-step environments, to estimate the Q-function we just need to calculate the per-action 
average reward. In other words, the estimate of an action a is equal to the total reward 
obtained when selecting action a, divided by the number of times action a has been selected.

This is nothing special, but it is good to highlight that the differences between the strategies 
we will evaluate in the next sections are only in how they use these estimates to select 
actions, not on how they estimate the Q-function.
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ConCrete exaMple

The Slippery Bandit Walk (SBW) environment is back!

The first MAB environment that we will consider is one we have played with before: the 
Bandit Slippery Walk (BSW).

Remember, BSW is a grid-world with a single row, thus, a walk. But a special feature of this 
walk is that the agent starts at the middle and any action sends the agent to a terminal state 
immediately. So, because it is a one-time-step, it is a Bandit environment.

BSW is a 2-armed bandit, and it can appear to the agent as a 2-armed Bernoulli bandit. 
Bernoulli bandits pay a reward of +1 with some probability p and a reward of 0 with 
probability q = 1 - p. In other words, the reward signal is a Bernoulli distribution.

In the BSW, the two terminal states pay either 0 or +1. If you do the math, you'll notice that 
probability of a +1 reward when selecting action 0 is 0.2, and when selecting action 1 is 0.8. 
But your agent does not know this and we won't share that info, the question we are trying 
to ask is how quickly can your agent figure out the optimal action. How much total regret 
will agents accumulate while learning to maximize expected rewards? Let's find out.

10.8
0.2

0.8 +1

0.2

0

1 +1
0 2

Bandit slippery walk graph
(1) Remember: a hole, starting, and goal state

H S G
0 21

The bandit slippery walk environment

(1) The leftmost 
state is a hole, and 
provides a 0 reward.

(2) The rightmost 
state is the goal, and 
provides a +1 reward. 
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Greedy: Always exploit
The first strategy I want you to consider is not really a "strategy" but a baseline, instead. I 
already mentioned we need to have some exploration in our algorithms—otherwise, we 
risk convergence to a suboptimal action. But, for the sake of comparison, let's consider an 
algorithm with no exploration at all.

This baseline is called greedy strategy, or pure exploitation strategy. The greedy action-
selection approach consists of always selecting the action with the highest estimated value. 
While there is a chance for the very first action, we choose to be the best overall action, the 
likelihood of this lucky coincidence decreases as the number of available actions increases.

As you might have expected, the greedy strategy gets stuck with the very first action 
immediately. If the q-table is initialized to zero, and there are no negative rewards in the 
environment, the greedy strategy will always get stuck with the first action.

a = 0 a = 1

0.5 0

a = 0 a = 1

1 0

a = 0 a = 1

0 0

10.8

0.2
0.8 +1

+10.2 1

0
0 2

10.8

0.2
0.8 +1

+10.2 1

0
0 2

Pure exploitation in the BSW

(1) The action is index of the 
element with highest value (first 
element when there are ties).

(2) Let's pretend the environment 
goes through this transition and the 
agent gets the +1.

(3) Agent selects 
action 0 again.

(4) Environment goes through this 
transition as gives a 0 reward.

(5) As you can see the 
agent is already stuck 
with action 0.

Q(a) argmax(Q)= 0

Environment

1st iteration

Agent

Reward = +1

Q(a) argmax(Q)= 0

Environment

2nd iteration

Agent

Reward = 0

Q(a) argmax(Q)= 0

3rd iteration

Agent
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9The challenge of interpreting evaluative feedback

I want you to notice the relationship between a greedy strategy and time. If your agent only 
has one episode left, the best thing is to act greedily. If you know you only have one day to 
live, you will do things you enjoy the most. To some extent, this is what a greedy strategy 
does: do the best you can do with your current view of life assuming limited time left.

And, this is a reasonable thing to do when you have limited time left, however, if you 
don't, then you appear to be short-sighted because you are not able to tradeoff immediate 
satisfaction or reward for gaining of information that'd allow you better long-term results.

I Speak python

Pure exploitation strategy

def pure_exploitation(env, n_episodes=5000):

    Q = np.zeros((env.action_space.n))
    N = np.zeros((env.action_space.n))

    Qe = np.empty((n_episodes, env.action_space.n))
    returns = np.empty(n_episodes)
    actions = np.empty(n_episodes, dtype=np.int)

    name = 'Pure exploitation'
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, leave=False):
        action = np.argmax(Q)

        _, reward, _, _ = env.step(action)
        N[action] += 1
        Q[action] = Q[action] + (reward - Q[action])/N[action]

        Qe[e] = Q
        returns[e] = reward
        actions[e] = action
    return name, returns, Qe, actions

(1) Almost all strategies have the same bookkeeping code for estimating Q-values.
(2) We initialize the Q-function and the count array to all zeros.

(3) These other variables are for calculating statistics and not necessary.

(4) Here we enter the main loop and interact with the environment.

(5) Easy enough, we select the action that maximizes our estimated Q values.
(6) Then pass it to the environment and received a new reward.

(7) Finally, we update the counts and the Q table.
(8) Then we update the statistics and start a 
new episode.
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10 Chapter 4 I balancing the gathering and utilization of information

Random: Always explore
Let's also consider the opposite side of the spectrum: a strategy with exploration but no 
exploitation at all. This is another fundamental baseline which we can call a random 
strategy or a pure exploration strategy. This is simply an approach to action selection with 
no exploitation at all. The sole goal of the agent is to gain information.

Do you know people that when starting a new project, spend a lot of time "researching" 
without jumping into the water? Me too! They can take weeks just reading papers. 
Remember, while exploration is essential, it must be balanced well to get maximum gains.

A random strategy is obviously not a good strategy either and will also give you suboptimal 
results. Like exploiting all the time, you do not want to explore all the time, either. We need 
algorithms that can do both exploration and exploitation; gaining and using information.

a = 0 a = 1

0 0.5 

a = 0 a = 1

0 0

a = 0 a = 1

0 0

10.8

0.2
0.8 +1

+10.2 1

0
0 2

10.8

0.2
0.8 +1

+10.2 1

0
0 2

Pure exploration in the BSW

(1) Agent selects action 1, 
uniformly at random.

(2) Consider this transition.

(3) Agent selects action 1, 
again.

(5) Now agent 
select action 0.

Q(a) random_action = 1

Environment

1st iteration

Agent

Reward = 0

Q(a) random_action = 1

Environment

2nd iteration

Agent

Reward = +1

Q(a) random_action = 0

3rd iteration

Agent

(4) Consider this transition.

(7) BTW, the estimates will converge to 
the optimal values with enough episodes.

(6) Agent will continue to 
select actions randomly 
with total disregard for 
the estimates!
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11The challenge of interpreting evaluative feedback

I left a note in the code snippet, and I want to restate and expand on it. The pure exploration 
strategy I presented is really just one way to explore, that is, random exploration. But you 
can think of many other ways. Perhaps, based on counts, that is, how many times you try 
one action versus the others, or maybe based on the variance of the reward obtained.

Let that sink for a second: while there is only a single way to exploit, there are multiple ways 
to explore. Exploiting is nothing but doing what you think is best, it's pretty straightforward. 
You think A is best, you do A. Exploring, on the other hand, is much more complex. It's 
obvious you need to collect information, but how is a different question. You could try 
gathering information to support your current beliefs. You could gather information to 
attempt proving yourself wrong. You could explore based on confidence, or based on 
uncertainty, the list just goes on.

The bottom line is very intuitive, exploitation is your goal, and exploration gives you 
information about obtaining your goal. You must gather information to reach your goals, 
that is clear. But, in addition to that, there are several ways to collect information, and that is 
where the challenge lies.

I Speak python

Pure exploration strategy

def pure_exploration(env, n_episodes=5000):

    <...>

    name = 'Pure exploration'
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, 
                  leave=False):

        action = np.random.randint(len(Q))

        <...>
    return name, returns, Qe, actions

(1) The pure exploration baseline boilerplate is the same as the before.
So I removed it for brevity.

(2) This is how our pure exploration baseline acts...
Basically, it always selects an action randomly.

(4) It's somewhat unfair to call this a "pure exploration," it should be called 
something more along the lines of "random strategy" as there are other ways 
to explore that are not necessarily acting randomly. Still, let's move along.

(3) I removed the estimation and 
statistics bookkeeping portions for brevity.
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12 Chapter 4 I balancing the gathering and utilization of information

Epsilon-Greedy: Almost always greedy and sometimes random
Let's now combine the two baselines just introduced, pure exploitation and pure 
exploration, so that the agent can exploit, but also collect information to make informed 
decisions. The hybrid strategy consists of acting most of the time greedily and exploring 
randomly every so often.

This strategy, referred to as the epsilon-greedy strategy, works surprisingly well. If you 
select the action you think is best almost all the time, you will get solid results because you 
are still selecting the action believed to be best, but you are also selecting actions you haven't 
tried sufficiently yet. This way, your action-value function has an opportunity to converge to 
its true value; this will, in turn, help you obtain more rewards in the long term.

a = 0 a = 1

1 1 

a = 0 a = 1

1 0

a = 0 a = 1

0 0

10.8
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0.8 +1

+10.2 1

0
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0.8 +1

+10.2 1

0
0 2

Epsilon-greedy in the BSW

(1) The agent selects 
action 0 greedily.

(2) The environment goes 
through this transition 
and gives a +1 reward.

(3) The agent selects action 
1, this time randomly.

(5) The agent 
receives a +1 
reward.

Q(a) argmax(Q) = 0

Environment

1st iteration

Agent

Reward = +1

Q(a) random_action = 1

Environment

2nd iteration

Agent

Reward = +1

Q(a) argmax(Q) = 0

3rd iteration

Agent

(4) Consider 
this transition.

(6) Suppose the 
agent now selects 
action 0, and likely 
starts getting 0s.

(7) Combining exploration 
and exploitation ensures 
the agent doesn't get 
stuck in bad estimates.
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13The challenge of interpreting evaluative feedback

The epsilon-greedy strategy is a random exploration strategy because we use randomness 
to select the action. First, we use randomness to choose whether to exploit or explore, but 
also we use randomness to select an exploratory action. There are other random-exploration 
strategies, such as SoftMax (introduced later in this chapter), that do not have that first 
random decision point.

I want to you to notice that if epsilon is 0.5 and you have two actions, you can't say your 
agent will explore 50% of the time, if by "explore" you mean selecting the non-greedy action. 
Notice that the "exploration step" in epsilon greedy includes the greedy action. So, in reality, 
your agent will explore a bit less than the epsilon value depending on the number of actions.

I Speak python

Epsilon-greedy strategy

def epsilon_greedy(env, epsilon=0.01, n_episodes=5000):

    <...>
    name = 'E-greedy {}'.format(epsilon)
    for e in tqdm(range(n_episodes),
                  desc='Episodes for: ' + name, 
                  leave=False):

        if np.random.random() > epsilon:

            action = np.argmax(Q)

        else:
            action = np.random.randint(len(Q))

        <...>
    return name, returns, Qe, actions

(1) Same as before, removed the boilerplate.

(6) Removed the estimation and stats code.

(2) The epsilon-greedy strategy is surprisingly effective for its simplicity. 
It consists of selecting an action randomly every so often.
First thing is to draw a random number and compare to a hyperparameter "epsilon".

(3) If the drawn number is greater than epsilon, 
we select the greedy action, the action with the highest estimated value.

(4) Otherwise, we explore by selecting an action randomly.

(5) Realize that this may very well yield the greedy action as we are 
selecting an action randomly from all available actions, including the 
greedy action. So you are not really exploring with epsilon probability, 
but a little less than that – depending on the number of actions.
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14 Chapter 4 I balancing the gathering and utilization of information

Decaying Epsilon-Greedy: First maximize exploration,  
then exploitation
Intuitively, early on when the agent hasn't experienced the environment enough is 
when we'd like it to explore the most, while later, as it obtains better estimates of the 
value functions, we would like the agent to exploit more and more. The mechanics are 
straightforward: Start with a high epsilon less than or equal to one, and decay its value on 
every step. This strategy, called decaying epsilon-greedy strategy, can take many forms 
depending on how you change the value of epsilon. Here I'm showing you two ways.

I Speak python

Linearly decaying epsilon-greedy strategy

def lin_dec_epsilon_greedy(env,
                           init_epsilon=1.0,
                           min_epsilon=0.01, 
                           decay_ratio=0.05, 
                           n_episodes=5000):

    <...>
    name = 'Lin e-greedy {} {} {}'.format(
                init_epsilon, min_epsilon, decay_ratio)
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, 
                  leave=False):

        decay_episodes = n_episodes * decay_ratio

        epsilon = 1 - e / decay_episodes
        epsilon *= init_epsilon - min_epsilon
        epsilon += min_epsilon
        epsilon = np.clip(epsilon, min_epsilon, init_epsilon)

        if np.random.random() > epsilon:
            action = np.argmax(Q)
        else:
            action = np.random.randint(len(Q))
        <...>
    return name, returns, Qe, actions

(1) Again, boilerplate is gone!

(2) Linearly decaying epsilon greedy consist of making epsilon 
decay linearly with the number of steps. We start by calculating the 
number of episodes we'd like to decay epsilon to the minimum value.

(3) Then, calculate the value of epsilon for the current episode.

(4) After that, every thing is the same as the epsilon-greedy strategy.

(5) Stats removed here.
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15The challenge of interpreting evaluative feedback

There are many other ways you can handle the decaying of epsilon: from a simple 1/episode, 
to dampened sine waves. There are even different implementations of the same linear and 
exponential techniques I'm presented. The bottom line is the agent should explore with 
higher chance early and exploit with higher chance later. Early on, there is a high likelihood 
value estimates are wrong, but as time passes and you acquire knowledge, the likelihood that 
your value estimates are close to the actual values increases. This is when you should explore 
less frequently so that you can exploit the knowledge you have acquired.

I Speak python

Exponentially decaying epsilon-greedy strategy

def exp_dec_epsilon_greedy(env, 
                           init_epsilon=1.0,
                           min_epsilon=0.01,
                           decay_ratio=0.1,
                           n_episodes=5000):

    <...>

    decay_episodes = int(n_episodes * decay_ratio)
    rem_episodes = n_episodes - decay_episodes
    epsilons = 0.01
    epsilons /= np.logspace(-2, 0, decay_episodes)
    epsilons *= init_epsilon - min_epsilon
    epsilons += min_epsilon
    epsilons = np.pad(epsilons, (0, rem_episodes), 'edge')

    name = 'Exp e-greedy {} {} {}'.format(
                init_epsilon, min_epsilon, decay_ratio)
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, 
                  leave=False):
        if np.random.random() > epsilons[e]:
            action = np.argmax(Q)
        else:
            action = np.random.randint(len(Q))
        <...>
    return name, returns, Qe, actions

(1) FYI, not complete code.

(2) Here we calculate the exponentially decaying epsilons. Now, 
notice you can calculate all of these values at once, and only query 
an array of pre-computed values as you go through the loop.

(3) Everything else the same as before.

(4) And stats removed again, of course.
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16 Chapter 4 I balancing the gathering and utilization of information

Optimistic Initialization: Start off believing it's a wonderful world
Another interesting approach to dealing with the exploration-exploitation dilemma is to 
treat actions that you haven't sufficiently explored as if they were the best possible actions—
like you are indeed in paradise. This class of strategies is known as optimism in the face of 
uncertainty. The optimistic initialization strategy is an instance of this class.

The mechanics of the optimistic initialization strategy are straightforward: we initialize 
the Q-function to a high value and act greedily using these estimates. Two points to clarify, 
first "a high value" is something we don't have access to in RL, we will address this later in 
this chapter, but for now, pretend we have that number in advance. Second, in addition to 
the Q-values, we need to initialize the counts to a value higher than one. If we don't, the 
Q-function will change too quickly, and the effect of the strategy will be reduced.

a = 0 a = 1
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0.91 1
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1 1
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Optimistic initialization in the BSW

(2) The agent selects 
action 0 greedily.

(3) The environment goes 
through this transition 
and gives a 0 reward.

(5) The agent selects 
action 1 greedily.

(4) This is just 10/11, 
which is the total reward 
divided by the counts.

Q(a) argmax(Q) = 0

Environment

1st iteration
Agent

Reward = 0

Q(a) argmax(Q) = 1

Environment

2nd iteration
Agent

Reward = 0

Q(a) argmax(Q) = 0

3rd iteration

Agent(8) Q-values continue 
getting lower and 
lower as they converge 
to the optimal.

(7) Agent gets 
a 0 reward.

Initial Q = 1, count = 10
(1) Initial values, optimistic!

(6) Consider this transition.
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17The challenge of interpreting evaluative feedback

Very interesting, right? Momma was right! Because the agent initially expects to obtain 
more reward than it actually can, it goes around exploring until it indeed finds sources of 
reward. As it gains experience, the "naiveness" of the agent goes away, that is the Q-values 
get lower and lower until they converge to their actual values. 

Again, by initializing the Q-function to a high value, we encourage the exploration of 
unexplored actions. As the agent interacts with the environment, our estimates will start 
converging to lower, but more accurate estimates allowing the agent to find and converge to 
the action with the actual highest payoff.

Bottom line is if you are going to act greedily, at least be optimistic.

I Speak python

Optimistic initialization strategy

def optimistic_initialization(env, 
                              optimistic_estimate=1.0,
                              initial_count=100,
                              n_episodes=5000):
    Q = np.full((env.action_space.n),
                 optimistic_estimate,
                 dtype=np.float64)
    N = np.full((env.action_space.n),
                 initial_count,
                 dtype=np.float64)

    <...>
    name = 'Optimistic {} {}'.format(optimistic_estimate, 
                                     initial_count)
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, 
                  leave=False):

        action = np.argmax(Q)

        <...>
    return name, returns, Qe, actions

(3) Removed some code here.

(1) In this strategy, we start 
initializing the Q-values to an 
optimistic value.
(2) We also initialize the 
counts which will serve as an 
uncertainty measure. The 
higher the more certain.

(4) After that, we always select the action with the highest 
estimated value, just like the 'pure exploitation' strategy.

(5) Removed some more.
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18 Chapter 4 I balancing the gathering and utilization of information

ConCrete exaMple

2-armed Bernoulli bandit environment

Let's compare some specific instantiations of the strategies we have presented so far on a 
set of 2-armed Bernoulli bandit environments.

2-armed Bernoulli bandit environments have a single non-terminal state and two actions. 
Action 0 has an α chance of paying a +1 reward, and with 1-α, it will pay 0 rewards. Action 1 
has a β chance of paying a +1 reward, and with 1-β, it will pay 0 rewards.

This is similar to the BSW to some extent. BSW has complimentary probabilities, that is 
action 0 pays +1 with α probability, and action 1 pays +1 with 1-α chance. In this kind of 
bandit environment, these probabilities are independent, they can even be equal.

Take a look at my depiction of the 2-armed Bernoulli bandit MDP.

It's crucial you notice there are many different ways of representing this environment. And 
in fact, this is not how I have it written in code, because there is a lot of redundant and 
unnecessary information. 

For instance, the two terminal states. One could more simply have the two actions 
transitioning to the same terminal state. But, you know, drawing that would make the graph 
too convoluted. 

The important lesson here is you are free to build and represent environments your own 
way, there is not a single correct answer. There are definitely multiple incorrect ways, but 
there are also multiple correct. So, make sure to explore!

Yeah, I did that.

1α

1-β

 +1

1-α

0

1

+1  β0 2

2-armed Bernoulli bandit environments

(1) Here is a general MDP representation 
for 2-armed Bernoulli bandit environments.
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tally It Up

Simple exploration strategies in 2-armed Bernoulli bandit environments

I ran two hyperparameter instantiations of all strategies presented so far: the e-greedy, 
the two decaying, and the optimistic approach, along with the pure exploitation and 
exploration baselines on five 2-armed Bernoulli bandit environments with probabilities α 
and β initialized uniformly at random, and five seeds. Results are means across 25 runs. 

The best performing strategy in this experiment is the Optimistic with 1.0 initial Q-values 
and 10 initial counts. All strategies perform pretty well, and these weren't highly tuned, so it 
is just for the fun of it and nothing else. Head to chapter 4's Notebook and play, have fun.

(1) This is the pure exploration strategy.
(2) This is the pure exploitation strategy.

(3) These are all other strategies.

(4) A close-up into early episodes.

(5) Highest Mean Episode Reward: Optimistic 1.0 10.

(7) See the linear total regret of the baselines.

(9) Optimistic 1.0 10 strategy with lowest total regret.

(8) Exp e-greedy 1.0 with low total regret. This is mean across 25 runs.

(6) Exp e-greedy 0.3 second highest.
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It'S In the DetaIlS

Simple strategies in the 2-armed Bernoulli bandit environments

Let's talk about some of the details in this experiment.

First, I ran 5 different seeds (12, 34, 56, 78, 90) to generate 5 different 2-armed Bernoulli 
bandit environment. Remember, all Bernoulli bandits pay a +1 reward with certain 
probability for each arm.

The resulting environments and their probability of payoff look as follows:

2-armed bandit with seed 12:

• Probability of reward: [0.41630234, 0.5545003 ]

2-armed bandit with seed 34:

• Probability of reward: [0.88039337, 0.56881791]

2-armed bandit with seed 56

• Probability of reward: [0.44859284, 0.9499771 ]

2-armed bandit with seed 78

• Probability of reward: [0.53235706, 0.84511988]

2-armed bandit with seed 90

• Probability of reward: [0.56461729, 0.91744039]

The mean optimal value across all seeds is 0.83.

All of the strategies were run against each of the environments above with 5 different seeds 
(12, 34, 56, 78, 90) to fix and factor out the randomness of the results. So, again, for instance, 
I first use seed 12 to create a Bernoulli bandit, then I use seeds 12, 34, and so on, to get the 
performance of each strategy under the environment created with seed 12. 

Then, I use seed 34 to create another Bernoulli bandit and use 12, 34, and so on, to evaluate 
each strategy under the environment created with seed 34. I did this for all strategies in all 5 
environments.

Overall, the results are the means over the 5 environments and 5 seeds, so 25 different runs 
per strategy.

I tuned each strategy independently but also manually. I used approximately 10 
hyperparameter combinations and picked the top 2 from those.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

113



21Strategic exploration

Strategic exploration
Alright, imagine you are tasked with writing a reinforcement learning agent to learn driving 
a car. You decide to implement an epsilon-greedy exploration strategy. You flash your agent 
into the car's computer, you start the car, push that beautiful bright green button, and then 
your car starts exploring; it will flip a coin and decide to explore with a random action, say 
to drive on the other side of the road. Like it? Right, me neither. I hope this example helps to 
illustrate the need for different exploration strategies.

Let me be clear that this example is, of course, an exaggeration. You wouldn't put an 
untrained agent to learn straight in the real world. In reality, if you are trying to use RL 
in a real car, drone, or just in the real world in general, you'd first pre-train your agent in 
simulation, and/or use more sample-efficient methods.

But, my point holds. If you think about it, while humans explore, we don't explore randomly. 
Maybe infants do. But not adults. Maybe imprecision is the source of our randomness, but 
we don't randomly marry someone just because (unless you go to Vegas.) Instead, I would 
argue that adults have a more strategic way of exploring. We know that we are sacrificing 
short- for long-term satisfaction. We know we want to acquire information. We explore by 
trying things we haven't sufficiently tried but have the potential to better our lives. Perhaps, 
our exploration strategies are a combination of estimates and their uncertainty; for instance, 
we might prefer a dish that we are likely to enjoy, and we haven't tried, over a dish that we 
like OK, but we get every weekend. Perhaps we explore based on our "curiosity" or our 
prediction error; for instance, we might be more inclined to try new dishes at a restaurant 
that we thought would be OK-tasting food, but it resulted in the best food you ever had. 
That "prediction error" that "surprise" could be our metric for exploration at times.

In the rest of this chapter, we will look at slightly more advanced exploration strategies. 
Some are still random exploration strategies, but they apply this randomness in proportion 
to the current estimates of the actions. Other exploration strategies take into account the 
confidence and uncertainty levels of the estimates.

All this being said, I want to reiterate that the epsilon-greedy strategy (and its decaying 
versions) is still the most popular exploration strategy in use today. Perhaps because 
it performs well, perhaps because of its simplicity. Maybe because most reinforcement 
learning environments today live inside a computer and there are very few safety concerns 
with the virtual world. It's important for you to think hard about this problem. Balancing 
the exploration vs. exploitation tradeoff, the gathering and utilization of information is 
central to human intelligence, artificial intelligence, and reinforcement learning. I'm certain 
the advancement in this area will have a big impact in the field of artificial intelligence, 
reinforcement learning and all other fields interested in this fundamental tradeoff. Lots!
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SoftMax: Select actions randomly in proportion  
to their estimates
Random exploration strategies would make more sense if they take into account Q-value 
estimates. By doing so, if there is an action that has a really low estimate, we are less likely 
to try it. There is a strategy, called SoftMax strategy, that basically does just this: it samples 
an action from a probability distribution over the action-value function such that the 
probability of selecting an action is proportional to its current action-value estimate. This 
strategy, which is also part of the family of random exploration strategies, is related to the 
epsilon-greedy strategy because of the injection of randomness in the exploration phase. 
E-greedy samples uniformly at random from the full set of actions available at a given state, 
while SoftMax samples based on preferences of higher valued actions.

By using the SoftMax strategy, we are effectively making the action-value estimates an 
indicator of preference. So, it doesn't matter how high or low the values are; if you add a 
constant to all of them, the probability distribution will stay the same. You put preferences 
over the Q-function and sample an action from a probability distribution based on this 
preference. The difference between Q-value estimates will create a tendency to select actions 
with the highest estimates more often, and actions with the lowest estimates less frequently.

We can also add a hyperparameter to control the algorithm's sensitivity to the differences 
in Q-value estimates. This hyperparameter, called the temperature (a reference to statistical 
mechanics), works so as it approaches infinity the preferences over the Q-values are equal; 
basically, we sample an action uniformly. But, as the temperature value approaches zero, the 
action with the highest estimated value will be sampled with probability 1. And of course, 
we can decay this hyperparameter either linearly, exponentially, or something else. But, in 
practice, for numerical stability reasons, we can't use infinity or zero as the temperature; 
instead, we use a very high, or very low positive real number, and normalize these values.

Show Me the Math

SoftMax exploration strategy

(1) To calculate the probability 
of selecting action a...

(2) Calculate the preference of selecting that action by 
dividing the Q-function by the temperature parameter tau.

(3) Raise that to e.

(4) Finally, normalize the values by 
dividing by the sum of all preferences.
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I Speak python

SoftMax strategy

def softmax(env, 
            init_temp=1000.0, 
            min_temp=0.01,
            decay_ratio=0.04,
            n_episodes=5000):

    <...>
    name = 'SoftMax {} {} {}'.format(init_temp, 
                                     min_temp, 
                                     decay_ratio)
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, 
                  leave=False):

        decay_episodes = n_episodes * decay_ratio
        temp = 1 - e / decay_episodes
        temp *= init_temp - min_temp
        temp += min_temp
        temp = np.clip(temp, min_temp, init_temp)

        scaled_Q = Q / temp
        norm_Q = scaled_Q - np.max(scaled_Q)
        exp_Q = np.exp(norm_Q)
        probs = exp_Q / np.sum(exp_Q)

        assert np.isclose(probs.sum(), 1.0)
        action = np.random.choice(np.arange(len(probs)),
                                  size=1, 
                                  p=probs)[0]

        _, reward, _, _ = env.step(action)
        <...>

    return name, returns, Qe, actions

(1) Code removed.

(2) First we calculate the linearly decaying temperature the same 
way we did with the linearly decaying epsilon.

(4) Next we calculate the probabilities by applying the SoftMax function to the Q values.

(6) Finally, we make sure we got 
good probabilities and select 
the action based on them.

(7) Code removed here too.

(3) I make sure 'min_temp' is not 0, to avoid div by zero. Check the Notebook for details.

(5) Normalize for numeric stability.
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UCB: It's not about just optimism; it's about realistic optimism
In the last section, I introduced the optimistic initialization strategy; this is a very clever 
(and perhaps philosophical) approach to dealing with the exploration vs. exploitation 
tradeoff and it's the simplest method in the optimism in the face of uncertainty family of 
strategies. But, there are two significant inconveniences with the specific algorithm we 
looked at: First, we do not always know the maximum reward the agent can obtain from 
an environment. If you set the initial Q-value estimates of an optimistic strategy to a value 
much higher than its actual maximum value, unfortunately, the algorithm will perform 
sub-optimally because the agent will take many episodes (depending on the 'counts' 
hyperparameter) to bring the estimates near the actual values. But even worse, if you set the 
initial Q-values to a value lower than the environment's maximum, the algorithm will no 
longer be "optimistic," and it will no longer work.

The second issue with this strategy as we presented it is that the 'counts' variable is a 
hyperparameter and it needs tuning, but in reality, what we are trying to represent with this 
variable is the uncertainty of the estimate, which shouldn't be a hyperparameter. A better 
strategy, instead of believing everything is roses from the beginning and arbitrarily setting 
certainty measure values, follows the same principles as optimistic initialization while using 
statistical techniques to calculate the value estimates uncertainty and uses that as a bonus for 
exploration. This is what the upper confidence bound (UCB) strategy does.

In UCB, we are still optimistic, but it is a more a realistic optimism; instead of blindly 
hoping for the best, we look at the uncertainty of value estimates. The more uncertain a 
Q-value estimate, the more critical it is to explore it. Note that it is no longer about believing 
the value will be the "maximum possible," though it might be! The new metric that we care 
about here is uncertainty; we want to give uncertainty the benefit of the doubt.

Show Me the Math

Upper Confidence Bound (UCB) equation

(1) To select the 
action at episode e.

(2) Add the 
Q-value estimates.

(3) And an 
uncertainty bonus.

(4) Then select the action with the maximum total value.
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To implement this strategy, we select the action with the highest sum of its Q-value estimate 
and an action-uncertainty bonus U. That is, we are going to add a bonus, upper confidence 
bound Ut(a), to the Q-value estimate of action a, such that if we attempt action a only a few 
times the U bonus is large thus encouraging exploring this action. While if the number of 
attempts is significant, we add only a small U bonus value to the Q-value estimates, because 
we are more confident on the Q-value estimates, therefore not as critical to explore.

In a practical level, if you plot U as a function of the episodes and counts, you'll notice it is 
very much like an exponentially decaying function with a few differences: Instead of the 
smooth decay exponential functions show, there is a sharp decay early on and a long tail. 
This makes it so that early on when the episodes are low there is a higher bonus for smaller 
differences between actions, but as more episode pass, and counts increase, the difference 
in bonuses for uncertainty become smaller. In other words, a 0 vs. 100 attempts should give 
a higher bonus to 0 than to a 100 in a 100 vs. 200 attempts. Finally, the c hyperparameter 
controls the scale of the bonus, a higher c means higher bonuses, lower c lower bonuses.

I Speak python

Upper Confidence Bound (UCB) strategy

def upper_confidence_bound(env, 
                          c=2, 
                          n_episodes=5000):

    <...>
    name = 'UCB {}'.format(c)
    for e in tqdm(range(n_episodes), 
                  desc='Episodes for: ' + name, 
                  leave=False):
        if e < len(Q):
            action = e
        else:

            U = np.sqrt(c * np.log(e)/N)

            action = np.argmax(Q + U)
        <...>
    return name, returns, Qe, actions

(1) Code removed for brevity.

(2) We first select all actions 
once to avoid division by zero.

(5) Stats code removed for brevity.

(3) Then, proceed to calculating the confidence bounds.

(4) Lastly we pick the action with the highest value with an uncertainty bonus, 
the more uncertain the value of the action the higher the bonus.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

118



26 Chapter 4 I balancing the gathering and utilization of information

Thompson Sampling: Balancing reward and risk
The UCB algorithm is a frequentist approach to dealing with the exploration vs. exploitation 
tradeoff because it makes minimal assumptions about the distributions underlying the 
Q-function. But, there are other techniques, such as Bayesian strategies, that can use priors 
to make reasonable assumptions and exploit this knowledge. The Thompson sampling 
strategy is a sample-based probability matching strategy that allows us to use Bayesian 
techniques to balance the exploration and exploitation tradeoff. 

A simple way to implement this strategy is to keep track of each Q-value as a Gaussian 
(a.k.a. normal) distribution. In reality, you can use any other kind of probability distribution 
as prior; beta distributions, for instance, are a common choice. In our case, the Gaussian 
mean is the Q-value estimate, and the Gaussian standard deviation measures the uncertainty 
of the estimate, which are updated on each episode.

As the name suggests, in Thompson sampling, we sample from these normal distributions 
and simply pick the action that returns the highest sample. Then, to update the Gaussian 
distributions' standard deviation, we use a formula very similar to the UCB strategy in 
which early on when the uncertainty is higher, the standard deviation is more significant; 
therefore the Gaussian is broad. But as the episodes progress, and the means shift toward 
better and better estimates, the standard deviations gets lower, and the Gaussian distribution 
shrinks, and so its samples are more and more likely to be near the estimated mean.

Comparing two action-value functions 
represented as Gaussian distributions

(1) This Q function seems 
better because its mean is 
higher than the other one.

(2) But is it? We are 
much more uncertain 
about the estimate 
of the other one. 
Shouldn't we explore it?
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In this particular implementation, I use two hyperparameters: alpha, to control the scale 
of the Gaussian, or how large will the initial standard deviation be, and beta, to simply 
shifts the decay such that the standard deviation shrinks more slowly. In practice, these 
hyperparameters need very little tuning for the examples in this chapter because, as you 
probably already know, a standard deviation of just 5, for instance, is almost a flat-looking 
Gaussian representing over a 10 unit spread. Given our problems have rewards (and 
Q-values) between 0 and 1, and approximately between -3 and 3 (the example coming up 
next), we wouldn't need any Gaussian with standard deviations too much greater than 1. 

Finally, I want to re-emphasize using Gaussian distributions is perhaps not the most 
common approach to Thompson sampling, Beta distributions seem to be favorites here. I 
personally prefer Gaussian for these problems, simply because of their symmetry around the 
mean, and because their simplicity makes them suitable for teaching purposes. However, I 
encourage you to dig some more on this topic and share what you find.

I Speak python

Thompson sampling strategy

def thompson_sampling(env, 
                      alpha=1,
                      beta=0,
                      n_episodes=5000):

    <...>
    name = 'Thompson Sampling {} {}'.format(alpha, beta)
    for e in tqdm(range(n_episodes),
                  desc='Episodes for: ' + name,
                  leave=False):

        samples = np.random.normal(
            loc=Q, scale=alpha/(np.sqrt(N) + beta))

        action = np.argmax(samples)

        <...>
    return name, returns, Qe, actions

(1) Initialization code removed.

(4) Stats code removed.

(2) In our implementation we will simply sample numbers from the Gaussian 
distributions. Notice how the 'scale' which is the width of the Gaussian (the standard 
deviation) shrinks with number of times we try each action. Also, notice how 'alpha' 
controls the initial width of the Gaussian, and 'beta' the rate at which they shrink.

(3) Then, we select the action with the highest sample.
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tally It Up

Advanced exploration strategies in 2-armed Bernoulli bandit environments

I ran two hyperparameter instantiations of each new strategies introduced: the SoftMax, 
the UCB, and the Thompson approach, along with the pure exploitation and exploration 
baselines, and the top-performing simple strategies from before on the same five 2-armed 
Bernoulli bandit environments. This is again a total of ten agents in five environments across 
five seeds. A twenty-five runs total per strategy. Results are averages across these runs. 

Besides the fact that the Optimistic strategy uses domain knowledge that we cannot 
assume we'll have access to, the results indicate the more advanced approaches do better.

(2) This is the pure exploration baseline.

(1) Advanced exploration strategies.

(4) A close-up into early episodes.

(5) Best performances across all experiments: SoftMax inf.

(7) Linear total regret of the baselines.

(9) Lowest regret by SoftMax inf.

(3) This is the pure exploitation baseline.

(6) Optimistic and SoftMax 100 follow.

(8) Optimistic same low regret.
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ConCrete exaMple

10-armed Gaussian bandit environments

10-armed Gaussian bandit environments still have a single non-terminal state; they are 
bandit environments. As you probably can tell, they have 10 arms or actions instead of 2 as 
their Bernoulli counterparts. But, 
the probability distributions and 
reward signals are very different 
from the Bernoulli bandits. First, 
Bernoulli bandits have a probability 
of payoff of p, and with 1-p, the 
arm will not pay anything. Gaussian 
bandits, on the other hand, will 
always pay something (unless 
they sample a 0 – more on this 
next). Second, Bernoulli bandits 
have a binary reward signal, you 
either get a +1 or a 0. Instead, 
Gaussian bandits pay every time by 
sampling a reward from a Gaussian 
distribution.

To create a 10-armed Gaussian bandit environment, you first sample from a standard 
normal (Gaussian with mean 0 and variance 1) distribution 10 times to get the optimal 
action-value function q*(ak) for all k (10) arms. These values will become the mean of the 
reward signal for each action. To get the reward for action k at episode e, we simply sample 
from another Gaussian with mean q*(ak), and variance 1.

R0 R4

R1

R6

R5

R2

R7

R3

R8

R9

1

0 1 2 3 4

5 6 7 8 9

0

2

10-armed Gaussian bandits

(1) Each arm 
pays every time!

(2) But the 
reward paid varies. 
It's sampled 
from a Gaussian 
distribution.

Show Me the Math

10-armed Gaussian bandits reward function

(1) Prior to interacting with the 
environment, we create it by calculating the 
optimal action-value for each arm/action k.

(2) We do this by sampling from a standard 
Gaussian distribution, that is a Gaussian 
with mean 0 and variance 1.

(3) Once our agent is interacting with the 
environment, in order to sample the reward R
for arm/action k in episode e.

(4) We sample from a Gaussian distribution 
centered on the optimal q-value, and 
variance 1.
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tally It Up

Advanced exploration strategies in 10-armed Gaussian bandit environments

I ran the same hyperparameter instantiations of the simple strategies introduced earlier, 
now on five 10-armed Gaussian bandit environments. This is obviously an "unfair" 
experiment because these techniques can perform well in this environment if properly 
tuned, but my goal is to show the most "advanced" strategies still do well with the old 

hyperparameters, despite the change of the environment. You'll see that on the next page. 
Look at that, some of the most straightforward strategies have the lowest total regret and 
the highest expected reward across the five different scenarios. Think about that for a sec!

(2) Pure exploitation.

(7) See the linear total regret of the baselines.

(8) Most strategies performed OK.

(1) Simple strategies not doing that much better than the baselines.

(4) Lin e-greedy 1.0 is doing well in terms of reward.

(9) Third-lowest total regret: E-greedy 0.07.

(10) Second-lowest total regret: Exp e-greedy 1.0.

(11) Lowest total regret: Lin e-greedy 1.0.

(3) Pure exploration.

(5) Then, we have exp e-greedy 1.0.
(6) E-greedy 0.07 follow.
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tally It Up

Advanced exploration strategies in 10-armed Gaussian bandit environments

I now ran the advanced strategies with the same hyperparameters as before. I also added 
the two baselines and the top-2 performing simple strategies in the 10-armed Gaussian 
bandits. Just as with all other experiments, this is a total of twenty-five runs. 

This time only the advanced strategies make it on top, with an actually pretty decent total 
regret. What you should do now is head to the Notebook and have fun! Please, also share 
with the community your results, if you run additional experiments.  
Can't wait to see how you extend these experiments. Enjoy!

(1) This is the pure exploitation strategy.

(2) This is the pure exploration strategy.
(3) These are all other strategies.

(4) A close-up into early episodes.

(6) See the linear total regret of the baselines.

(8) Top to bottom (lower is better): Thompson 0.5, UCB 0.5, UCB 0.2.

(5) Top to bottom: UCB 0.2, UCB 0.5, Thompson 0.5.

(7) SoftMax inf is no longer doing that great.
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Summary
Learning from evaluative feedback is a fundamental challenge that makes reinforcement 
learning unique. When learning from evaluative feedback: i.e.: +1, +1.345, +1.5, -100, -4, 
your agent doesn't know the underlying MDP and therefore cannot determine what the 
maximum reward it can obtain is. Your agent "thinks": "well, I got a +1, but I don't know, 
maybe there is a +100 under this rock?" This uncertainty in the environment forces you to 
design agents that explore.

But as you learned, you can't take exploration lightly. Fundamentally, exploration wastes 
cycles that could otherwise be used for maximizing reward, for exploitation, yet, your agent 
can't maximize reward, or at least pretend it can, without gathering information first, which 
is what exploration does. All of a sudden, your agent has to learn to balance exploration and 
exploitation; it has to learn to compromise, to find an equilibrium between two crucial yet 
competing sides. We have all faced this fundamental tradeoff in our lives, so these issues 
should be intuitive to you: "a bird in the hand is worth two in the bush," yet "a man's reach 
should exceed his grasp." — Pick your poison, and have fun doing it, just don't get stuck to 
either one. Balance them!

Knowing this fundamental tradeoff, we introduced several different techniques to create 
agents, or strategies, for balancing exploration and exploitation. The epsilon-greedy strategy 
does it by exploiting most of the time and exploring only a fraction. This exploration step 
is done by sampling an action at random. Decaying epsilon-greedy strategies capture the 
fact that agents need more exploration at first because they need to gather information to 
start making a right decision, but they should quickly begin to exploit to ensure they don't 
accumulate regret, which is a measure of how far from optimal we act. Decaying epsilon-
greedy strategies decay epsilon as episodes increases and, hopefully, as our agent gathers 
information.

But then we learn about other strategies that try to ensure that "hopefully" is more likely. 
Strategies that take into account estimates and their uncertainty and potential and select 
accordingly: Optimistic initialization, UCB, Thompson sampling, and although SoftMax 
doesn't really use uncertainty measures, it explores by selecting randomly in the proportion 
of the estimates.

By now you:

• Understand that the challenge of learning from evaluative feedback is because agents 
cannot see the underlying MDP governing their environments.

• Learned that the exploration vs. exploitation tradeoff rises from this problem.
• Know about many strategies that are commonly used for dealing with this issue.
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evaluating
agents' behaviors 5

In this chapter

• You learn about estimating policies when learning 
from feedback that is simultaneously sequential and 
evaluative.

• You develop algorithms for evaluating policies in 
reinforcement learning environments when the 
transition and reward functions are unknown.

• You write code for estimating the value of policies in 
environments in which the full reinforcement learning 
problem is on display.

I conceive that the great part of the miseries 
of mankind are brought upon them by false 
estimates they have made of the value of things. 

— Benjamin Franklin 
Founding Father of the United States 

 an author, politician, inventor, and a civic activist.
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2 Chapter 5 I evaluating agents' behaviors

You know how challenging it is to balance immediate and long-term goals. You probably 
experience this multiple times a day: should you watch movies tonight, or keep reading 
this book? One has an immediate satisfaction to it; you watch the movie, and you go from 
poverty to riches, from loneliness to love, from overweight to fit, etc., in about two hours 
and while eating popcorn. Reading this book, on the other hand, won't really give you much 
tonight, but maybe, and only maybe, much higher satisfaction in the long term.

And that is a perfect lead to precisely the other issue we discussed. How much more 
satisfaction in the long term, exactly?! You may ask. Can we tell? Is there a way to find out? 
Well, that's the beauty of life, I don't know, you don't know, and we won't know unless we 
try it out, unless we explore it. Life doesn't give you its MDP, life is uncertain. This is what we 
studied in the last chapter: balancing information gathering and information utilization.

However, in the previous chapter, we studied this challenge in isolation from the sequential 
aspect of RL. Basically, you assume your actions have no long-term effect, and your only 
concern is to find the best thing to do for the current situation. For instance, your concern 
may be selecting a good movie, or a good book, but without thinking how the movie or the 
book will impact the rest of your life. Here, your actions don't have a "compounding effect."

Now, in this chapter, we look at agents that learn from feedback that is simultaneously 
sequential and evaluative; agents need to simultaneously balance immediate and long-term
goals, and balance information gathering and utilization. So, back to our "movie or book" 
example, you need to decide what to do today knowing each decision you make builds up, 
accumulates, and compounds in the long term. Since you are a near-optimal decision-maker 
under uncertainty, just as most humans, will you watch a movie or keep on reading? Hint!

You're smart... In this chapter, we will study agents that can learn to estimate the value of 
policies, similar to the policy evaluation method, but this time without the MDP. This is 
often called the prediction problem because we are estimating value functions, and these 
are defined as the expectation of future discounted rewards, that is, they contain values that 
depend on the future, so we are learning to predict the future in some sense. Next chapter, 
we will look at optimizing policies without MDPs, which is called the control problem
because we attempt to improve agents' behaviors. As you'll see in this book, these two are 
equally essential aspects of RL. In machine learning, the saying goes: "the model is only as 
good as the data," in RL, I say: "the policy is only as good as the estimates." Or detailed: "the 
improvement of a policy is only as good as the accuracy and precision of its estimates."

Once again, in DRL, agents learn from feedback that is simultaneously sequential (as 
opposed to one-shot), evaluative (as opposed to supervised) and sampled (as opposed 
to exhaustive). In this chapter, we are looking at agents that learn from feedback that is 
simultaneously sequential and evaluative. We are temporarily shelving the "sampled" part, 
but we will open those gates in chapter 8, and there will be fun galore. I promise.
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3Learning to estimate the value of policies

Learning to estimate the value of policies
As I mentioned before, this chapter is about learning to estimate the value of existing 
policies. When I was first introduced to this "prediction problem" people talk about, I 
didn't get the motivation initially. To me, if you want to estimate values of policies the 
straightforward way of doing it is just running the policy a lot and averaging what you get.

And, that's definitely a valid approach, and perhaps the most natural. What I didn't realize 
back then, however, is that there are many other approaches to estimating value functions. 
Each of these approaches has advantages and disadvantages, some of the methods can be 
seen as an exact opposite alternative, but there is also a middle ground that creates a full 
spectrum of algorithms.

In this chapter, we will explore a variety of these approaches, and will dig into their pros and 
cons, showing you how they relate.

ŘŁ With An RL Accent

Reward vs. Return vs. Value function

Reward: Refers to the one-step reward signal the agent gets: the agent observes a state, 
selects an action, and it receives a reward signal. The reward signal is the core of RL, but it 
is not what the agent is trying to maximize! Again, the agent is not trying to maximize the 
reward! Realize that while your agent maximizes the one-step reward, in the long-term, is 
getting less than it could.

Return: Refers to the total discounted rewards. Returns are calculated from any state 
and usually go until the end of the episode. That is when a terminal state is reached the 
calculation stops. Returns are often referred to as total reward, cumulative reward, sum of 
rewards, and are commonly discounted: total discounted reward, cumulative discounted 
reward, sum of discounted reward. But, it is basically the same: a return tells you how much 
reward your agent obtained in an episode. As you can see, returns are better indicators 
of performance because they contain a long-term sequence, a single-episode history 
of rewards. But the return is not what an agent tries to maximize, either! An agent that 
attempts to obtain the highest possible return may find a policy that takes it through a 
noisy path; sometimes, this path will provide a high return, perhaps most of the time a low 
one.

Value function: Refers to the expectation of returns. That means, sure, we want high returns, 
but high in expectation (on average). So, if the agent is in a very noisy environment, or if 
the agent is using a stochastic policy, it's all just fine. The agent is trying to maximize the 
expected total discounted reward, after all: value functions.
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! MigueL's AnALogy

Rewards, returns, value functions, and life

How do you approach life? Do you select actions that are the best for you, or are you one of 
those kind folks that prioritize others before themselves?

There is no shame either way! Being selfish, to me, is an excellent reward signal. It takes 
you places. It drives you around. Early on in life, going after the immediate reward can be a 
pretty solid strategy. 

Lots of people judge others for being "too selfish," but to me, that's the way to get going. 
So, go on and do what you want, what you dream of, what gives you satisfaction, go after 
the rewards! You'll look selfish and greedy. But you shouldn't care.

As you keep going, you'll realize that going after the rewards is not the best strategy, even 
for your benefit. You start seeing a bigger picture. If you overeat candy, your tummy hurts, if 
you spend all of your money on online shopping, you can go broke.

So, you start looking at the returns. You start understanding that there is more to your 
selfish and greedy motives. You drop the greedy side of you because it harms you in the 
long run, and now you can see that. But you stay selfish, you still only think in terms of 
rewards, just now "total" rewards, returns. No shame about that, either!

At one point, you'll realize that the world moves without you, that the world has many more 
moving parts than you initially thought, that the world has some underlying dynamics that 
are very difficult to comprehend. You now know that "what goes around comes around," 
one way or another, one day or another, but it does.

You step back once again, now instead of the going after rewards or returns, you go after 
value functions. You wise up! You learn that the more you help others learn, the more you 
learn, not sure why, but it works, the more you love your significant other, the more they 
love you, crazy! The more you don't spend (save,) the more you can. How strange! Notice, 
you are still selfish! 

But you become aware of the complex underlying dynamics of the world and can 
understand that the best for yourself is to better others — a perfect win-win situation.

I'd like the differences between rewards, returns, and value functions ingrained in you, so 
hopefully this should get you thinking for a bit.

Follow the rewards!

Then, the returns!

Then, the value functions.
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concRete exAMpLe

The Random Walk environment

The primary environment we will use through this chapter is called the Random Walk (RW). 
This is a walk, single-row grid-world environment, with five non-terminal states. But it's 
peculiar, so I want to explain it in two ways.

On the one hand, you can think of the RW as an environment in which the probability of 
going left when taking the left action is equal to the probability of going right when taking 
the left action, and the probability of going right when taking the right action is equal to 
the probability of going left when taking the right action. In other words, the agent has no 
control of where it goes! The agent will go left with 50% and right with 50% regardless of 
the action it takes. It's a random walk, after all. Crazy!

But to me, that was a very unsatisfactory explanation of the RW, maybe because I like the 
idea of agents "controlling" something. What's the point of studying RL (a framework for 
learning optimal control) in an environment in which there is no possible control!?

Therefore, you can think of the RW as an environment with a deterministic transition 
function (meaning that if the agent chooses left, the agent moves left, and it moves right 
if it picks right – as expected.) But pretend the agent wants to evaluate a stochastic policy 
that selects actions uniformly at random. That's half the time, it chooses left, the other half, 
right. 

Either way, the concept is the same: we have a five non-terminal state walk in which the 
agent moves left and right uniformly at random. The goal is to estimate the expected total 
discounted reward the agent can obtain given these circumstances.
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First-visit Monte-Carlo: Improving estimates after each episode
Alright! The goal is to estimate the value of a policy, that is to learn how much total reward 
to expect from a policy, or more proper, the goal is to estimate the state-value function vπ(s)
of a policy π. The most straightforward approach that comes to mind I already mentioned; 
it's just to run several episodes with this policy collecting hundreds of trajectories, and then 
calculate averages for every state, just as we did in the bandit environments. This method of 
estimating value functions is called Monte-Carlo prediction (MC).

MC is easy to implement. The agent will first interact with the environment using policy π
until the agent hits a terminal state ST. The collection of state St, action At, reward Rt+1, and 
next state St+1, is called an experience tuple. A sequence of experiences is called a trajectory. 
The first thing you need to do is have your agent generate a trajectory.

Once you have a trajectory, you calculate the returns Gt:T for every state St encountered. For 
instance, for state St, you go from time step t forward adding up and discounting the rewards 
received along the way: Rt+1, Rt+2, Rt+3,..., RT, until the end of the trajectory at time step T. 
Then, you repeat that process for state St+1 adding up the discounted reward from time 
step t+1 until you again reach T. Then for St+2, and so on for all states except ST, which by 
definition has a value of 0. Gt:T will end up using the rewards from time step t+1, up to the 
end of the episode at time step T. We discount those rewards with an exponentially decaying 
discount factor: γ0, γ1, γ2,..., γT-1. That just means multiplying the corresponding discount 
factor γ by the reward R, then adding up the products along the way.

After generating a trajectory and calculating the returns for all states St, you can estimate 
the state-value function vπ(s) at the end of every episode e and final time step T by merely 
averaging the returns obtained from each state s. In other words, we are estimating an 
expectation with an average. As simple as that.
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7Learning to estimate the value of policies

shoW Me the MAth

Monte-Carlo learning
(1) WARNING: I'm heavily abusing notation to make sure you get the whole picture. In specific, 
you need to notice when each thing is calculated. For instance, when you see a subscript t:T, 
that just means it is derived from time step t until the final time step, T. When you see T, that 
means it is computed at the end of the episode at time step T.

(2) As a reminder, the action-value 
function is the expectation of returns. 
This is a definition good to remember.
(3) And the returns are the total 
discounted reward.

(11) On this one, we just replace the mean for a learning 
value that can be time dependent, or constant.

(4) So, in MC, the first thing we do is sample the policy for a trajectory.
(5) Given that trajectory, 
we can calculate the return 
for all states encountered.

(6) Then, add up the per-state returns.
(7) And, increment a count (more on this later.)

(8) We can simply estimate the expectation using the 
empirical mean. So, the estimated state-value function 
for a state is just the mean return for that state.

(9) As the counts approach infinity,  
the estimate will approach the true value

(10) But, notice that means can be calculated incrementally. So, there is no need to keep 
track of the sum of returns for all states. This equation is equivalent, just more efficient.

(12) Notice that V is calculated only at the end of 
an episode, time step T, because G depends on it.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

132



8 Chapter 5 I evaluating agents' behaviors

Every-visit Monte-Carlo: A different way of handling state visits
You probably notice that in practice, there are two different ways of implementing an 
averaging-of-returns algorithm. This is because a single trajectory may contain multiple 
visits to the same state. So, in this case, should we calculate the returns following each of 
those visits independently and then include all of those targets in the averages, or should we 
only use the first visit to each state?

Both are valid approaches, and they have very similar theoretical properties. The more 
"standard" version is First-visit MC (FVMC), and its convergence properties are easy to 
justify because each trajectory is an independent and identically distributed (IID) sample 
of vπ(s), so as we collect infinite samples, the estimates will converge to their true values. 
Every-visit MC (EVMC) is slightly different because returns are no longer IID when states 
are visited multiple times in the same trajectory. But, fortunately for us, EVMC has also been 
proved to converge given infinite samples.

BoiL it DoWn

First- vs. Every-visit MC

MC prediction estimates vπ(s) as the average of returns of π. FVMC uses only one return per 
state per episode: the return following a first visit. EVMC averages the returns following all 
visits to a state, even if in the same episode.

0001 A Bit of histoRy

First-visit Monte-Carlo prediction

You have probably heard the term "Monte-Carlo simulations" or "runs" before. Monte-Carlo 
methods, in general, have been around since the 1940s and are a broad class of algorithms 
that use random sampling for estimation. They are ancient and widespread. However, it was 
in 1996 that first- and every-visit MC methods were identified in the paper "Reinforcement 
Learning with Replacing Eligibility Traces" by Satinder Singh and Richard Sutton.

Satinder Singh and Richard Sutton both obtained a Ph.D. in Computer Science from the 
University of Massachusetts Amherst, were advised by Professor Andy Barto, became 
prominent figures in RL due to there many foundational contributions, and are now 
Distinguish Research Scientists at Google DeepMind. Rich got his Ph.D. in 1984 and is a 
professor at the University of Alberta, while Satinder got his Ph.D. in 1994 and is a professor 
at the University of Michigan.
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9Learning to estimate the value of policies

i speAk python

Exponentially Decaying Schedule

def decay_schedule(init_value, min_value,
                   decay_ratio, max_steps, 
                   log_start=-2, log_base=10):
    decay_steps = int(max_steps * decay_ratio)
    rem_steps = max_steps - decay_steps

    values = np.logspace(log_start, 0, decay_steps, 
                         base=log_base, endpoint=True)[::-1]
    values = (values - values.min()) / \
                                (values.max() - values.min())
    values = (init_value - min_value) * values + min_value
    values = np.pad(values, (0, rem_steps), 'edge')
    return values

(1) This function allows 
you to calculate all the 
values for alpha for the 
full training process.

(2) First calculate the number of steps to decay the values using the 'decay_ratio' variable.
(3) Then, calculate the actual values as an inverse log curve. Notice we then normalize between 0 
and 1, and finally transform the points to lay between 'init_value' and 'min_value'.

i speAk python

Generate full trajectories

def generate_trajectory(pi, env, max_steps=20):

    done, trajectory = False, []
    while not done:
        state = env.reset()
        for t in count():
            action = pi(state) 
            next_state, reward, done, _ = env.step(action)
            experience = (state, action, reward, 
                          next_state, done)
            trajectory.append(experience)
            if done:
                break
            if t >= max_steps - 1:
                trajectory = []
                break
            state = next_state
    return np.array(trajectory, np.object)

(1) This is a straightforward function. All 
is doing is running a policy and extracting 
the collection of experience tuples (the 
trajectories) for offline processing.

(2) This here is allowing you to pass a 
maximum number of steps so that you 
can truncate long trajectories if desired.
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10 Chapter 5 I evaluating agents' behaviors

i speAk python

Monte-Carlo Prediction 1/2

def mc_prediction(pi, 
                  env, 
                  gamma=1.0,
                  init_alpha=0.5,
                  min_alpha=0.01,
                  alpha_decay_ratio=0.3,
                  n_episodes=500, 
                  max_steps=100,
                  first_visit=True):

    nS = env.observation_space.n
    discounts = np.logspace(
          0, max_steps, num=max_steps,
          base=gamma, endpoint=False)
    alphas = decay_schedule(
          init_alpha, min_alpha, 
          alpha_decay_ratio, n_episodes)

    V = np.zeros(nS)
    V_track = np.zeros((n_episodes, nS))

    for e in tqdm(range(n_episodes), leave=False):

        trajectory = generate_trajectory(
                pi, env, max_steps)

        visited = np.zeros(nS, dtype=np.bool)
        for t, (state, _, reward, _, _) in enumerate(
                                                   trajectory):

(1) The 'mc_prediction' function 
works for both, first- and every-
visit MC. The hyperparameters 
you see here are standard. 
Remember, the discount 
factor, gamma, depends on the 
environment.

(2) For the learning rate, alpha, I'm using a decaying value from 'init_alpha' of 0.5 down to 'min_
alpha' of 0.01, decaying within the first 30% ('alpha_decay_ratio' of 0.3) of the 500 total 
episodes 'max_episodes'. We already discussed 'max_steps' on the previous function, I'm just 
passing the argument around. And 'first_visit' toggles between F and EVMC.

(3) This is cool. I'm calculating all 
possible discounts at once. This 
'logspace' function for a 'gamma' 
of 0.99 and a 'max_step' of 100 
returns a 100 number vector: [1, 
0.99, 0.9801,..., 0.3697].

(5) Here we are initializing variables we will use inside the main loop: The current estimate of the 
state-value function V, and a per-episode copy of V for offline analysis.

(6) We loop for every episode... Note that we are using 'tqdm' here. This package prints a 
progress bar and it is useful for impatient people like me...  
You may not need it (unless you are also impatient.)

(4) And in here I'm calculating all 
of the alphas!

(7) Generate a full 
trajectory.

(8) Initialize a visits check bool vector.

(9) This last line is repeated on next page for your convenience.
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11Learning to estimate the value of policies

ŘŁ With An RL Accent

Incremental vs. Sequential vs. Trial-and-error

Incremental learning: Refers to the iterative improvement of the estimates. Dynamic 
programming is incremental learning: these algorithms iteratively compute the answers. 
They don't "interact" with an environment, but they reach the answers through successive 
iterations, incrementally. Bandits are also incremental, they reach good approximations 
through successive episodes or trials. Reinforcement learning is incremental, as well. 
Depending on the specific algorithm, estimates are improved on an either per-episode or 
per-time-step basis.

Sequential learning: Refers to learning in an environment with more than one non-
terminal (and reachable) state. Dynamic programming does sequential learning. Bandits are 
not sequential, they are one-state one-step MDPs. There is no long-term consequence for 
the agent's actions. Reinforcement learning is certainly sequential.

Trial-and-error learning: Refers to learning from interaction with the environment. 
Dynamic programming is not trial-and-error learning. Bandits are trial-and-error learning. 
Reinforcement learning is trial-and-error learning, too.

i speAk python

Monte-Carlo Prediction 2/2

        for t, (state, _, reward, _, _) in enumerate(
                                                   trajectory):

            if visited[state] and first_visit:
                continue
            visited[state] = True

            n_steps = len(trajectory[t:])
            G = np.sum(discounts[:n_steps] * trajectory[t:, 2])
            V[state] = V[state] + alphas[e] * (G - V[state])

        V_track[e] = V
    return V.copy(), V_track

(10) This first line is repeated on the previous page for your convenience.

(11) We now loop through all experiences in the trajectory.
(12) Check if the state has already been visited on this trajectory, and doing FVMC.

(13) And if so, we go 
process the next state.

(17) Finally estimate the value function.
(18) Keep track of the episode's V.
(19) And return V, and the tracking when done.

(14) If this is the first visit or we are doing EVMC, we process the current state.
(15) First, calculate the number of steps from t to T.
(16) Then, 
calculate 
the return.
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12 Chapter 5 I evaluating agents' behaviors

Temporal-Difference Learning: Improving estimates  
after each step
One of the main drawbacks of MC is the fact the agent has to wait until the end of an 
episode when it can obtain the actual return Gt:T before it can update the state-value 
function estimate VT(St). On the one hand, MC has pretty solid convergence properties 
because it updates the value-function estimate VT(St) towards the actual return Gt:T, which is 
an unbiased estimate of the true state-value function vπ(s).

However, while the actual returns are pretty accurate estimates, they are also not very 
precise. Actual returns are also high variance estimates of the true state-value function vπ(s). 
It is easy to see why: actual returns accumulate lots of random events in the same trajectory; 
all actions, all next states, all rewards are random events. The actual return Gt:T collects and 
compounds all of that randomness for multiple time steps, from t to T. Again, the actual 
return Gt:T is unbiased, but high variance.

Also, due to the high variance of the actual returns Gt:T, MC can be very sample inefficient. 
All of that randomness becomes noise that can only be alleviated with data, lots of data, lots 
of trajectories, and actual returns samples. One way to diminish the issues of high variance 
is to, instead of using the actual return Gt:T, estimate a return. Stop for a second and think 
about before proceeding: Your agent is already calculating the state-value function estimate 
V(s) of the true state-value function vπ(s), how can you use those estimates to estimate a 
return? Even if just partially estimated. Think!

Yes! You can use a single-step reward Rt+1, and once you observe the next state St+1, you can 
use the state-value function estimates V(St+1) as an estimate of the return at the next step 
Gt+1:T. This is the relationship in the equations that Temporal-Difference (TD) methods 
exploit. These methods, unlike MC, can learn from incomplete episodes by using the one-
step actual return, which is obviously just the immediate reward Rt+1, but then an estimate of 
the return from the next state onwards, which is simply the state-value function estimate of 
the next state V(St+1). That is, Rt+1 + γV(St+1), which is called the TD target.

BoiL it DoWn

Temporal-Difference learning and bootstrapping

TD methods estimate vπ(s) using an estimate of vπ(s), it "bootstraps," it makes a guess from a 
guess, it uses an estimated return instead of the actual return. More concretely, it uses Rt+1 + 
γVt(St+1) to calculate and estimate of Vt+1(St).

Because it also uses a one step of the actual return Rt+1, things work out fine. That reward 
signal Rt+1 progressively "injects reality" into the estimates. 
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13Learning to estimate the value of policies

shoW Me the MAth

Temporal-Difference learning equations

(1) We again start from the definition of the 
state-value function.
(2) And the definition of the return.

(3) From the return, we can rewrite the equation by grouping up some terms. Check it out.

(4) Now, the same return has a recursive style.

(5) We can use this new definition to also rewrite the state-value function definition equation.

(6) And because the 
expectation of the 
returns from the next 
state is simply the 
state-value function of 
the next state, we get.

(7) This means we could estimate the 
state-value function on every time step.
(8) We roll out a single interaction step.

(10) The key difference to realize is we are now 
estimating vπ(st) with an estimate of vπ(st+1). We 
are using an estimated, not an actual return.

(9) And can obtain an estimate V(s) of 
the true state-value function vπ(s) a 
different way than with MC.

(11) A big win is we can now make updates to the 
state-value function estimates V(s) every time step.
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i speAk python

The Temporal-Difference learning algorithm

def td(pi, 
       env, 
       gamma=1.0,
       init_alpha=0.5,
       min_alpha=0.01,
       alpha_decay_ratio=0.3,
       n_episodes=500):

    nS = env.observation_space.n
    V = np.zeros(nS)
    V_track = np.zeros((n_episodes, nS))
    alphas = decay_schedule(
          init_alpha, min_alpha, 
          alpha_decay_ratio, n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

        state, done = env.reset(), False
        while not done:

            action = pi(state)

            next_state, reward, done, _ = env.step(action)

            td_target = reward + gamma * V[next_state] * \
                                                     (not done)

            td_error = td_target - V[state]
            V[state] = V[state] + alphas[e] * td_error

            state = next_state

        V_track[e] = V
    return V, V_track

(1) 'td' is a prediction method. It takes in a 
policy 'pi', an environment 'env' to interact with, 
and the discount factor 'gamma'.
(2) The learning method has a configurable 
hyperparameter 'alpha', which is the learning 
rate.

(3) One of the many ways of handling the learning rate is to exponentially decay it. The initial 
value is 'init_alpha', 'min_alpha' the minimum value, and 'alpha_decay_ratio' is the fraction of 
episodes that will take to decay alpha from 'init_alpha' to 'min_alpha'. 

(4) We initialize the variables needed.

(6) And loop for 'n_episodes'...

(5) And calculate the 
learning rate schedule 
for all episodes.

(7) We get the initial state and then enter the interaction loop.

(8) First thing is to sample the policy 'pi' 
for the action to take in state 'state'.

(9) We then use the action to interact with the environment... We roll out the policy one step.

(10) And can immediately calculate a target to update the state-value function estimates.

(11) And with the target, an error. (12) Finally 
update V(s).

(13) Don't forget to update the 
'state' variable for next iteration. 
Bugs like this can be hard to find!

(14) And return the V function and the tracking variable.
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15Learning to estimate the value of policies

Now, to be clear, the TD target is a biased estimate of the true state-value function vπ(s), 
because we use an estimate of the state-value function to calculate an estimate of the state-
value function. Yeah, weird, I know. This way of updating an estimate with an estimate 
is referred to as bootstrapping, and it is very much like what the Dynamic Programming 
methods we learned about in chapter 3 do. The thing is, though, DP methods bootstrap 
on the one-step expectation while TD methods bootstrap on a sample of the one-step 
expectation. That sample word there makes a whole lot of a difference.

In the good side, while the new estimated return, the TD target, is a biased estimate of the 
true state-value function vπ(s), it also has a much lower variance than the actual return Gt:T
we use in  Monte-Carlo updates. This is because the TD target depends only on a single 
action, a single transition, and a single reward, so there is much less randomness being 
accumulated. As a consequence, TD methods usually learn much faster than MC methods.

0001 A Bit of histoRy

Temporal-Difference learning

In 1988, Richard Sutton released a paper titled "Learning to Predict by the Methods 
of Temporal Differences" in which he introduced the TD learning method. The RW 
environment we are using in this chapter was also first presented in this paper. The critical 
contribution of this paper was the realization that while methods such as MC calculate 
errors using the differences between predicted and actual returns, TD was able to use the 
difference between temporally successive predictions. Thus the name Temporal-Difference 
learning.

TD learning is the precursor of methods such as SARSA, Q-Learning, Double Q-Learning, 
DQN, DDQN, and more. We'll learn about these methods in this book.

ŘŁ With An RL Accent

True vs. Actual vs. Estimated

True value function: Refers to the exact and perfectly accurate value function, as if given 
by an oracle. The true value function is the value function agents estimate through samples. 
If we had the true value function, we could easily estimate returns.

Actual return: Refers to the experienced return, as opposed to an estimated return. Agents 
can only experience actual returns, but they can use value function to estimate returns.

Estimated value function or estimated return: Refers to the rough calculation of the true 
value function or actual return. "Estimated" means an approximation, a guess. True value 
functions let you estimate returns, estimated value functions add bias to those estimates.
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it's in the DetAiLs

FVMC, EVMC, and TD on the RW environment

I ran these 3 policy evaluation algorithms on the RW environment, all methods evaluated 
an all-left policy. Now, remember, the dynamics of the environment make it such that any 
action, left or right, has a uniform probability of transition (50% left and 50% right). So, in 
this case, the policy being evaluated is irrelevant.

I used the same schedule for the learning rate, alpha, in all algorithms: alpha starts at 
0.5, and it decreases 
exponentially to 0.01 in 250 
episodes out of the 500 total 
episodes, that's a 50% of the 
total number of episodes. 
This hyperparameter is 
essential. Often, alpha is a 
positive constant less than 
1. Having a constant alpha 
helps with learning in non-
stationary environments.

However, I chose to decay 
alpha to show convergence. 
The way I'm decaying alpha helps the algorithms get close to converging, but because 
I'm not decreasing alpha all the way to zero, they don't fully converge. Other than that, 
these results will should help you gain some intuition about the differences between these 
methods.
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tALLy it up

MC and TD both nearly converge to the true state-value function
(1) Here I'll be showing only First-Visit Monte-Carlo prediction (FVMC) and Temporal-Difference 
Learning (TD). If you head to the Notebook for this chapter, you'll also see the results for Every-
Visit Monte-Carlo prediction, and some additional plots that may be of interest to you!

(2) Take a close look at these plots. These are the running state-value function 
estimates V(s) of an all-left policy in the Random Walk environment. As you can 
see in these plots, both algorithms show near-convergence to the true values.
(3) Now, see the difference trends of these algorithms. FVMC running estimates 
are very noisy, they jump back and forth around the true values.

(4) TD running estimates don't jump as much, but they are off center for most of the 
episodes. For instance V(5) is usually higher than vπ(5), while V(1) is usually lower than 
vπ(1). But if you compare those values with FVMC estimates, you notice a different trend.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

142

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_05/chapter-05.ipynb


18 Chapter 5 I evaluating agents' behaviors

tALLy it up

MC estimates are noisy, TD estimates off target

(1) If we get a close-up (log-scale 
plot) these trends, you will see 
what's happening. MC estimates 
jump around the true values. This is 
because of the high variance of the 
MC targets.

(3) TD estimates are off target most 
of the time, but they are less jumpy. 
This is because TD targets are low 
variance, though biased. They use an 
estimated return for target.

(2) A couple of 
pros though; first 
you can see all 
estimates get 
close to their true 
values very early
on. 
Also, the 
estimates jump 
around the true
values.

(4) The bias 
shows, too. In the 
end, TD targets 
give up accuracy in 
order to become 
more precise.
Also, they take 
a bit long before 
estimates ramp 
up, at least in this 
environment.
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tALLy it up

MC targets high variance is evident, TD targets bias, too

(2) These plots are 
showing the targets for 
the initial state in the RW 
environment. MC targets, 
the returns, are either 0 
or 1 because the episode 
terminates either on the 
left, with a 0 return or on 
the right, with a 1 return, 
while the optimal value is 
0.5!

(4) Here you can see the 
range of the TD targets is 
much lower, MC alternates 
exactly between 1 and 
0, TD jumps between 
approximately 0.7 and ~0.3, 
depending on which "next 
state" is sampled. But as 
the Vt(St+1) is an estimate, 
Gt:t+1 is biased, off target, 
inaccurate.

(1) Here we can see the bias/variance 
tradeoff between MC and TD targets. 
Remember, the MC target is the return, 
which accumulates a lot of random noise. 
That means high variance targets.

(3) TD targets are calculated using an estimated 
return. We use the value function to predict how 
much value we will get from the next state onwards. 
This helps us truncate the calculations and get more 
estimates per episode (as you can see on the x axis, we 
have ~1600 estimates in 500 episodes), but because 
we use Vt(St+1), which is an estimate and therefore likely 
wrong, TD targets are biased.
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Learning to estimate from multiple steps
So far, in this chapter, we looked at the two central algorithms for estimating value functions 
of a given policy through interaction. In MC 
methods, we sample the environment all the 
way through the end of the episode before we 
estimate the value function. These methods 
spread the actual return, the discounted total 
reward, on all states. For instance, if the discount 
factor is less than 1 and the return is only 0 or 1, 
as it is the case in the RW environment, the MC 
target will always be either 0 or 1 for every single 
state. The same signal gets pushed back all the 
way to the beginning of the trajectory. This is 
obviously not the case for environments with a 
different discount factor or reward function.

On the other hand, in TD learning, the agent interacts with the environment only once, 
and it estimates the expected return to go to then estimate the target and then the value 
function. TD methods bootstrap, they make a guess from a guess. What that means is that, 
instead of waiting until the end of an episode to get the actual return like MC methods do, 
TD methods use a single-step reward but then an estimate of the expected return-to-go, 
which is the value function of the next state.

But, is there something in between? I mean, that's fine that TD bootstraps after just one 
step, but how about after two steps? Three? Four? How many steps should we wait before we 
estimate the expected return and bootstrap on the value function?

As it turns out, there is a spectrum of algorithms lying in between MC and TD. In this 
section, we will take a look at what's in the middle. You will see that we can tune how much 
bootstrapping our targets depend on in way for trading-off bias and variance.

! MigueL's AnALogy

MC and TD have very distinct personalities

I like to think of MC-style algorithms as type A personality agents and TD-style algorithms 
as type B personality agents. If you look it up you'll see what I mean. Type A people are 
outcome-driven, time-conscious, and business-like, type B are easy-going, reflective, and 
hippie-like. The fact that MC uses actual returns and TD uses predicted returns should make 
you wonder if there is a personality to each of these types target. Think about it for a while, 
I'm sure you'll be able to notice some interesting patterns to help you remember.
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N-step TD Learning: Improving estimates after a couple of steps
The motivation should be clear; we have two extremes, Monte-Carlo methods, and 
Temporal-Difference methods. One can perform better than the other, depending on the 
circumstances. MC is an infinite-step method because it goes all the way until the end of the 
episode.

I know, "infinite" may sound confusing, but recall in chapter 2 we defined a terminal state 
as a state with all actions and all transitions coming from those actions looping back to that 
same state with no reward. This way, you can think of an agent "getting stuck" in this loop 
forever and therefore doing an infinite number of steps without accumulating reward, or 
updating the state-value function.

So, TD, on the other hand, is a one-step method because it interacts with the environment 
for a single step before bootstrapping and updating the state-value function. You can 
generalize these two methods into an n-step method. So, instead of doing a single step, like 
TD, or the full episode like MC, why not use n-steps to calculate value functions and abstract 
n out? This method is called n-step TD, which does an n-step bootstrapping. Interestingly an 
intermediate n value often performs the better than either extreme. You see, you shouldn't 
become an extremist!

shoW Me the MAth

N-step temporal-difference equations

(1) Notice how in n-step TD we must wait n steps before we can update V(s).
(2) Now, n doesn't have to be ∞ like in MC, or 1 like in TD. Here you get to pick. In reality n will be n or 
less if your agent reaches a terminal state. So, it could be less than n, but never more.

(3) Here you see how the value 
function estimate gets updated 
approximately every n steps.

(4) But after that, you can just 
plug-in that target as usual.
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i speAk python

N-step TD 1/2

def ntd(pi, 
        env, 
        gamma=1.0,
        init_alpha=0.5,
        min_alpha=0.01,
        alpha_decay_ratio=0.5,
        n_step=3,
        n_episodes=500):

    nS = env.observation_space.n
    V = np.zeros(nS)
    V_track = np.zeros((n_episodes, nS))

    alphas = decay_schedule(
          init_alpha, min_alpha, 
          alpha_decay_ratio, n_episodes)

    discounts = np.logspace(
         0, n_step+1, num=n_step+1, base=gamma, endpoint=False)

    for e in tqdm(range(n_episodes), leave=False):

        state, done, path = env.reset(), False, []

        while not done or path is not None:
            path = path[1:]

            while not done and len(path) < n_step:

(1) Here is my implementation of the 
n-step TD algorithm. There are many 
ways you can code this up, this is 
just one of them for your reference.

(3) Here we have the 
usual suspects.

(5) Now, here is a hybrid between MC and TD. Notice we calculate the discount 
factors, but instead of going to 'max_steps' like in my MC implementation, we go 
to 'n_step + 1' to include n steps and the bootstrapping estimate.

(6) We get into the episodes loop.

(4) Calculate all alphas in advance.

(7) This 'path' variable will hold the 'n_step'-most-recent experiences. A partial trajectory.

(8) We are going until we hit done and the path is set to none. You'll see soon.

(9) Here, we are "popping" the 
first element of the path.

(10) This line repeats on the next page.

(2) Here we are using the same hyperparameters as before. Notice 'n_step' is a default of 3. 
That is 3 steps and then bootstrap, or less if we hit a terminal state, in which case we don't 
bootstrap (again, the value of a terminal state is zero by definition.)
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i speAk python

N-step TD 2/2

            while not done and len(path) < n_step:
                action = pi(state)
                next_state, reward, done, _ = env.step(action)
                experience = (state, reward, next_state, done)
                path.append(experience)
                state = next_state
                if done:
                    break

            n = len(path)
            est_state = path[0][0]

            rewards = np.array(path)[:,1]

            partial_return = discounts[:n] * rewards

            bs_val = discounts[-1] * V[next_state] * (not done)

            ntd_target = np.sum(np.append(partial_return, 
                                          bs_val))

            ntd_error = ntd_target - V[est_state]

            V[est_state] = V[est_state] + alphas[e] * ntd_error

            if len(path) == 1 and path[0][3]:
                path = None
        V_track[e] = V
    return V, V_track

(11) Same. Just for you to follow the indentation.

(12) This is the 
interaction block, 
we are basically 
collecting experiences 
until we hit done or 
the length of the path 
is equal to 'n_step'.

(13) 'n' here could be 'n_step' but it 
could also be a smaller number if a 
terminal state is in the 'path'.

(14) Here we are extracting the state 
we are estimating, which is not 'state'.

(15) 'rewards' is a vector of all rewards encountered from the 'est_state' until 'n'.

(16) 'partial_return' is a vector of discounted rewards from 'est_state' to 'n'.

(17) 'bs_val' is the bootstrapping value. Notice that in this case 'next state' is correct.

(18) 'ntd_target' is the sum of the partial return and  bootstrapping value.

(19) This is just the error, like we've been calculating all along.

(20) The update to the state-value function.

(21) Here we set 'path' to 'None' to break out of the episode loop, if 'path' has only one 
experience and the 'done' flag of that experience is 'True' (only a terminal state in 'path'.)

(22) We return V and V_track as usual.
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Forward-view TD(λ): Improving estimates of all visited states
But, a question emerges: what is a good n value, then? When should you use a one-step, 
two-step, three-step or anything else? I already gave some practical advice that values of 
n higher than one are usually better, but we shouldn't either go all the way out to actual 
returns. Bootstrapping helps, but its bias is a challenge.

So, how about using a weighted combination of all n-step targets as a single target? I mean, 
our agent could go out and calculate the n-step targets corresponding to the one-, two-, 
three-,..., infinite-step target, then mix all of these targets with an exponentially decaying 
factor. Gotta have it!

This is what a method called Forward-view TD(λ) does. Forward-view TD(λ) is a 
prediction method that combines multiple n-steps into a single update. In this particular 
version, the agent will have to wait until the end of an episode before it can update the state-
value function estimates. However, another method, called, Backward-view TD(λ), can split 
the corresponding updates into partial updates and apply those partial updates to the state-
value function estimates on every step. Like leaving a trail of TD updates along a trajectory. 
Pretty cool, right? Let's take a deeper look.
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shoW Me the MAth

Forward-view TD(λ)

(1) Sure, this is a loaded equation, but we will unpack it below. The 
bottom line is that we are using all n-step returns until the final 
step T, and weighting it with an exponentially decaying value.

(2) The thing is, because 
T is variable, we need to 
weight the actual return 
with a normalizing value 
so that all weights add up 
to 1.

(3) All this equation is saying is that 
we will calculate the one-step return 
and weight it with the following factor.

(4) And also the two-step return and weight it with this factor.

(5) Then the same for the three-step return, and this factor.

(6) You do this for all n-steps...

(7) Until your agent reaches a terminal state. Then you weight by this normalizing factor.

(8) Notice the issue with this approach is that you must sample 
an entire trajectory before you can calculate these values.

(9) Here you have it, V will 
become available at time T.

(10) Because of this.
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TD(λ): Improving estimates of all visited states after each step
MC methods are under "the curse of the time step" because they can only apply updates to 
the state-value function estimates after reaching a terminal state. With n-step bootstrapping, 
you are still under "the curse of the time step" because you still have to wait until n
interactions with the environment have passed before you can make an update to the 
state-value function estimates. You are basically playing catch-up with an n-step delay. For 
instance, in a five-step bootstrapping method, you will have to wait until you've seen five 
(or less when reaching a terminal state) states, and five rewards before you can make any 
calculations, a little bit like MC methods. 

With Forward-view TD(λ), we are back at MC in terms of the time step; The Forward-view 
TD(λ) must also wait until the end of an episode before it can apply the corresponding 
update to the state-value function estimates. But at least we gain something: we can get 
lower-variance targets if we are willing to give up unbiasedness.

In addition to generalizing and unifying MC and TD methods, Backward-view TD(λ), or 
just TD(λ) for short, can still tune the bias/variance tradeoff in addition to the ability to 
apply updates on every time step, just like TD.

The mechanism that provides TD(λ) this advantage is known as eligibility traces. An 
eligibility trace is a memory vector that keeps track of recently visited states. The basic idea 
is to track the states that are eligible for an update on every step. We keep track, not only 
whether a state is eligible or not, but also by how much, so that the corresponding update is 
applied correctly to eligible states.
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For example, all eligibility traces are initialized to zero, and when you encounter a state, 
you add a one to its trace. Each time step, you calculate an update to the value function 
for all states and multiply it by the eligibility trace vector. This way, only eligible states will 
get updated. After the update, the eligibility trace vector is decayed by the λ (weight mix-
in factor) and γ (discount factor), so that future reinforcing events have less impact on 
earlier states. By doing this, the most recent states get more significant credit for a reward 
encountered in a recent transition than those states visited earlier in the episode. Of course, 
given that λ is not set to one; otherwise, this is just very similar to a MC update which gives 
equal credit (assuming no discounting) to all states visited during the episode.

A final thing I wanted to reiterate is that TD(λ) when λ=0 is equivalent to the TD method 
we learned about before. For this reason, TD is often referred to as TD(0). On the other 
hand, TD(λ), when λ=1 is equivalent to MC, well kind of. In reality, it is equal to MC 
assuming offline updates. That means, assuming the updates are accumulated and applied 
at the end of the episode. With online updates, the estimated state-value function changes 
likely every step, and therefore the bootstrapping estimates vary, changing, in turn, the 
progression of estimates. Still, TD(1) is commonly assumed equal to MC. Moreover, a recent 
method, called True Online TD(λ), is a different implementation of TD(λ) that achieves 
perfect equivalence of TD(0) with TD and TD(1) with MC.

shoW Me the MAth

Backward-view TD(λ) — TD(λ) with eligibility traces, "the" TD(λ)

(1) Every new episode we set the eligibility vector to 0.
(2) Then, we interact with the environment one cycle.
(3) When you encounter a state St, make it eligible for 
an update... Technically, you increment its eligibility by 1.
(4) We then simply calculate the TD error just as we 
have been doing so far.

(5) However, unlike before, we update the 
estimated state-value function V, that 
is, the entire function at once, every time 
step! Notice I'm not using a Vt(St), but a 
Vt instead. Because we are multiplying by 
the eligibility vector, all eligible states will 
get the corresponding credit. (6) Finally, we decay the eligibility.
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i speAk python

The TD(λ) algorithm, a.k.a. Forward-view TD(λ)

def td_lambda(pi, 
              env, 
              gamma=1.0,
              init_alpha=0.5,
              min_alpha=0.01,
              alpha_decay_ratio=0.3,
              lambda_=0.3,
              n_episodes=500):

    nS = env.observation_space.n
    V = np.zeros(nS)
    V_track = np.zeros((n_episodes, nS))
    E = np.zeros(nS)
    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, n_episodes)

    for e in tqdm(range(n_episodes), leave=False):
        E.fill(0)

        state, done = env.reset(), False

        while not done:
            action = pi(state)
            next_state, reward, done, _ = env.step(action)

            td_target = reward + gamma * V[next_state] * \
                                                     (not done)
            td_error = td_target - V[state]

            E[state] = E[state] + 1
            V = V + alphas[e] * td_error * E
            E = gamma * lambda_ * E

            state = next_state
        V_track[e] = V
    return V, V_track

(1) The method 'td_lambda' has 
a very similar signature to all 
other methods. The only new 
hyperparameter is 'lambda_' (the 
underscore is just because 'lambda' 
is a restricted keyword in Python.

(2) Set the usual suspects.

(3) Add a new guy: the eligibility trace vector.

(5) Here we enter the episode loop.

(6) Set E to zero every new episode.

(4) Calculate 
alpha for all 
episodes.

(7) Set initial variables.

(8) Get into the time step loop.

(9) We first interact with the environment for one step and get the experience tuple.
(10) Then, we use that experience to calculate the TD error, just as usual.

(11) We increment the 
eligibility of 'state' by 1.
(12) And apply the error 
update to all eligible 
states as indicated by E.
(13) We decay E.
(14) And continue our 
lives as usual.
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tALLy it up

Running estimates that n-step TD and TD(λ) produce in the RW environment

(1) I think the most 
interesting part of the 
differences and similarities 
of MC, TD, n-step TD and 
TD(lambda) can be visualized 
side-by-side. For this, I highly 
recommend you head to the 
book repository and checkout 
the corresponding Notebook 
for this chapter. You'll find 
much more than what I've 
shown you in the text.
(2) But for now I can highlight 
that n-step TD curves are a 
bit more like MC: noisy and 
centered, while TD(lambda) is 
a bit more like TD: smooth and 
off-target.
(3) When we look at the log-
scale plots, we can see how 
the high variance estimates 
of n-step TD [at least higher 
than TD(lambda) in this 
experiment], and how the 
running estimates move above 
and below the true values, 
though they are centered.
(4) TD(lambda) values are not 
centered, but are also much 
smoother than MC. These two 
are interesting properties. Go 
compare them with the rest 
of the methods you've learned 
about so far!
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concRete exAMpLe

Evaluating the optimal policy of the Russell and Norvig's Grid-world environment

Lets run all algorithms in a slightly different environment. The environment is one you've 
probably come across multiple times in the past. It is from Russell and Norvig's book on AI.

This environment which, I will call Russell and Norvig's Grid-world (RNG), is a 3x4 grid world 
in which the agent starts at the bottom-left corner and it has to reach the top-right corner. 
There is a hole, similar to the Frozen Lake environment, south of the goal, and a wall near 
the start. The transition function has a 20% noise, that is 80% the action succeeds, and 20% 
it fails uniformly at random in orthogonal directions. The reward function is a -0.04 living 
penalty, a +1 for landing on the goal, and a -1 for landing on the hole.

Now, what we are doing here is evaluating a policy. I happen to obtain the optimal policy in 
chapter 3's Notebook, I just didn't have space in that chapter to talk about it. In fact, make 
sure you check all the Notebooks provided with the book.
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tALLy it up

FVMC, TD, n-step TD and TD(λ) in the RNG environment

(1) I ran the same exact 
hyperparameter as before 
except for 1000 episodes 
instead of the 500 
for the RW. The results 
shown on the right are the 
running estimates of the 
state-value function for 5 
randomly selected states 
(randomly, but with the 
same seed for each plot for 
easy comparison – also not 
really 100% random. I first 
filter estimated values 
lower than a threshold, 
0.1) out of the total 12 
states. I did this so that 
you can better appreciate 
meaningful trends of a 
handful states.

(2) As you can see, all 4 
algorithms (5 if you head 
to the Notebook!) find 
a pretty good estimate 
of the true state-value 
function. If you look closely, 
you can see that TD and 
TD(lambda) show the two 
smoothest curves. MC, on 
the other hand, followed by 
n-step TD show the most 
centered trends.
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tALLy it up

RNG shows a bit better the bias and variance effects on estimates

(1) Alright, so I figure I 
probably need to "zoom in" 
and show you the front of 
the curves. These plots are 
not log scale like the other 
ones I have shown in the 
past. These one are a slice 
on the first 50 episodes. 
Also, I'm showing only the 
values greater than 0.1, 
but as you can see, that 
includes most states. Value 
functions of states 3, 5, 
and 7 are 0, and 10 and 11 
are far from being ran by 
the optimal policy because 
the action in the state 9 
and 6 points left and up 
respectively, which is away 
from state 10 and 11.

(2) Look at the trends this 
time around. They are easier 
to spot. For instance, MC 
is jagged, showing those up 
and down trends. TD on the 
other hand is smooth, but 
slow. n-step TD is somewhat 
in between, and TD(lambda), 
interestingly shows the 
smoothness of TD, which 
you can probably easily 
appreciate, but also it is not 
as slow. For instance look 
at the curve of V(6), it first 
crosses the 0.4 line around 
25 episodes, TD all the way 
at 45.
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tALLy it up

FVMC and TD targets of the RNG's initial state

(1) These final plots are the sequence of target values of the initial state. As you might expect, 
the MC targets are independent of the sequence number, because they are actual returns and 
do not bootstrap on the state-value function.

(3) TD targets are a bit more dependent on the sequence. Notice that early on, the targets are 
very off and somewhat noisy. However, as the targets add up they become much more stable.

(2) You can 
probably 
also notice 
they are high 
variance. 
These ones 
are mostly 
concentrated 
on top, but 
have a handful 
down here.

(4) You may 
notice 3 lines 
start to form. 
Remember, 
these are 
targets for 
the initial 
state, state 
8. If you look 
at the policy, 
you will notice 
that going up 
in state 8 can 
only have 3 
transitions... (5) ... with 80% the agents lands on state 4 (up), 10% is bounces back to 8 

(left), and 10% lands on state 9 (right). Can you think which line on the plot 
above corresponds to which "next state". Why?! Run experiments!
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Summary
Learning from sequential feedback is challenging; you learned lots about it in chapter 3. You 
created agents that balance immediate and long-term goals. Methods such as Value Iteration 
(VI) and Policy Iteration (PI) are central to RL. Learning from evaluative feedback is also 
very difficult. Chapter 4 was all about a particular type of environment in which agents must 
learn to balance the gathering and utilization of information. Strategies such as Epsilon-
Greedy, SoftMax, Optimistic Initialization, to name a few, are also at the core of RL.

And I want you to stop for a second and think about these two tradeoff one more time 
as separate problems. I've seen over-500-pages textbooks dedicated to each of these 
tradeoffs. So, while you should be happy we only put 30 pages on each, you should also be 
wondering. If you are looking to develop new DRL algorithms, to push the state-of-the-art, 
I recommend you study these two tradeoffs independently. Search for books on "planning 
algorithms" and "bandit algorithms," and put time and effort understanding each of those 
fields. You'll feel leaps ahead when you come back to RL and see all the connections. Now, 
if your goal is simply to understand DRL, to implement a couple of methods, to use them in 
your own projects, what's in here will do.

In this chapter, you learned about agents that can deal with feedback that is simultaneously 
sequential and evaluative. And as mentioned before, this is no small feat! To simultaneously 
balance immediate and long-term goals and the gathering and utilization of information 
is something even most humans have problems with! Sure, in this chapter, we restricted 
ourselves to the prediction problem, which consists of estimating values of agents' behaviors. 
For this, we introduced methods such as Monte-Carlo prediction and Temporal-Difference 
learning. Those two methods are the extremes in a spectrum that can be generalized with 
the n-step TD agent. By merely changing the step size, you can get virtually any agent in 
between. But then we learned about TD(λ) and how this a single agent can combine the two 
extremes and everything in between in a very innovative way.

Next chapter, we will look at the control problem, which is nothing but improving agents' 
behaviors. Just as we split the policy iteration algorithm into policy evaluation and policy 
improvement, splitting the reinforcement learning problem into the prediction problem and 
the control problem allows us to dig into the details and get better methods.

By now you:

• Understand that the challenge of reinforcement learning is because agents cannot see
the underlying MDP governing their evolving environments.

• Learned how these two challenges combine and give rise to the field of RL.
• Know about many ways of calculating targets for estimating state-value functions.
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improving
agents' behaviors 6

In this chapter

• You learn about improving policies when learning 
from feedback that is simultaneously sequential and 
evaluative.

• You develop algorithms for finding optimal policies 
in reinforcement learning environments when the 
transition and reward functions are unknown.

• You write code of agents that can go from random 
to optimal behavior using only their experiences 
and decision-making, and apply them to a variety of 
environments.

When it is obvious that the goals cannot be 
reached, don't adjust the goals, adjust the 
action steps. 

— Confucius 
Chinese teacher, editor, politician, and philosopher 

of the Spring and Autumn period of Chinese history
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Up until this chapter, you have studied in isolation and interplay learning from two of the 
three different types of feedback a reinforcement learning agent must deal with: sequential, 
evaluative, and sampled. In chapter 2, you learned to represent sequential decision-making 
problems using a mathematical framework known as Markov Decision Processes. In chapter 
3, you learned how to solve these problems with algorithms that extract policies from these 
MDPs. In chapter 4, you learned to solve simple control problems that are multi-option 
single-choice decision-making problems, called Multi-armed Bandits, when the MDP 
representation is not available to the agent. Finally, in chapter 5, we mixed these two types of 
control problems, that is, we dealt with control problems that are sequential and uncertain, 
but we only learned to estimate value functions. We solved what is called the Prediction 
Problem, which is basically learning to evaluate policies, learning to predict returns.

In this chapter, we will introduce agents that solve the Control Problem, which we get 
simply by changing two things. First, instead of estimating state-value functions, V(s), we 
estimate action-value functions, Q(s, a). The main reason for this is that Q-functions, unlike 
V-functions, let us see the value of actions without having to use an MDP. Second, after we 
obtain these Q-value estimates, we use them to improve the policies. This is very similar 
to what we did in the policy iteration algorithm: we evaluate, we improve, then evaluate 
the improved policy, then improve on this improved policy, and so on. As I mentioned in 
chapter 2, this pattern is called Generalized Policy Iteration (GPI), and it can help us create 
an architecture that virtually any reinforcement learning algorithm, including state-of-the-
art deep reinforcement learning agents, fits under.

The outline for this chapter is as follows: first, I'll expand on the generalize policy iteration 
architecture, and then you learn about many different types of agents that solve the 
control problem. You'll learn about the control version of the Monte-Carlo prediction and 
Temporal-difference learning agents. You also learn about slightly different kinds of agents 
that decouple learning from behavior. What this all means in practical terms is that in this 
chapter, you develop agents that learn to solve tasks by trial-and-error learning. These 
agents learn optimal policies solely through their interaction with the environment.

The anatomy of reinforcement learning agents
In this section, I'd like to give you a mental model that most, if not all, reinforcement 
learning agents fit under. First, every reinforcement learning agent gathers experience 
samples, either from interacting with the environment or from querying a learned model 
of an environment. Still, data is generated as the agents learn. Second, every reinforcement 
learning agent learns to estimate something, perhaps a model of the environment, or possibly 
a policy, a value function, or just the returns. Third, every reinforcement learning agent 
attempts to improve a policy, that's the whole point of RL, after all.
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3The anatomy of reinforcement learning agents

F5 RefResh My MeMoRy

Rewards, returns, and value functions

Now it's a good time to refresh your memory. You need to remember the difference 
between rewards, returns, and value functions, so that this chapter makes sense to you and 
you are able to develop agents that learn optimal policies through trial-and-error learning. 
So, allow me to repeat myself:

A reward is a numeric signal indicating the 
goodness of a transition. Your agent observes 
state St, takes action At, then the environment 
changes and gives a reward Rt+1, and emits a new state St+1. Rewards are that single numeric 
signal indicating the goodness of the transition occurring on every time step of an episode.

A return is the summation of all the rewards 
received during an episode. Your agent 
receives reward Rt+1, then Rt+2, and so on 
until it gets the final reward RT right before 
landing in the terminal state ST. Returns are 
the sum of all those rewards during an episode. Returns are often defined as the discounted 
sum, instead of just a sum. A discounted sum puts a priority on rewards found early in an 
episode (depending on the discount factor, of course.) Technically speaking, a discounted 
sum is a more general definition of the return, since a discount factor of one makes it a plain 
sum.

A value function is 
the expected return. 
Expectations are 
calculated as the sum 
of all possible values, 
each multiplied by 
the probability of its 
occurrence. Think of 
expectations as the 
average of an infinite 
number of samples; the 
expectation of returns is 
like sampling an infinite 
number of returns and 
averaging them. When you calculate a return starting after selecting an action, then the 
expectation is the action-value function of that state-action pair, Q(s, a). If you disregard the 
action taken and just count from the state s, that becomes the state-value function V(s).
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Most agents gather experience samples
One of the unique characteristics of RL is that agents learn by trial-and-error. The agent 
interacts with an environment, and as it does so, it gathers data. The unusual aspect here 
is that gathering data is a separate challenge than learning from data. And as you will see 
shortly, learning from data is also a different thing than improving from data. In RL, there 
is gathering, learning, and improving. For instance, an agent that is pretty good at collecting
data may not be as good at learning from data, or conversely, an agent that is not good at 
collecting data may be good at learning from data, and so on. We all have that friend that 
didn't take good notes in school, yet it did well on tests, while others had everything written 
down, but didn't do as well.

In chapter 2, when we learned about dynamic programming methods, I mentioned value 
and policy iteration shouldn't be referred to as RL, but planning methods instead. The 
reason being they do not gather data. There is no need for DP methods to interact with the 
environment because a model of the environment, the MDP, is provided beforehand.

For an algorithm to be considered a standard RL method, the aspect of interacting with the 
environment, with the problem we're trying to solve, should be present. Most RL agents 
gather experience samples by themselves, unlike supervised-learning methods, for instance, 
which are given a dataset, RL agents have the additional challenge of selecting their datasets. 
Most RL agents gather experience samples because RL is often about solving interactive 
learning problems.

ŘŁ With An RL Accent

Planning vs. Learning problems

Planning problems: Refers to problems in which a model of the environment is available 
and thus, there is no learning required. These types of problems can be solved with planning 
methods such as value iteration and policy iteration. The goal in these types of problems is 
to find, as opposed to learn, optimal policies. Suppose I give you a map and ask you to find 
the best route from point A to point B; there is no learning required there, just planning.

Learning problems: Refers to problems in which learning from samples is required, 
usually because there isn't available a model of the environment or perhaps because it is 
impossible to do create one. The main challenge of learning problems is that we estimate 
using samples and samples can have high variance, which means they will be of poor 
quality and difficult to learn from. Samples can also be biased, either for being from a 
different distribution than the one estimating or for using estimates to estimate, which can 
make our estimates incorrect altogether. Suppose I don't give you a map of the area this 
time. How would you find "the best route"? By trial-and-error learning, likely.
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5The anatomy of reinforcement learning agents

Most agents estimate something
After gathering data, there are multiple things an agent can do with this data. Some agents, 
for instance, learn to predict expected returns or value functions. In the previous chapter, you 
learned about many different ways of doing so, from using Monte-Carlo to TD targets, from 
every-visit to first-visit MC targets, from n-step to λ-return targets. There are many different 
ways of calculating targets that can be used for estimating value functions.

But value functions are not the only thing agents can learn with experience samples. Agents 
may be designed to learn models of the environment, too. As you will see in the next 
chapter, model-based RL agents use the data collected for learning transition and reward 
functions. By learning a model of the environment, agents can predict the next state and 
reward. Further, with these, agents can either plan a sequence of actions similar to the 
way DP methods work or maybe use synthetic data generated from interacting with these 
learned models to learn something else . The point is, agents may be designed to learn 
models of the environment.

Moreover, agents can be designed to improve on policies directly using estimated returns. In 
later chapters, we'll see how policy gradient methods consist of approximating functions that 
take in a state and output a probability distribution over actions. To improve these policy 
functions, we can use actual returns, in the simplest case, but also estimated value functions. 
Finally, agents can be designed to estimate multiple things at once, and this is the typical 
case. The important thing is most agents estimate something.

ŘŁ With An RL Accent

Non-interactive vs. Interactive learning problems

Non-interactive learning problems: Refers to a type of learning problem in which there 
is no need or possibility for interacting with an environment. In these types of problems 
there is no interaction with an environment while learning, but there is learning from data 
previously generated. The objective is to find something given the samples, usually a 
policy but not necessarily. For instance, in inverse RL, the objective is to recover the reward 
function given expert-behavior samples. In apprenticeship learning, the objective is to go 
from this recovered reward function to a policy. In behavioral cloning, which is a form of 
imitation learning, the goal is to go from expert-behavior samples directly to policies using 
supervised learning.

Interactive learning problems: Refers to a type of learning problem in which learning and 
interaction are interleaved. The interesting aspect of these problems is that the learner also 
controls the data-gathering process. Optimal learning from samples is one challenge, and 
finding samples for optimal learning is another.
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6 Chapter 6 I improving agents' behaviors

F5 RefResh My MeMoRy

Monte-Carlo vs. Temporal-Difference targets

Other important concepts worth repeating are the different ways value functions can be 
estimated. In general, all methods that learn value functions progressively move estimates 
a fraction of the error towards the targets. The general equation most learning methods 
follow is: estimate = estimate + step * error. The error is simply the difference between a 
sampled target and the current estimate: (target - estimate). The two main and opposite ways 
for calculating these targets are Monte-Carlo and Temporal-Difference learning.

The Monte-Carlo target consists of the actual return. Really, nothing else. Monte-Carlo 
estimation consists of adjusting the estimates of the value functions using the empirical 
(observed) mean return in place of the expected (as if you could average infinite samples) 
return.

The Temporal-Difference target consists of an estimated return. Remember 
"bootstrapping"? It basically means using the estimated expected return from later states, 
for estimating the expected return from the current state. TD does that. Learning a guess
from a guess. The TD target is formed by using a single reward and the estimated expected 
return from the next state using the running value function estimates.
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7The anatomy of reinforcement learning agents

Most agents improve a policy
Lastly, most agents improve a policy. This final step heavily depends on the type of agent 
being trained and what the agent estimates. For instance, if the agent is estimating value 
functions, a common thing to improve is the target policy implicitly encoded in the value 
function, which is the policy being learned about. The benefit of improving the target policy 
is that the behavior policy, which is the data-generating policy, will consequently improve, 
therefore improving the quality of data the agent will subsequently gather. If the target and 
behavior policies are the same, then the improvement of the underlying value function 
explicitly increases the quality of the data generated afterward.

Now, if a policy is being represented explicitly instead of through value functions, such as 
in policy gradient and actor-critic methods, agents can use actual returns to improve these 
policies. Agents can also use value functions to estimate returns for improving policies. 
Finally, in model-based RL, there are multiple options for improving policies. One can 
use a learned model of the environment to plan a sequence of actions. In this case, there is 
an implicit policy being improved in the planning phase. One can use the model to learn 
a value function, instead, which implicitly encodes a policy. One can use the model to 
improve the policy directly, too. The bottom line is all agents attempt to improve a policy.

ŘŁ With An RL Accent

Greedy vs. ε-Greedy vs. Optimal policy

Greedy policy: Refers to a policy that always selects the actions believed to yield the 
highest expected return from each and every state. It is essential to know that a "greedy 
policy" is greedy with respect to a value function. The "believed" part comes from the value 
function. The insight here is that when someone says "the greedy policy," you must ask, 
greedy with respect to what? A greedy policy with respect to a random value function is a 
pretty bad policy.

ε-Greedy (epsilon-greedy) policy: Refers to a policy that often selects the actions believed
to yield the highest expected return from each and every state. Same as before applies; an 
epsilon-greedy policy is epsilon-greedy with respect to a specific value function. Always 
make sure you understand which value function is being referenced.

Optimal policy: Refers to a policy that always selects the actions actually yielding the 
highest expected return from each and every state. While a greedy policy may or may not be 
an optimal policy, an optimal policy must undoubtedly be a greedy policy. You ask, "greedy 
with respect to what?" Well done! An optimal policy is a greedy policy with respect to a 
unique value function, the optimal value function.
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8 Chapter 6 I improving agents' behaviors

Generalized Policy Iteration
Another simple pattern that is more commonly used to understand the architecture of 
reinforcement learning algorithms is called Generalized Policy Iteration (GPI). GPI is a 
general idea that the continuous interaction of Policy Evaluation and Policy Improvement 
drives policies towards optimality.

As you probably remember in the Policy Iteration algorithm, we had two processes: Policy 
Evaluation and Policy Improvement. The policy-evaluation phase takes in any policy, 
and it evaluates it; it estimates the policy's value function. In Policy Improvement, these 
estimates, the value function, are used to obtain a better policy. Once Policy Evaluation and 
Improvement stabilize, that is, once their interaction no longer produces any changes, then 
the policy and the value function are optimal.

Now, if you remember, after studying Policy Iteration, we learned about another algorithm, 
called Value Iteration. This one was very similar to Policy Iteration; it had a policy-
evaluation and a policy-improvement phase. The main difference, however, was that the 
policy-evaluation phase consisted of a single iteration. In other words, the evaluation of 
the policy didn't produce the actual value function. In the policy-evaluation phase of Value 
Iteration, the value function estimates move towards the actual value function, but not all 
the way there. Yet, even with this truncated policy evaluation phase, the generalized policy 
iteration pattern for Value Iteration also produces the optimal value function and policy.

The critical insight here is that Policy Evaluation, in general, consists of gathering and 
estimating value functions, just like the algorithms you learned about in the previous 
chapter. And as you know, there are multiple ways of evaluating a policy, numerous methods 
of estimating the value function of a policy, various approaches to choose from for checking 
off the policy evaluation requirement of the generalized policy iteration pattern. 

Furthermore, Policy Improvement consists of changing a policy to make it greedier with 
respect to a value function. In the Policy Improvement method of the Policy Iteration 
algorithm, we make the policy entirely greedy with respect to the value function of the 
evaluated policy. But, we were able to completely greedify the policy only because we had 
the MDP of the environment. However, the policy-evaluation methods that we learned 
about in the previous chapter do not require an MDP of the environment, and this comes 
at cost. We can no longer completely greedify policies, we need to have our agents explore. 
Going forward, instead of completely greedifying the policy, we make the policy just 
greedier, leaving room for exploration. This kind of partial policy improvement was used in 
chapter 4 when we used different explorations strategies for working with estimates.

So, there you have it. Most RL algorithms follow this GPI pattern: they have distinct policy-
evaluation and improvement phases, and all we must do is pick and choose the methods.
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9The anatomy of reinforcement learning agents

! MigueL's AnALogy

Generalized Policy Iteration and why you should listen to criticism

Generalized Policy Iteration (GPI) is similar to the eternal dance of critics and performers. 
Policy evaluation gives the much-needed feedback that policy improvement uses to make 
policies better. In the same way, critics provide the much-needed feedback performers can 
use to do better.

As Benjamin Franklin said: "Critics are our friends, they show us our faults." He was a smart 
guy; he allowed GPI to help him improve. You let critics tell you what they think, you use 
that feedback to get better. It's simple! Some of the best companies out there follow this 
process, too. What do you think the saying "data-driven decisions" means? It's saying they 
make sure to use an excellent policy-evaluation process so that their policy-improvement 
process yields solid results; that's the same pattern as GPI! Norman Vincent Peale said: "The 
trouble with most of us is that we'd rather be ruined by praise than saved by criticism." So, go, let 
critics help you.

Just beware! That they can indeed help you doesn't mean critics are always right or that you 
should take their advice blindly, especially if it is feedback that you hear for the first time. 
Critics are usually biased, so can policy evaluation! It's your job as a great performer to listen 
to this feedback carefully, to get smart about gathering the best possible feedback, and to 
act upon it only when sure. But, in the end, the world is of those who do the work.

Theodore Roosevelt said it best:

"It is not the critic who counts; not the man who points out how the strong man stumbles, or 
where the doer of deeds could have done them better. The credit belongs to the man who is 
actually in the arena, whose face is marred by dust and sweat and blood; who strives valiantly; 
who errs, who comes short again and again, because there is no effort without error and 
shortcoming; but who does actually strive to do the deeds; who knows great enthusiasms, the 
great devotions; who spends himself in a worthy cause; who at the best knows in the end the 
triumph of high achievement, and who at the worst, if he fails, at least fails while daring greatly, 
so that his place shall never be with those cold and timid souls who neither know victory nor 
defeat." 

In later chapters, we'll study actor-critic methods, and you'll see how this whole analogy 
extends, believe it or not! Actors and critics help each other. Stay tuned for more.

It's awe-inspiring that patterns in optimal decision-making are valid across the board. What 
you learn studying DRL can help you become a better decision-maker, and what you learn 
in your own life can help you create better agents.

Cool, right?

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

168



10 Chapter 6 I improving agents' behaviors

Learning to improve policies of behavior
In the previous chapter, you learned how to solve the Prediction Problem: how to make 
agents most accurately estimate the value function of a given policy. However, while this is 
a useful ability for our agents to have, it does not directly make them better at any task. In 
this section, you'll learn how to solve the Control Problem: how to make agents optimize 
policies. This new ability allows agents to learn optimal behavior by trial-and-error learning, 
starting from arbitrary policies and ending in optimal ones. This means that after this 
chapter you can develop agents that can solve any task represented an MDP. The task has to 
be a discrete state- and action-space MDP, but other than that, it is just plug-and-play.

To show you a few agents, we are going to leverage the GPI pattern you just learned. That is, 
we are going to select algorithms for the policy-evaluation phase from the ones you learned 
about in the last chapter, and strategies for the policy-improvement phase from the ones 
you learned about in the chapter before. Hopefully, this sets your imagination free on the 
possibilities. Just pick and choose algorithms for policy evaluation and improvement, and 
things will work, that's because of the interaction of these two processes.

ŘŁ With An RL Accent

Prediction vs. Control Problem vs. Policy Evaluation vs. Improvement

Prediction Problem: Refers to the problem of evaluating policies, of estimating value 
functions given a policy. Estimating value functions is nothing but learning to predict 
returns. State-value functions estimate expected returns from states, and action-value 
functions estimate expected returns from state-action pairs.

Control Problem: Refers to the problem of finding optimal policies. The Control Problem 
is usually solved by following the pattern of Generalized Policy Iteration (GPI,) where the 
competing processes of policy evaluation and policy improvement progressively move 
policies towards optimality. RL methods often pair an action-value prediction method with 
policy improvement and action selection strategies.

Policy Evaluation: Refers to algorithms that solve the Prediction Problem. Note that there 
is a dynamic programming method called Policy Evaluation, but this term is also used to 
refer to all algorithms that solve the Prediction Problem.

Policy Improvement: Refers to algorithms that make new policies that improve on an 
original policy by making it greedier than the original with respect to the value function 
of that original policy. Note that Policy Improvement by itself does not solve the Control 
Problem. Often a policy evaluation must be paired with a policy improvement to solve the 
Control Problem. Policy improvement only refers to the computation for improving a policy 
given its evaluation results.
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11Learning to improve policies of behavior

concRete exAMpLe

The Slippery Walk Seven environment

For this chapter, we use an environment called Slippery Walk Seven (SWS). This environment 
is a walk, a single-row grid-world environment, with seven non-terminal states. The 
particular thing of this environment is that it is a slippery walk; action effects are stochastic. 
If the agent chooses to go left, there is a chance it does, but there is also some chance that it 
goes right, or that it stays in place.

Let me show you the MDP for this environment. Though, remember that the agent doesn't 
have any access to the transition probabilities. The dynamics of this environment are unknown
to the agent. I'm only giving you this information for didactic reasons.

Also, have in mind that to the agent, there are no relationships between the states in 
advance. The agent doesn't know that state 3 is in the middle of the entire walk, or that 
it is in between states 2 and 4, it doesn't even know what a "walk" is! The agent doesn't 
know that action zero goes left, or one goes right... Honestly, I encourage you to go to the 
Notebook and play with the environment yourself to gain a deeper understanding. The fact 
is the agent only sees the state ids, say, 0, 1, 2, etc., and chooses action either 0, or 1.

The SWS environment is similar to the Random Walk (RW) environment that we learned 
about in the previous chapter, but with the ability to do control. Remember that the 
random walk is an environment in which the probability of going left, when taking the left 
action, is equal to the probability of going right. And the probability of going right, when 
taking the right action, is equal to the probability of going left. So, there is no control. This 
environment is noisy, but the actions the agent selects make a difference in its performance. 
And also, this environment has 7 non-terminal states, as opposed to 5 of the RW.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

170

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_06/chapter-06.ipynb


12 Chapter 6 I improving agents' behaviors

Monte-Carlo Control: Improving policies after each episode
Let's try to create a control method using Monte-Carlo prediction for our policy evaluation 
needs. Let's initially assume we are using the same policy improvement step we use for 
the policy iteration algorithm. That is, the policy improvement step gets the greedy policy 
with respect to the value function of the policy evaluated. Would this make an algorithm 
that helps us find optimal policies solely through interaction? Actually, no. There are two 
changes we need before we can make this approach work.

First, we need to make sure our agent 
estimates the action-value function Q(s, 
a), instead of the V(s, a) that we estimated 
in the previous chapter. The problem with 
the V-function is that, without the MDP, 
it is not possible to know what's the best 
action to take from a state. In other words, 
the policy-improvement step wouldn't 
work.

Second, we need to make sure our agent 
explores. The problem is that we are no 
longer using the MDP for our policy-
evaluation needs. When we estimate from 
samples, we get values for all of the state-
action pairs we visited, but what if some of 
the best states weren't visited?

There, let's use First-Visit Monte-Carlo 
Prediction for the policy-evaluation 
phase and a Decaying Epsilon-Greedy 
action selection strategy for the policy-
improvement phase. And that's it—you have a complete, model-free RL algorithm in 
which we evaluate policies with Monte-Carlo prediction and improve them with Decaying 
e-Greedy action selection strategy.

Also, just as with Value Iteration, which has a truncated policy-evaluation step, we can 
truncate the Monte-Carlo prediction method. So, instead of rolling out several episodes 
for estimating the value function of a single policy using Monte-Carlo prediction, as we 
did in the previous chapter, we truncate the prediction step after a single full roll-out and 
trajectory sample estimation, and improve the policy right after that single estimation step. 
We alternate a single MC-prediction step and a single Decaying e-Greedy action selection 
improvement step.
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13Learning to improve policies of behavior

Let's now look at our first RL method MC control. You'll see three functions:

• 'decay_schedule': compute decaying values as specified in the function arguments.
• 'generate_trajectory': roll-out the policy in the environment for a full episode.
• 'mc_control': complete implementation of MC control method.

i speAk python

Exponentially Decaying Schedule

def decay_schedule(
        init_value, min_value, 
        decay_ratio, max_steps, 
        log_start=-2, log_base=10):

    decay_steps = int(max_steps * decay_ratio)

    rem_steps = max_steps - decay_steps

    values = np.logspace(
                  log_start, 0, decay_steps, 
                  base=log_base, endpoint=True)[::-1]

    values = (values - values.min()) / \
                                  (values.max() - values.min())

    values = (init_value - min_value) * values + min_value

    values = np.pad(values, (0, rem_steps), 'edge')
    return values

(1) The decay schedule we will use for 
both alpha and epsilon is the same we 
used in the previous chapter for alpha. 
Let's go into more detail this time.

(2) What I personally like about this function is that you give it an initial value, a minimum 
value, and the percentage of the 'max_steps' to decay the values from initial to minimum.

(3) So, this 'decay_steps' is the index where the decaying of values terminates and the 
'min_value' continues till 'max_steps'.
(4) 'rem_steps' is therefore just the difference.

(5) I'm calculating the values using the logspace starting from 'log_start', which I set by 
default to -2, and ending on 0. The number of values in that space that I ask for is 'decay_
steps' and the base is 'log_base' which I default to 10. Notice I reverse those values!

(6) Be cause the values may not end exactly at 0, given it is the log, I change them to be 
between 0 and 1 so that the curve looks smooth and nice.

(7) Then, we can do a linear transformation and get points between `init_value` and `min_value`.

(8) This pad function just repeats the rightmost value 'rem_step' number of times.
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i speAk python

Generate exploratory policy trajectories

def generate_trajectory(
           select_action, Q, epsilon, 
           env, max_steps=200):

    done, trajectory = False, []

    while not done:

        state = env.reset()

        for t in count():

            action = select_action(state, Q, epsilon)

            next_state, reward, done, _ = env.step(action)
            experience = (state, 
                          action, 
                          reward, 
                          next_state, 
                          done)
            trajectory.append(experience)
            if done:
                break

            if t >= max_steps - 1:
                trajectory = []
                break

            state = next_state

    return np.array(trajectory, np.object)

(1) This version of the 'generate_
trajectory' function is slightly 
different. We now need to take 
in an action-selecting strategy, 
instead of a greedy policy.

(2) We begin by initializing the 'done' flag and a list of 
experiences named 'trajectory'.

(3) We then start looping through until 
the 'done' flag is set to true.
(4) We reset the environment to 
interact in a new episode.
(5) Then start counting steps 't'.

(6) Then, use the passed 'select_action' function to pick an action.

(7) We step the environment using that action and obtain the full experience tuple.

(8) We append the 
experience to the 
'trajectory' list.

(9) If we hit a terminal state and the 'done' 
flag is raised, then break and return.
(10) And if the count of steps 't' in the 
current trajectory hits the maximum 
allows, we clear the trajectory, break, and 
try to obtain another trajectory.

(11) Remember to update the state.
(12) Finally, we return a numpy version of 
the trajectory for easy data manipulation.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

173



15Learning to improve policies of behavior

i speAk python

Monte-Carlo Control 1/2

def mc_control(env,
               gamma=1.0,
               init_alpha=0.5,
               min_alpha=0.01,
               alpha_decay_ratio=0.5,
               init_epsilon=1.0,
               min_epsilon=0.1,
               epsilon_decay_ratio=0.9,
               n_episodes=3000,
               max_steps=200,
               first_visit=True):

    nS, nA = env.observation_space.n, env.action_space.n

    discounts = np.logspace(
        0, max_steps, 
        num=max_steps, base=gamma,
        endpoint=False)

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, 
        n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, 
        n_episodes)

    pi_track = []
    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    for e in tqdm(range(n_episodes), leave=False):

(1) 'mc_control' is very similar 
to 'mc_prediction'. The two 
main differences is that we now 
estimate the action-value function 
Q, and that we need to explore. 
(2) Notice in the function 
definition we are using values for 
'epsilon' to configure a decaying 
schedule for random exploration.

(3) We calculate values for the 
discount factors in advance. 
Notice we use 'max_steps' 
because that's the maximum 
length of a trajectory.
(4) We also calculate alphas in 
advance using the passed values.

(5) Finally, we repeat for epsilon, 
and obtain an array that will work 
for the full training session.

(6) Here we are just setting up variables, 
including the Q-function.

(7) This is an epsilon-
greedy strategy, 
though we decay 
epsilon on each 
episode, not step.
(8) Continues...
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i speAk python

Monte-Carlo Control 2/2

    for e in tqdm(range(n_episodes), leave=False):

        trajectory = generate_trajectory(select_action,
                                         Q,
                                         epsilons[e],
                                         env, 
                                         max_steps)

        visited = np.zeros((nS, nA), dtype=np.bool)
        for t, (state, action, reward, _, _) in enumerate(\
                                                  trajectory):

            if visited[state][action] and first_visit:
                continue
            visited[state][action] = True

            n_steps = len(trajectory[t:])
            G = np.sum(discounts[:n_steps] * trajectory[t:, 2])
            Q[state][action] = Q[state][action] + \
                             alphas[e] * (G - Q[state][action])

        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))
    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate(\
                                      np.argmax(Q, axis=1))}[s]

    return Q, V, pi, Q_track, pi_track

(9) Repeating the previous line so that you can keep up with the indentation.

(10) Here we are entering the episode loop. We will run for 'n_episodes'. 
Remember that 'tqdm' just shows a nice progress bar, nothing out of this world.

(11) Every new episode 'e' we generate a 
new trajectory with the exploratory policy 
defined by the 'select_action' function. We 
limit the trajectory length to 'max_steps'.
(12) We now keep track of the visits to state-action pairs, this is 
another important change from the 'mc_prediction' method.

(13) Notice here we are processing trajectories offline, that is, after 
the interactions with the environment have stopped.

(14) Here we check 
for state-action-
pair visits and act 

(15) We proceed to calculating the return the same way we did with the accordingly.
prediction method, except that we are using a Q-function this time.

(16) Notice how we are using the alphas.
(17) After that, it is just a matter of saving values for post analysis.

(18) At the end, we extract the state-value 
function and the greedy policy.
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Sarsa: Improving policies after each step
As we discussed in the previous chapter, one of the disadvantages of Monte-Carlo methods 
is that they are offline methods in an episode-to-episode sense. What that means is that we 
must wait until we reach a terminal state before we can make any improvements to our value 
function estimates. However, it is straightforward to use Temporal-Difference prediction 
for the policy-evaluation phase, instead of Monte-Carlo prediction. Simply by replacing MC 
with TD prediction, we now have a different algorithm, the well-known Sarsa agent.
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The Sarsa agent 1/2

def sarsa(env,
          gamma=1.0,
          init_alpha=0.5,
          min_alpha=0.01,
          alpha_decay_ratio=0.5,
          init_epsilon=1.0,
          min_epsilon=0.1,
          epsilon_decay_ratio=0.9,
          n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, 
        n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, 
        n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(1) The Sarsa agent is the direct 
conversion of TD for control problems. 
That is, at its core, Sarsa is just TD with 
two main changes. First it evaluates the 
action-value function Q. Second, it uses 
an exploratory policy-improvement step.
(2) We are doing the same thing we did 
with 'mc_control' using epsilon here.

(7) In Sarsa, we don't need to calculate all discount factors in advance, because we won't 
use full returns. Instead, we use estimated returns, so we can calculate discounts online.

(3) First, create some handy variables. Remember, 'pi_track' will hold a greedy policy per episode.

(4) Then, we create the Q-function. I'm using 'np.float64' precision... perhaps overkill.

(5) 'Q_track' will hold the estimated Q-function per episode.
(6) The 'select_
action' function 
is the same as 
before: an e-greedy 
strategy.

(8) Notice we are, however, 
calculating all alphas in advance. 
This function call returns a vector 
with corresponding alphas to use.

(9) Although the 'select_action' function is not a decaying strategy on its own. We are 
calculating decaying epsilons in advance, so our agent will be using a decaying e-greedy strategy.

(10) Let's continue on the next page.
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The Sarsa agent 2/2

    for e in tqdm(range(n_episodes), leave=False):

        state, done = env.reset(), False
        action = select_action(state, Q, epsilons[e])

        while not done:

            next_state, reward, done, _ = env.step(action)
            next_action = select_action(next_state, 
                                        Q, 
                                        epsilons[e])

            td_target = reward + gamma * \
                        Q[next_state][next_action] * (not done)

            td_error = td_target - Q[state][action]

            Q[state][action] = Q[state][action] + \
                                           alphas[e] * td_error

            state, action = next_state, next_action

        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))
    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate(\
                                      np.argmax(Q, axis=1))}[s]

    return Q, V, pi, Q_track, pi_track

(11) Same line... You know the drill.

(12) We are now inside the episode loop.
(13) We start each episode by resetting the environment and the done flag.

(14) We select the action (perhaps exploratory) for the initial state.

(15) We repeat until we hit a terminal state.
(16) First, step the environment and get the experience.

(17) Notice that before we make any calculations, we 
need to obtain the action for next step.

(18) We calculate the 'td_target' using that next state-action pair. And we do the little trick 
for terminal states of multiplying by '(not done)', which simply zeros out the future on terminal.
(19) Then calculate the 'td_error' as the difference between the target and current estimate.

(20) Finally, update the Q-function by moving the estimates a bit towards the error.

(21) We update the state and action for next step.

(22) Save the Q-function and greedy policy for analysis.

(23) At the end, calculate the estimated optimal 
V-function and its greedy policy, and return all this.
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ŘŁ With An RL Accent

Batch vs. Offline vs. Online learning problems and methods

Batch learning problems and methods: When you hear the term "batch learning," 
people are referring to one of two things: they mean a type of learning problem in which 
experience samples are fixed and given in advance, or they mean a type of learning method
which is optimized for learning synchronously from a batch of experiences, also called 
fitting methods. Batch learning methods are typically studied with non-interactive learning 
problems, more specifically, batch learning problems. But batch learning methods can 
also be applied to interactive learning problems. For instance, growing batch methods are 
batch learning methods that also collect data, they "grow" the batch. Also, batch learning 
problems don't have to be solved with batch learning methods, the same way that batch 
learning methods are not designed exclusively to solve batch learning problems.

Offline learning problems and methods: When you hear the term "offline learning," 
people are usually referring to one of two things: they are either talking about a problem 
setting in which there is a simulation available for collecting data (as opposed to real-world, 
online environment) or they could also be talking about learning methods that learn offline, 
meaning between episodes, for instance. Note that, in offline learning methods, learning 
and interaction can still be interleaved, but performance is only optimized after some 
samples have been collected, similar to the growing batch described above, but with the 
difference that, unlike growing batch methods, offline methods commonly discard old 
samples, they don't grow a batch. MC methods, for instance, are often considered offline 
because learning and interaction are interleaved on an episode-to-episode basis. There 
are two distinct phases, interacting and learning; MC is interactive, but also offline learning 
method.

Online learning problems and methods: When you hear the term "online learning," 
people are referring to one of two things: either to learning while interacting with a live 
system, such a robot, or to methods that learn from an experience as soon as it's collected, 
on each and every time step.

Note that offline and online learning are often used in different contexts. I've seen offline vs. 
online to mean non-interactive vs. interactive, but I've also seen them, as I mentioned, for 
distinguishing between learning from a simulator vs. a live system.

My definitions here are consistent with common uses of many RL researchers: Richard 
Sutton (2018 book), David Silver (2015 lectures), Hado van Hasselt (2018 lectures), Michael 
Littman (2015 paper), Csaba Szepesvari (2009 book). 

Just be aware of the lingo, though. That's what's important.
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Decoupling behavior from learning
I want you to think about the TD update equation for state-value functions for a second; 
remember, it uses Rt+1 + γV(St+1) as the TD target. However, if you stare at the TD update 
equation for action-value functions instead, which is Rt+1 + γQ(St+1, At+1), you may notice 
there are a few more possibilities there. Look at the action being used and what that 
means. Think about what else you can put in there. One of the most critical inventions in 
reinforcement learning was the development of the Q-learning algorithm, a model-free off-
policy bootstrapping method that directly approximates the optimal policy despite the policy 
generating experiences. Yes, this means, the agent, in theory, can act randomly and still find 
the optimal value function and policies. How is this possible?

Q-Learning: Learning to act optimally, even if we choose not to
The Sarsa algorithm is a sort of "learning on the job." The agent learns about the same 
policy it uses for generating experience. This type of learning is called on-policy. On-policy 
learning is excellent—we learn from our own mistakes. But, let me make it clear, in on-
policy learning, we learn from our own current mistakes only. So, what if we want to learn 
from our own previous mistakes? What if we want to learn from the mistakes of others? 
In on-policy learning, you simply can't. Off-policy learning, on the other hand, is sort of 
"learning from others." The agent learns about a policy that is different from the policy 
generating experiences. In off-policy learning there are two policies: a behavior policy, used 
to generate experiences, to interact with the environment, and a target policy, which is the 
policy we are learning about. Sarsa is an on-policy method; Q-learning is an off-policy one.

shoW Me the MAth

Sarsa vs. Q-learning update equations

(1) The only difference between Sarsa and Q-learning is the action used in the target.

(3) It uses the action actually taken in 
the next state to calculate the target.

(2) This is Sarsa update equation.

(4) This one is Q-learning's.

(5) Q-learning uses the action with the 
maximum estimated value in the next 
state, despite the action actually taken.
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The Q-Learning agent 1/2

def q_learning(env, 
               gamma=1.0,
               init_alpha=0.5,
               min_alpha=0.01,
               alpha_decay_ratio=0.5,
               init_epsilon=1.0,
               min_epsilon=0.1,
               epsilon_decay_ratio=0.9,
               n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, 
        n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, 
        n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(8) Let's continue on the next page.

(1) Notice that the beginning 
of the Q-Learning agent is 
identical to the beginning of 
the Sarsa agent.
(2) In fact, I'm even using the 
same exact hyperparameters 
for both algorithms.

(3) Here are some handy variables.

(4) The Q-function and the tracking variable for offline analysis.

(5) The same e-greedy action-selection strategy.

(6) The vector with all alphas to be used during learning.

(7) The vector with all epsilons to decay as desired.
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    for e in tqdm(range(n_episodes), leave=False):

        state, done = env.reset(), False

        while not done:

            action = select_action(state, Q, epsilons[e])
            next_state, reward, done, _ = env.step(action)

            td_target = reward + gamma * \
                               Q[next_state].max() * (not done)

            td_error = td_target - Q[state][action]
            Q[state][action] = Q[state][action] + \
                                           alphas[e] * td_error

            state = next_state
        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))

    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate(\
                                      np.argmax(Q, axis=1))}[s]
    return Q, V, pi, Q_track, pi_track

(9) Same line as before...

(10) We are iterating over episodes.

(11) We reset the environment and get the initial state, set the done flag to false.
(12) Now enter the interaction loop for online learning (steps).

(13) We repeat the loop until we hit a terminal state and a done flag is raised.
(14) First thing we do is select an action for the current state. Notice the use of epsilons.

(15) We step the environment and get a full experience tuple (s, a, s', r, d).
(16) Next, we calculate the TD target. Q-Learning is a special algorithm because it tries to 
learn the optimal action-value function q* even if it uses an exploratory policy such as the 
decaying e-greedy we are running. This is called off-policy learning.

(17) Again, the '(not done)' ensures the "max value of the next state" is set to zero on 
terminal states. It is very important the agent doesn't expect any reward after death!!!
(18) Next, we calculate the TD error as the difference between the estimate and the target.

(19) We then move the Q-function for the 
state-action pair to be a bit closer to the error.

(20) Next, we update the state.
(21) Save the Q-function and the policy.

(22) And the V-function a final policy on exit.
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! MigueL's AnALogy

Humans also learn on-policy and off-policy

On-policy is learning about a policy that is being used to make decisions; you can think 
about it as "learning on the job." Off-policy learning is learning about a policy different 
from the policy used for making decisions, you can think about it as "learning from others' 
experiences," or "learning to be great, without trying to be great." Both are important ways 
of learning and perhaps vital for a solid decision-maker. Interestingly, you can see whether a 
person prefers to learn on-policy or off-policy pretty quickly.

My son, for instance, tends to prefer on-policy learning. Sometimes I see him struggle 
playing with a toy, I come over and try to show him how to use it, but then he complains 
until I leave him alone. He keeps trying and trying, and he eventually learns, but he prefers 
his own experience instead of others'. On-policy learning is a straightforward and stable 
way of learning. 

My daughter, on the other hand, seems to be OK with learning off-policy. She can learn 
from my demonstrations before she even attempts a task. I show her how to draw a house, 
then she tries. 

Now, beware; this is a stretch analogy. Imitation learning and off-policy learning are not 
the same. Off-policy learning is more about the learner using their experience at say 
running, to get better at something else, say playing soccer. In other words, you do something 
while learning about something else. I'm sure you think of instances when you have done 
that, when you have learned about painting, while cooking. It doesn't matter where the 
experiences come from for doing off-policy learning; as long as the target policy and the 
behavior policy are different, then you can refer to that as off-policy learning.

Also, before you make conclusions about which one is "best," know that in RL, both have 
pros and cons. On the one hand, on-policy learning is very intuitive and stable. If you want 
to get good at playing the piano, why not practicing the piano? 

On the other hand, it seems useful to learn from sources other than your own hands-on 
experience; after all, there is only so much time in a day. Maybe meditation can teach you 
something about playing the piano, and help you get better at it. But, while off-policy 
learning helps you learn from multiple sources (and/or multiple skills), methods using off-
policy learning are often of higher variance and, therefore, slower to converge. 

Additionally, know that off-policy learning is one of the three elements that, when 
combined, have been proven to lead to divergence: off-policy learning, bootstrapping, and 
function approximation. These don't play nice together. You've learned about the first two 
so far, and the third one is soon to come.
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ŘŁ With An RL Accent

Greedy in the Limit with Infinite Exploration and Stochastic Approx. Theory

Greedy in the Limit with Infinite Exploration (GLIE) is a set of requirements on-policy RL 
algorithms, such as Monte-Carlo control and Sarsa, must hold to guarantee convergence to 
the optimal policy. The requirements are as follow:

All state-action pairs must be explored infinitely often.

The policy must converge on a greedy policy.

What this means in practice is that an e-greedy exploration strategy, for instance, must 
slowly decay epsilon towards zero. If it goes down too quickly, the first condition may not 
be met, if it decays too slowly, well, it takes longer to converge.

Notice that for off-policy RL algorithms, such as Q-learning, the only requirement of these 
two that holds is the first one. The second one is no longer a requirement because in 
off-policy learning, the policy learned about is different than the policy we are sampling 
actions from. Q-learning, for instance, only requires all state-action pairs to be updated 
sufficiently, and that is covered by the first condition above.

Now, whether you can check off with certainty that requirement using simple exploration 
strategies such as e-greedy, that's another question. In simple grid worlds and discrete 
action and state spaces, e-greedy most likely works. But, it is easy to imagine intricate 
environments that'd require more than random behavior.

There is another set of requirements for general convergence based on Stochastic 
Approximation Theory that applies to all of these methods. Because we are learning from 
samples, and samples have some variance, the estimates won't converge unless we also 
push the learning rate, alpha, towards zero:

The sum of learning rates must be infinite.

The sum of squares of learning rates must be finite.

That means you must pick a learning rate that decays but never reaches zero. For instance, if 
you use 1/t or 1/e, the learning rate is initially large enough to ensure the algorithm doesn't 
follow only a single sample too tightly, but becomes small enough to ensure it finds the 
signal behind the noise.

Also, even though these convergence properties are useful to know for developing the 
theory of RL algorithms, in practice, learning rates are commonly set to a small-enough 
constant, depending on the problem. Also, know that a small constant is better for non-
stationary environments, which are common in the real world.
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Double Q-Learning: a max of estimates for an estimate of a max
Q-learning often over-estimates the value function. Think about this. On every step, we take 
the maximum over the estimates of the action-value function of the next state. But what we 
need is the actual value of the maximum action-value function of the next state. In other 
words, we are using the maximum over merely estimates as an estimate of the maximum.

Doing this is not only an inaccurate way of estimating the maximum value but also a more 
significant problem, given that these bootstrapping estimates, which are used to form TD 
targets, are often biased. The use of a maximum of biased estimates as the estimate of the 
maximum value is a problem known as Maximization Bias.

It's simple. Imagine an action-value function that its actual values are all zeros, but the 
estimates have some bias, some positive, some negative. For example, 0.11, 0.65, -0.44, -0.26, 
and so on. We know the actual maximum of the values is zero, but the maximum over the 
estimates is 0.65. Now, if we sometimes pick a value with a positive bias and sometimes one 
with a negative bias, then perhaps the issue wouldn't be as pronounced. But because we are 
always taking a max, we always tend to high values even if they have the largest bias, the 
biggest error. Doing this over and over again compounds the errors in a very negative way.

We all know someone with a positive-bias personality that has let something gone wrong in 
their lives. Someone that is blinded by shiny things, that are not as shiny. To me, this is one 
of the reasons why many people advise against feeding the AI hype; because overestimation 
is often your enemy, and certainly something to mitigate for an improved performance.

ŘŁ With An RL Accent

On-policy vs. Off-policy learning

On-policy learning: Refers to methods that attempt to evaluate or improve the policy used 
to make decisions. It is straightforward; think about a single policy. This policy generates 
behavior. Your agent evaluates that behavior and select areas of improvement based 
on those estimates. Your agent learns to assess and improve the same policy it uses for 
generating the data.

Off-policy learning: Refers to methods that attempt to evaluate or improve a policy 
different from the one used to generate the data. This one is more complex. Think about 
two policies. One produces the data, the experiences, the behavior, but your agent uses that 
data to evaluate, improve, and overall learn about a different policy, a different behavior. 
Your agent learns to assess and improve a policy different than the one used for generating 
the data.
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The Double Q-Learning agent 1/3

def double_q_learning(env,
                      gamma=1.0,
                      init_alpha=0.5,
                      min_alpha=0.01,
                      alpha_decay_ratio=0.5,
                      init_epsilon=1.0,
                      min_epsilon=0.1,
                      epsilon_decay_ratio=0.9,
                      n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q1 = np.zeros((nS, nA), dtype=np.float64)
    Q2 = np.zeros((nS, nA), dtype=np.float64)
    Q_track1 = np.zeros((n_episodes, nS, nA), dtype=np.float64)
    Q_track2 = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(init_alpha, 
                           min_alpha, 
                           alpha_decay_ratio, 
                           n_episodes)

    epsilons = decay_schedule(init_epsilon, 
                              min_epsilon, 
                              epsilon_decay_ratio, 
                              n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(1) As you'd expect, Double 
Q-learning takes the 
same exact arguments as 
Q-learning.

(2) We start with the same old handy variables.

(3) But immediately you should see a big difference here. We are using two state-value functions 
Q1 and Q2. You can think of this similar to cross-validation: one Q-function estimates will help 
us validate the other Q-function estimates. The issue, though, is now are splitting the experience 
between two separate functions. This somewhat slows down training.

(4) The rest on 
this page is pretty 
straightforward 
and you should 
already know what's 
happening. The 'select_
action', 'alphas', 
and 'epsilons' are 
calculated the same 
way as before.

(5) Continues...
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The Double Q-Learning agent 2/3

    for e in tqdm(range(n_episodes), leave=False):

        state, done = env.reset(), False
        while not done:

            action = select_action(state, 
                                   (Q1 + Q2)/2., 
                                   epsilons[e])

            next_state, reward, done, _ = env.step(action)

            if np.random.randint(2):
                argmax_Q1 = np.argmax(Q1[next_state])

                td_target = reward + gamma * \
                         Q2[next_state][argmax_Q1] * (not done)

                td_error = td_target - Q1[state][action]

                Q1[state][action] = Q1[state][action] + \
                                           alphas[e] * td_error

(6) From the previous page...

(7) We are back inside the episode loop.
(8) Every new episode, we start by resetting the environment and getting an initial state.

(9) Then we repeat until we hit a terminal state (and the done flag is set to True).
(10) Every step we select an action using our 'select_action' function.

(11) But notice something interesting, we are using the mean of our two Q-functions!! 
We could also use the sum of our Q-functions here. They will give very similar results.

(12) We then send the action to the environment and get the experience tuple.
(13) Things start changing now. Notice we flip a coin to determine an update to Q1 or Q2.

(14) We use the action Q1 thinks is best...
(15) But get the value from Q2 to calculate the TD target.

(16) Notice here, we get the value from Q2 and prescribed by Q1.
(17) Then calculate the TD error from the Q1 estimate.

(18) Finally move our estimate closer to that target by using the error.

(19) This line repeats on the next page...
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The Double Q-Learning agent 3/3

                Q1[state][action] = Q1[state][action] + \
                                           alphas[e] * td_error

            else:
                argmax_Q2 = np.argmax(Q2[next_state])

                td_target = reward + gamma * \
                         Q1[next_state][argmax_Q2] * (not done)

                td_error = td_target - Q2[state][action]

                Q2[state][action] = Q2[state][action] + \
                                           alphas[e] * td_error

            state = next_state

        Q_track1[e] = Q1
        Q_track2[e] = Q2
        pi_track.append(np.argmax((Q1 + Q2)/2., axis=1))

    Q = (Q1 + Q2)/2.
    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate( \
                                      np.argmax(Q, axis=1))}[s]

    return Q, V, pi, (Q_track1 + Q_track2)/2., pi_track

(20) Okay. From the previous page, we were calculating Q1.

(21) Now if the random int was 0 (50% of the times), we update the other Q-function, Q2.

(22) But, it is basically the mirror of the other update. We get the 'argmax' of Q2...
(23) Then use that action, but get the estimate from the other Q-function Q1.

(24) Again, pay attention to the roles of Q1 and Q2 here reversed.
(25) So, we calculate the TD error from the Q2 this time.

(26) And use it to update the Q2 estimate of the state-action pair.

(28) We change the value of the 
'state' variable and keep looping, again 
until we land on a terminal state and 
the 'done' variable is set to True.
(29) Here we store Q1 and Q2 for 
offline analysis.

(30) Notice the policy is the argmax of 
the mean of Q1 and Q2.
(31) The final Q is the mean.
(32) The final V is the max of Q.

(33) The final policy is the argmax of the mean of Qs.
(34) We end up returning all this.

(27) Notice how we use the 'alphas' vector.
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One way of dealing with maximization bias is to track estimates in two Q-functions. At each 
time step, we choose one of them to determine the action, to determine which estimate is 
the highest according to that Q-function. But, then we use the other Q-function to obtain that 
action's estimate. By doing this, there is a lower chance of always having a positive bias error. 
Then, to select an action for interacting with the environment, we use the average, or the 
sum, across the two Q-functions for that state, that is, the maximum over Q1(St+1)+Q2(St+1), 
for instance. The technique of using these two Q-functions is called Double Learning, 
and the algorithm that implements this technique is called Double Q-learning. In a few 
chapters, you'll learn about a deep reinforcement learning algorithm called Double Deep 
Q-Networks (DDQN), which uses a variant of this Double Learning technique.

it's in the DetAiLs

FVMC, Sarsa, Q-learning, and Double Q-learning on the SWS environment

Let's put it all together and test all the algorithms we just learned about in the Slippery Walk 
Seven environment.

Just so you are aware, I used the same hyperparameters in all algorithms, the same gamma, 
alpha, epsilon, and respective decaying schedules. Remember, if you don't decay alpha 
towards 0, the algorithm 
does not fully converge. I'm 
decaying it to 0.01, which is 
good enough for this simple 
environment. Epsilon 
should also be decayed to 
zero for full convergence, 
but in practice this is rarely 
done. In fact, often state-
of-the-art implementations 
don't even decay epsilon 
and use a constant value 
instead. Here, we are 
decaying to 0.1.

Another thing, note that in these runs I set the same number of episodes for all algorithms, 
they all run 3,000 episodes in the SWS environment. You'll notice some algorithms don't 
converge in these many steps, but that doesn't mean they wouldn't converge at all. Also, 
some of the other environments in the chapter's Notebook, such as Frozen Lake, terminate 
on a set number of steps, that is, your agent has 100 steps to complete each episode, else it 
is given a done flag. This is somewhat of an issue that we will address in later chapters. But, 
please, go to the Notebooks and have fun! I think you'll enjoy playing around in there.
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tALLy it up

Similar trends among bootstrapping and on-policy methods
(1) This first one is First-
Visit Monte-Carlo control. 
See how the estimates 
have high variance, just as 
in the prediction algorithm. 
Also, all these algorithms 
are using the same action 
selection strategy. The only 
difference is the method 
used in the policy-evaluation 
phase! Cool, right!?
(2) Sarsa is an on-policy 
bootstrapping method, 
MC is on-policy, but not 
bootstrapping. In these 
experiments, you can see 
how Sarsa has less variance 
than MC, yet it takes pretty 
much the same amount of 
time to get to the optimal 
values.
(3) Q-learning is an off-
policy bootstrapping 
method. See how much 
faster the estimates 
track the true values. 
But, also, notice how the 
estimates are often higher 
and jump around somewhat 
aggressively.
(4) Double Q-learning, on 
the other hand, is slightly 
slower than Q-learning to 
get the estimates to track 
the optimal state-value 
function, but it does so in a 
much more stable manner. 
There is still some over-
estimation, but controlled.
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tALLy it up

Examining the policies learned in the SWS environment

(1) Here are a few 
interesting plots to 
understand the algorithms. 
Remember from the last 
page that Q-learning 
reaches the optimal values 
first, but it overshoots? 
Well, how does that 
translate in terms of 
success? In this plot, 
you can see how Double 
Q-learning gets to 100% 
success rate earlier than 
Q-learning. BTW, I define 
success as reaching a "goal 
state," which in SWS is the 
rightmost cell.
(2) How about the mean 
return each agent gets 
while training? How does 
their performance track 
an agent that'd follow the 
optimal policy? Well, the 
same Double Q-learning 
gets optimal first. These 
results are averaged over 
5 random seeds, they are 
noisy but the trends should 
hold.
(3) Finally, we can look at 
a moving average of the 
regret, which again is the 
difference from optimal, 
how much reward the 
agent left on the table 
(while learning, so perhaps, 
justified). Once again, 
Double Q-learning shows 
the best performance.
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tALLy it up

Examining the value functions learned in the SWS environment

(1) These are also some 
interesting plots. I'm 
showing the moving 
average over 100 
episodes of the estimated 
expected return. That 
is, how much the agent 
expects to get for a full 
episode (from an initial to 
a terminal state) versus 
how much the agent 
should expect to get, given 
the optimal V-function of 
the initial state.
(2) In this next plot, we are 
looking at the state-value 
function, the V-function, 
estimation error. This is 
the Mean Absolute Error 
across all estimates from 
their respective optimal. 
Take a look at how quickly 
Q-learning drops near 
zero, but also how Double 
Q-learning gets to the 
lowest error first. Sarsa 
and FVMC are comparable 
in this simple environment.
(3) Finally, we show the 
action-value function, the 
Q-function, error. These 
errors are different than 
the previous plot because 
for the previous, I'm using 
only the difference of the 
estimated max action and 
the optimal, while here, 
I'm calculating the MAE 
across all actions.
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Summary
In this chapter, you put everything you have learned so far into practice. We learned about 
algorithms that optimize policies through trial-and-error learning. These algorithms learn 
from feedback that is simultaneously sequential and evaluative; that is, these agents learn to 
simultaneously balance immediate and long-term goals and the gathering and utilization of 
information. But unlike in the previous chapter, in which we restricted our agents to solve 
the prediction problem, in this chapter, our agents learned to solve the control problem.

There are many essential concepts you learned about in this chapter. You learned that the 
prediction problem consists of evaluation policies, while the control problem consists of 
optimizing policies. You learned that the solutions to the prediction problem are in policy 
evaluation methods, such as those learned about in the previous chapter. But unexpectedly, 
the control problem is not solved alone by policy-improvement methods you have learned 
about in the past. Instead, to solve the control problem, we need to use policy-evaluation 
methods that can learn to estimate action-value functions merely from samples, and policy-
improvement methods that take into account the need for exploration.

The key takeaway from this chapter is the generalized policy iteration pattern (GPI,) which 
consists of the interaction between policy-evaluation and policy-improvement methods. 
While policy evaluation makes the value function consistent with the policy evaluated, 
policy improvement reverses this consistency but produces a better policy. GPI tells us that 
by having these two processes interact, we iteratively produce better and better policies until 
convergence to optimal policies and value functions. The theory of reinforcement learning 
supports this pattern and tells us that, indeed, we can find optimal policies and value 
functions in the discrete state and action spaces with only a few requirements. You learned 
that GLIE and Stochastic Approximation theory applies at different levels to RL algorithms.

You learned about many other things, from on-policy to off-policy methods, from online 
to offline, and more. Double Q-learning and double learning, in general, are essential 
techniques that we build on later. In the next chapter, we examine advanced methods for 
solving the control problem. As environments get challenging, we use other techniques 
to learn optimal policies. So next, we look at methods that are more effective in solving 
environments, and they do so more efficiently, too. That is, they solve these environments, 
and do so using fewer experience samples than methods we learned about in this chapter.

By now you:

• Know that most RL agents follow a pattern known as Generalized Policy Iteration.
• Know that GPI solves the Control Problem with policy evaluation and improvement.
• Learned about several agents that follow the GPI pattern to solve the control problem.
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achieving goals more
effectively and efficiently 7

In this chapter

• You learn about making reinforcement learning agents 
more effective at reaching optimal performance when 
interacting with challenging environments.

• You learn about making reinforcement learning agents 
more efficient at achieving goals by making the most 
from the experiences.

• You improve on the agents presented in the previous 
chapters to have them make the most out of the data 
they collect and therefore optimize their performance 
more quickly.

Efficiency is doing things right; effectiveness is 
doing the right things. 

— Peter Drucker 
Founder of modern Management and 

Presidential Medal of Freedom recipient
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2 Chapter 7 I achieving goals more effectively and efficiently

 In this chapter, we improve on the agents you learned about in the previous chapter. More 
specifically, we take on two separate lines of improvement. First, we use the λ return that 
you learned about in chapter 5 for the policy evaluation requirements of the generalized 
policy iteration pattern. We explore using the λ return for both on-policy and off-policy 
methods. Using the λ return with eligibility traces propagates credit to the right state-action 
pairs more quickly than standard methods, making the value-function estimates get near 
the actual values faster.

Second, we explore algorithms that use experience samples to learn a model of the 
environment, a Markov Decision Process (MDP.) By doing so, these methods extract the 
most out of the data they collect and often arrive at optimality more quickly than methods 
that don't. The group of algorithms that attempt to learn a model of the environment is 
referred to as model-based reinforcement learning.

It's important to note that even though we explore these lines of improvements separately, 
nothing prevents you from trying to combine them, and it is perhaps something you should 
do after finishing this chapter. Let's get to the details right away.

ŘŁ With An RL Accent

Planning vs. model-free RL vs. model-based RL

Planning: Refers to algorithms that require a model of the environment to produce a 
policy. Planning methods can be of state-space planning type, which means they use the 
state space to find a policy, or they can be of plan-space planning type, meaning they 
search in the space of all possible plans (think about genetic algorithms.) Some examples of 
planning algorithms that we have learned about in this book are Value Iteration and Policy 
Iteration.

Model-free RL: Refers to algorithms that do not use models of the environments, but are 
still able to produce a policy. The unique characteristic here is these methods obtain policies 
without the use of a map, a model, an MDP. Instead, they use trial-and-error learning to 
obtain policies. Some examples of model-free RL algorithms that we have explored in this 
book are MC, Sarsa, and Q-learning.

Model-based RL: Refers to algorithms that can learn, but do not require, a model of the 
environment to produce a policy. The distinction is they do not require the models in 
advance, but can certainly make good use of them if available, and more importantly, 
attempt to learn the models through interaction with the environment. Some examples 
of model-based RL algorithms we learn about in this chapter are Dyna-Q and Trajectory 
Sampling.
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Learning to improve policies  
using robust targets
The very first line of improvement we discuss in this chapter is using more robust targets 
in our policy-evaluation methods. Recall that in chapter 5, we explored policy-evaluation 
methods that use different kinds of targets for estimating value functions. You learned about 
the Monte-Carlo and the TD approach, but also about a target called the λ-return that uses a 
weighted combination of targets obtained using all visited states.

TD(λ) is the prediction method that uses the λ-return for our policy evaluation needs. 
However, as you remember from the previous chapter, when dealing with the control 
problem, we need to use a policy-evaluation method for estimating action-value functions, 
and a policy-improvement method that allows for exploration. In this section, we discuss 
control methods similar to Sarsa and Q-learning, but use instead the λ-return.

concRete exAmpLe

The Slippery Walk Seven environment

To introduce the algorithms in this chapter, we use the same environment we used in the 
previous chapter, called Slippery Walk Seven (SWS). However, at the end of the chapter, we 
test the methods in much more challenging environments. 

Recall that the SWS is a walk, a single-row grid-world environment, with seven non-terminal 
states. Remember that this environment is a "slippery" walk, meaning that it is noisy, that 
action effects are stochastic. If the agent chooses to go left, there is a chance it does, but 
there is also some chance that it goes right, or that it stays in place.

As a refresher, above is the MDP of this environments. But remember and always have 
in mind, the agent doesn't have any access to the transition probabilities. The dynamics of 
this environment are unknown to the agent. Also, to the agent, there are no relationships 
between the states in advance.
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Sarsa(λ): Improving policies after each step  
based on multi-step estimates
Sarsa(λ) is a straightforward improvement to the original Sarsa agent. The main difference 
between Sarsa and Sarsa(λ) is that instead of using the one-step bootstrapping target, the TD 
target, as we do in Sarsa, in Sarsa(λ), we use the λ-return. And that's it; you have Sarsa(λ). 
Seriously! Did you see how learning the basics makes the more-complex concepts easier?

Now, I'd like to dig a little deeper into the concept of eligibility traces that you first 
read about in this book in chapter 5. When I introduced eligibility traces in chapter 5, 
I introduced a specific type of trace called the accumulating trace. However, in reality, 
there are multiple ways of tracing state or state-action pairs responsible for a reward. In 
this section, we dig deeper into the accumulating trace and adapt it for solving the control 
problem, but we also explore a different kind of trace called the replacing trace and use 
them both in the Sarsa(λ) agent.

0001 A Bit of histoRy

Introduction of the Sarsa and Sarsa(λ) agents

In 1994, Gavin Rummery and Mahesan Niranjan published a paper titled "Online Q-Learning 
using Connectionist Systems," in which they introduced an algorithm they called at the time 
"Modified Connectionist Q-Learning." In 1996, Singh and Sutton dubbed this algorithm 
Sarsa because of the quintuple of events that the algorithm uses: (St, At, Rt+1, St+1, At+1). People 
often like knowing where these names come from as you will soon see, RL researchers can 
get pretty creative with these names.

Funny enough, before this open and "unauthorized" rename of the algorithm, in 1995 
on his Ph.D. thesis titled "Problem Solving with Reinforcement Learning," Gavin issued 
Sutton an apology for continuing to use the name "Modified Q-Learning" despite Sutton's 
preference for "Sarsa." Sutton also continued to use Sarsa, which is ultimately the name that 
stuck with the algorithm in the RL community. By the way, Gavin's thesis also introduced 
the Sarsa(λ) agent.

Right after obtaining his Ph.D. in 1995, Gavin became a programmer and later a lead 
programmer for the company responsible for the series of the Tomb Raider games. Gavin 
has had a very successful career as a game developer.

Mahesan, who became Gavin's Ph.D. supervisor after the unexpected death of Gavin's 
original supervisor, followed a more traditional academic career holding lecturer and 
professor roles ever since his Ph.D. graduation in 1990.
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For adapting the accumulating trace to solving the control problem, the only necessary 
change is that we must now track the visited state-action pairs, instead of just visited states. 
So, instead of using an eligibility vector for tracking visited states, we use an eligibility 
matrix for tracking visited state-action pairs.

Now, the replace-trace mechanism is also straightforward. It consists of clipping eligibility 
traces to a maximum value of one; that is, instead of accumulating eligibility without bound, 
we allow traces to only grow to one. This strategy has the advantage that if your agents get 
stuck in a loop, the traces still don't grow out of proportion. The bottom line is that traces, 
in the replace-trace strategy, are set to one when a state-action pair is visited, and decay 
based on the λ value just like in the accumulate-trace strategy.

0001 A Bit of histoRy

Introduction of the eligibility trace mechanism

The general idea of an eligibility trace mechanism is probably due to A. Harry Klopf, when, 
in a 1972 paper titled "Brain Function and Adaptive Systems – A Heterostatic Theory," he 
described how synapses would become "eligible" for changes after reinforcing events. He 
hypothesized: 

"When a neuron fires, all of its excitatory and inhibitory synapses that were active during 
the summation of potentials leading to the response are eligible to undergo changes in 
their transmittances."

However, in the context of RL, Richard Sutton's Ph.D. thesis (1984) introduced the 
mechanism of eligibility traces. More concretely, he introduced the accumulating trace that 
you've learned about in this book, also known as the conventional accumulating trace.

The replacing trace, on the other hand, was introduced by Satinder Singh and Richard 
Sutton in a 1996 paper titled "Reinforcement Learning with Replacing Eligibility Traces," and 
we discuss in this chapter.

They found a few interesting facts. First, they found that the replace-trace mechanism 
results in faster and more reliable learning than the accumulate-trace one. They also found 
that the accumulate-trace mechanism is biased, while the replace-trace one is unbiased. But 
more interestingly, they found relationships between TD(1), MC, and eligibility traces.

More concretely, they found that TD(1) with replacing traces is related to First-visit MC and 
that TD(1) with accumulating traces is related to Every-visit MC. Moreover, they found that 
the offline version of the replace-trace TD(1) is identical to First-visit MC. It's a small world!
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BoiL it DoWn

Frequency and recency heuristics in the accumulating-trace mechanism

The accumulating trace combines a frequency and a recency heuristic. When your agent 
tries a state-action pair, the trace for this pair is incremented by one. Now, imagine there 
is a loop in the environment, and the agent tries the same state-action pair several times. 
Should we make this state-action pair "more" responsible for rewards obtained in the 
future, or should we make it just responsible?

Accumulating traces allow trace values higher than one while replacing traces don't. Traces 
have a way for combining frequency (how often you try a state-action pair) and recency 
(how long ago you tried a state-action pair) heuristics implicitly encoded in the trace 
mechanism.
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i speAk python

The Sarsa(λ) agent 1/2

def sarsa_lambda(env,
                 gamma=1.0,
                 init_alpha=0.5,
                 min_alpha=0.01,
                 alpha_decay_ratio=0.5,
                 init_epsilon=1.0,
                 min_epsilon=0.1,
                 epsilon_decay_ratio=0.9,
                 lambda_=0.5,
                 replacing_traces=True,
                 n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), 
                       dtype=np.float64)

    E = np.zeros((nS, nA), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(1) The Sarsa lambda 
agent is a mix between the 
Sarsa and the TD lambda 
methods.

(2) Here is the 'lambda_' 
hyperparameter (ending in _ 
because the word 'lambda' is 
reserved in Python.

(3) The 'replacing_traces' variables sets the algorithm to use replacing or accumulating traces.

(4) We use the usual variables as we have before.
(5) Including the Q-function and the tracking matrix.

(6) These are the eligibility traces that will allow us to keep track of states eligible for updates.

(7) The rest is 
just as before with 
the 'select_action' 
function, and the 
vectors 'alphas' 
and 'epsilons'.

(8) We 
continue on 
the next page 
with this line.
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i speAk python

The Sarsa(λ) agent 2/2

    for e in tqdm(range(n_episodes), leave=False):

        E.fill(0)
        state, done = env.reset(), False
        action = select_action(state, Q, epsilons[e])

        while not done:

            next_state, reward, done, _ = env.step(action)
            next_action = select_action(next_state, 
                                        Q, 
                                        epsilons[e])

            td_target = reward + gamma * \ 
                        Q[next_state][next_action] * (not done)
            td_error = td_target - Q[state][action]

            E[state][action] = E[state][action] + 1
            if replacing_traces: E.clip(0, 1, out=E)

            Q = Q + alphas[e] * td_error * E
            E = gamma * lambda_ * E

            state, action = next_state, next_action

        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))

    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate(\
                                      np.argmax(Q, axis=1))}[s]
    return Q, V, pi, Q_track, pi_track

(9) Continues here...

(10) Every new episode we set the eligibility of every state to zero.
(11) We then reset the environment and the done flag as usual.

(12) We select the action of the initial state.

(13) We enter the interaction loop.

(14) We send the action to the environment and receive the experience tuple.

(16) We calculate the TD target and the TD error just like in the original Sarsa.
(17) Then, we increment the state-action pair trace, and clip it to 1 if it is a replacing trace.

(18) And notice this! We are applying the TD error to all eligible state-action pairs at once. Even 
though we are using the entire Q-table, E will be mostly 0, and greater than zero for eligible pairs.

(15) We select the action to use at the next state using 
the Q table and the epsilon corresponding to this episode.

(19) We decay the eligibilities.

(20) Update the variables.
(21) Save Q and pi.

(22) At the end of training we extract V, pi, and return.
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! migueL's AnALogy

Accumulating and replacing traces, and a gluten- and banana-free diet

A few months back, my daughter was having trouble sleeping at night. Every night, she 
would wake up multiple times, crying very loudly, but unfortunately, not telling us what the 
problem was.

After a few nights, my wife and I decided to do something about it and try to "trace" back 
the issue so that we could more effectively "assign credit" to what was causing the sleepless 
nights.

We put on our detective hats (if you are a parent, you know what this is like) and tried 
many things to diagnose the problem. After a week or so, we narrowed the issue to foods; 
we knew the bad nights were happening when she ate certain foods, but we couldn't 
determine which foods exactly were to blame. I noticed that throughout the day, she 
would eat lots of carbs with gluten, such as cereal, pasta, crackers, and bread. And, close to 
bedtime, she would snack on fruits.

An "accumulating trace" in my brain pointed to the carbs. "Of course!" I thought, "gluten is 
evil; we all know that. Plus, she is eating all that gluten throughout the day." If we trace back 
and accumulate the number of times she ate gluten, gluten was clearly eligible, was clearly 
to blame. So, we did remove the gluten.

But, to our surprise, the issue only subsided, it didn't entirely disappear as we hoped. After 
a few days, my wife remembered she had trouble eating bananas at night when she was a 
kid. I couldn't believe it, I mean, bananas are fruits, and fruits are only good for you, right? 
But funny enough, in the end, removing bananas got rid of the bad nights. Hard to believe!

But, see, perhaps if I would've used a "replacing trace" instead of an "accumulating trace," 
all of the carbs she ate multiple times throughout the day would have received a more 
conservative amount of blame.

Instead, because I was using an accumulating trace, it seemed to me that the many times 
she ate gluten were to blame. Period. I couldn't see clearly that the recency of the bananas 
played a role.

The bottom line is that accumulating traces can "exaggerate" when confronted with 
frequency while replacing traces moderate the blame assigned to frequent events. This 
moderation can help the more-recent, but rare events surface and be taken into account.

Don't make any conclusions, yet. Like everything in life, and in RL, it's vital for you to know 
the tools and don't just dismiss them at first glance. I'm just showing you the available 
options, but it is up to you to use the right tools to achieve your goals.
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11Learning to improve policies using robust targets 

Watkins's Q(λ): Decoupling behavior from learning, again
And, of course, there is an off-policy control version of the λ algorithms. Q(λ) is an 
extension of Q-Learning that uses the λ return for policy evaluation requirements of the 
generalized policy iteration pattern. Remember, the only change we are doing here is 
replacing the TD target for off-policy control (the one that uses the max over the action in 
the next state) with a λ return for off-policy control. There are actually two different ways 
to extend Q-Learning to eligibility traces, but, I'm only introducing the original version, 
commonly referred to as Watkins's Q(λ).

0001 A Bit of histoRy

Introduction of the Q-learning and Q(λ) agents

In 1989, the Q-Learning and Q(λ) methods were introduced by Chris Watkins in his Ph.D. 
thesis titled "Learning from Delayed Rewards," which was foundational to the development 
of the current theory of reinforcement learning.

Q-Learning is still one of the most popular reinforcement learning algorithms, perhaps 
because it is simple and it works well. Q(λ) is now referred to as Watkins's Q(λ) because there 
is a slightly different version of Q(λ) due to Jing Peng and Ronald Williams that was worked 
between 1993 and 1996 (that version is referred to as Peng's Q(λ).)

In 1992, Chris, along with Peter Dayan, published a paper titled "Technical Note Q-Learning," 
in which they proved a convergence theorem for Q-Learning. They showed that Q-Learning 
converges with probability 1 to the optimum action-value function, with the assumption 
that all state-action pairs are repeatedly sampled and represented discretely.

Unfortunately, Chris stopped doing RL research almost right after that. He went on to work 
for hedge funds in London, then visited research labs, including a group led by Yann LeCun, 
always working AI-related problems, but not so much RL. For the past 22+ years, Chris has 
been a "Reader in Artificial Intelligence" at the University of London.

After finishing his 1991 Ph.D. thesis titled "Reinforcing Connectionism: Learning the 
Statistical Way" (yeah, connectionism is what they called neural networks back then – "deep 
reinforcement learning" you say? Yep!)

Peter went on a couple of postdocs including one with Geoff Hinton at the University of 
Toronto. Peter was a postdoc advisor to Demis Hassabis, founder of DeepMind. Peter has 
held many director positions at research labs, and the latest is the Max Plank Institute.

Since 2018 he's been a Fellow of the Royal Society, one of the highest awards given in the 
UK.
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12 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Watkins's Q(λ) agent 1/3

def q_lambda(env,
             gamma=1.0,
             init_alpha=0.5,
             min_alpha=0.01,
             alpha_decay_ratio=0.5,
             init_epsilon=1.0,
             min_epsilon=0.1,
             epsilon_decay_ratio=0.9,
             lambda_=0.5,
             replacing_traces=True,
             n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    E = np.zeros((nS, nA), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(1) The Q lambda agent is a 
mix between the Q-Learning 
and the TD lambda 
methods.

(2) Here is the 'lambda_' 
and the 'replacing_traces' 
hyperparameters.

(3) Useful variables.

(4) The Q-table.

(5) The eligibility traces matrix 
for all state-action pairs.

(6) The usual 
suspects...

(7) To be continued...
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13Learning to improve policies using robust targets 

i speAk python

The Watkins's Q(λ) agent 2/3

    for e in tqdm(range(n_episodes), leave=False):

        E.fill(0)

        state, done = env.reset(), False

        action = select_action(state, 
                               Q, 
                               epsilons[e])

        while not done:

            next_state, reward, done, _ = env.step(action)

            next_action = select_action(next_state, 
                                        Q, 
                                        epsilons[e])

            next_action_is_greedy = \
              Q[next_state][next_action] == Q[next_state].max()

            td_target = reward + gamma * \
                               Q[next_state].max() * (not done)

            td_error = td_target - Q[state][action]

(8) Continues on the episodes loop.

(9) Okay. Because Q lambda is an off-policy method 
we must use E with care. We are learning about the 
greedy policy, but following an exploratory policy. 
First we fill E with zeros as before.

(10) Reset the environment and 'done'.

(11) But, notice how we are pre-selecting the action just like in Sarsa, but we didn't do that in 
Q-Learning... This is because we need to check if our 'next action' is greedy!

(12) Enter the interaction loop.

(13) Step the environment and get the experience.

(14) We select the 'next_action'... Sarsa-style!

(15) And use it to verify that the action on the next step will still come from the greedy policy.

(16) On this step, we still calculate the TD target as in regular Q-Learning, using the max.

(17) And use the TD target to 
calculate the TD error.

(18) We continue from this line on the next page.
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14 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Watkins's Q(λ) agent 3/3

            td_error = td_target - Q[state][action]

           if replacing_traces: E[state].fill(0)

            E[state][action] = E[state][action] + 1
            Q = Q + alphas[e] * td_error * E

            if next_action_is_greedy:
                E = gamma * lambda_ * E
            else:
                E.fill(0)

            state, action = next_state, next_action

        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))

    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate(\
                                      np.argmax(Q, axis=1))}[s]

    return Q, V, pi, Q_track, pi_track

(19) So, again, calculate a TD error using the target and the current estimate 
of the state-action pair. Notice, this is not 'next_state', this is 'state'!!!

(21) We increment the eligibility of the current state-action pair by 1.

(20) The other approach to replace-trace control methods is to zero out all 
action values of the current 'state' and then increment the current 'action'.

(22) And just as before, we multiply the entire eligibility trace matrix by the error and the 
learning rate corresponding to episode 'e', then move the entire Q towards that error. By doing 
so, we are effectively dropping a signal to all visited states to various degree.

(23) Notice this too. If the action we will take on the next state (which we already selected) 
is a greedy action, then we decay the eligibility matrix as usual, otherwise, we must reset the 
eligibility matrix to zero because we will no longer be learning about the greedy policy.
(24) At the end of the step, we update the state and action to be the next state and action.

(25) We save 
Q and pi.

(26) And at the end of training 
also save V and the final pi.

(27) Finally, we return all this.
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15Agents that interact, learn and plan

Agents that interact, learn and plan
In chapter 3, we discussed planning algorithms such as value iteration (VI) and policy 
iteration (PI). These are planning algorithms because they require a model of the 
environment, an MDP. Planning methods calculate optimal policies offline. On the other 
hand, in the last chapter, I presented model-free reinforcement learning methods, perhaps 
even suggesting that they were an improvement over planning methods. But are they?

The advantage of model-free RL over planning methods is that the former does not require 
MDPs. Often MDPs are challenging to obtain in advance, sometimes MDPs are even 
impossible to create. Just imagine representing the game of Go with 10170 possible states or 
StarCraft II with 101685 states, those are pretty significant numbers, and that doesn't even 
include the action spaces or transition function, imagine! Not requiring an MDP in advance 
is a practical benefit.

But, let's think about this for a second, what if we do not require an MDP in advance, but 
perhaps learn one as we interact with the environment? Think about it, as you walk around 
a new area, you start building a map in your head. You walk around for a while, find a coffee 
shop, get some coffee, and you know how to get back. The skill of learning maps should be 
pretty intuitive to you. Can reinforcement learning agents do something similar to this?

In this section, we explore agents that interact with the environment, just like the model-free 
methods, but they also learn models of the environment from these interactions, MDPs. 
By learning maps, agents often require fewer experience samples to learn optimal policies. 
These methods are called model-based reinforcement learning. Note that in the literature, 
you often see VI and PI referred to as planning methods, but you may also see them referred 
to as model-based methods. I prefer to draw the line and call them planning methods 
because the require and MDP to do anything useful at all. Sarsa and Q-Learning algorithms 
are model-free because they do not require and do not learn an MDP. The methods that you 
learn about in this section are model-based because they do not require, but do learn and use 
an MDP (or at least an approximation of an MDP.)

ŘŁ With An RL Accent

Sampling models vs. distributional models

Sampling models: Refers to models of the environment that produce a single sample of 
how the environment will transition given some probabilities, you sample a transition from 
the model.

Distributional models: Refers to models of the environment that produce the probability 
distribution of the transition and reward functions.
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16 Chapter 7 I achieving goals more effectively and efficiently

Dyna-Q: Learning sample models
One of the most well-known architectures for unifying planning and model-free methods 
is called Dyna-Q. Dyna-Q consists of interleaving a model-free RL method, such as 
Q-learning, and a planning method, similar to Value Iteration, using both experiences 
sampled from the environment and experiences sampled from the learned model to 
improve the action-value function.

In Dyna-Q, we keep track of both the transition and reward function as 3-dimensional 
tensors indexed by the state, the action and the next state. The transition tensor keeps count 
of the number of times we've seen the 3-tuple (s, a, s') indicating how many times we arrived 
at state s' from state s when selecting action a. The reward tensor holds the average reward 
we received on the 3-tuple (s, a, s') indicating the expected reward when we select action a
on state s and transition to state s'.

0001 A Bit of histoRy

Introduction of the Dyna-Q agent

Ideas related to model-based RL methods can be traced back many years back, and are due 
to several researchers, but there are three main papers that set the foundation for the Dyna 
architecture.

The first is a 1981 paper by Richard Sutton and Andrew Barto titled "An Adaptive Network 
that Constructs and Uses an Internal Model of Its World," then a 1990 paper by Richard 
Sutton titled "Integrated architectures for learning, planning, and reacting based on 
approximating dynamic programming," and, finally, a 1991 paper by Richard Sutton titled 
"Dyna, an Integrated Architecture for Learning, Planning, and Reacting" in which the 
general architecture leading to the specific Dyna-Q agent was introduced.
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17Agents that interact, learn and plan

i speAk python

The Dyna-Q agent 1/3

def dyna_q(env,
           gamma=1.0,
           init_alpha=0.5,
           min_alpha=0.01,
           alpha_decay_ratio=0.5,
           init_epsilon=1.0,
           min_epsilon=0.1,
           epsilon_decay_ratio=0.9,
           n_planning=3,
           n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    T_count = np.zeros((nS, nA, nS), dtype=np.int)
    R_model = np.zeros((nS, nA, nS), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(1) Dyna-Q is very similar to the 
Q-Learning agent, but it also 
learns a model of the environment 
and it uses that model to improve 
the estimates.

(2) This 'n_planning' 
hyperparameter is the number of 
updates to the estimates that 
will run from the learned model.

(3) Most of the first part of the algorithm is the same.

(4) We initialize the Q-function to zero, etc.

(5) But then, we create a function to keep track of the transition function.
(6) And another one to keep track of the reward signal.

(7) Then initialize the 
exploration strategy 
'select_action', the 
'alphas' and 'epsilons' 
vectors, as usual.

(8) To be continued...
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i speAk python

The Dyna-Q agent 2/3

    for e in tqdm(range(n_episodes), leave=False):

        state, done = env.reset(), False
        while not done:

            action = select_action(state, Q, epsilons[e])

            next_state, reward, done, _ = env.step(action)

            T_count[state][action][next_state] += 1

            r_diff = reward - \
                             R_model[state][action][next_state]

            R_model[state][action][next_state] += \
                  (r_diff / T_count[state][action][next_state])

            td_target = reward + gamma * \
                               Q[next_state].max() * (not done)

            td_error = td_target - Q[state][action]
            Q[state][action] = Q[state][action] + \ 
                                           alphas[e] * td_error

            backup_next_state = next_state
            for _ in range(n_planning):

(9) Continues on the episode loop.

(10) So, each new episode, we start by resetting the environment and obtaining the 
initial state. We also set the 'done' flag to False and enter the step-interaction loop.

(11) We select the action, just like in original Q-Learning (inside the loop only).

(12) We step the environment and get the experience tuple.

(13) Then, start learning the model! We increment the transition count for the state-action-
next_state triplet indicating that full transition happened once more.

(14) We also attempt to calculate an incremental mean of the reward signal. Get the difference.

(15) Then use that difference and the transition count to learn the reward signal.

(16) We calculate the TD target as usual, Q-learning style (off-policy, using the max).

(17) And the TD error, too. Using the TD target and the current estimate.

(18) Finally, update the Q-function.
(19) And right before we get into the planning steps, we backup the next state variable.

(20) To be continued...
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i speAk python

The Dyna-Q agent 3/3

            for _ in range(n_planning):

                if Q.sum() == 0: break

                visited_states = np.where( \
                           np.sum(T_count, axis=(1, 2)) > 0)[0]
                state = np.random.choice(visited_states)

                actions_taken = np.where( \
                         np.sum(T_count[state], axis=1) > 0)[0]
                action = np.random.choice(actions_taken)

                probs = T_count[state][action] / \
                                   T_count[state][action].sum()
                next_state = np.random.choice( \
                             np.arange(nS), size=1, p=probs)[0]

                reward = R_model[state][action][next_state]
                td_target = reward + gamma * \
                                            Q[next_state].max()
                td_error = td_target - Q[state][action]
                Q[state][action] = Q[state][action] + \ 
                                           alphas[e] * td_error

            state = backup_next_state

        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))
    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate( \
                                      np.argmax(Q, axis=1))}[s]
    return Q, V, pi, Q_track, pi_track

(21) We continue from the planning loop.
(22) First, we want to make 
sure there has been updates to 
the Q-function before, otherwise 
there is no much to plan.

(23) Then we select a state from a list of states already visited by the agent in experience.

(24) We then select an action that has been taken on that state.

(25) We use the count matrix to calculate probabilities of a next state and then a next state.

(26) Use the reward model as the reward.

(27) And 
update the 
Q-function using 
that simulated 
experience!

(28) At the end of the 
planning steps we set the 
state as the next state.

(29) The rest is the same.
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tALLy it up

Model-based methods learn the transition and reward function (transition below)
(1) Take a look at the first 
plot to the right. This one is 
the model that Dyna-Q has 
learned just after 1 episode. 
Now, there are obvious issues 
with this model, but also, this 
is only after a single episode. 
This could mean trouble when 
using the learned model early 
on because there will be a bias 
when sampling an incorrect 
model.
(2) Only after 10 episodes, 
you can see the model taking 
shape. In the second plot, you 
should be able to see the right 
probabilities coming together. 
The axis to the right is the 
initial state s, the axis to the 
left is the landing state, the 
colors are the actions and 
bar heights are the transition 
probabilities.
(3) After 100 episodes 
the probabilities look pretty 
close to the real MDP. 
Obviously, this is a very simple 
environment, so the agent 
is able to gather enough 
experience samples for 
building an MDP very quickly.
(4) You can see here the 
probabilities are good enough 
and describe the MDP 
correctly. You know that going 
"right" on state 7 should take 
you to state 8 with about 
50% chance, to 7 with about 
30% and to 6 with about 20.
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21Agents that interact, learn and plan

Trajectory Sampling: Making plans for the immediate future
In Dyna-Q, we learn the model as previously described, adjust action-value functions as we 
do in vanilla Q-Learning, and then run a few planning iterations at the end of the algorithm. 
Notice that if we were to remove the model-learning and planning lines from the code, we 
would be left with the same Q-Learning algorithm as we had in the previous chapter. 

At the planning phase, we only sample from the state-action pairs that have been visited, 
so that the agent doesn't waste resources with state-action pairs that the model has no 
information. From those visited state-action pairs, we sample a state uniformly at random
and then sample action from previously selected actions also uniformly at random. Finally, 
we obtain the next state and reward sampling from the probabilities of transition given that 
state-action pair. But doesn't this seem intuitively incorrect? We are planning using from a 
state selected uniformly at random!

Couldn't this technique be more effective if we used a state that we expect to encounter 
during the current episode? Think about it for a second. Would you prefer prioritizing 
planning your day, week, month, and year, or would you instead plan some random event 
that "could" happen in your life? Say that you are a software engineer, would you prefer 
planning reading a programming book, and working on that side project, or a future 
possible career change to medicine? Planning for the immediate future is the smarter 
approach. Trajectory Sampling is a model-based RL method that does just that.

BoiL it DoWn

Trajectory sampling

While Dyna-Q samples the learned MDP uniformly at random, Trajectory Sampling gathers 
trajectories, that is, transitions and rewards that can be encountered in the immediate 
future. You are planning "your week," not just some random time in your life. It makes more 
sense to do it this way.

The traditional trajectory-sampling approach is to sample from an initial state until reaching 
a terminal state using the on-policy trajectory. In other words, sampling actions from the 
same behavioral policy at the given time step. 

However, you should not limit yourself to this approach; you should experiment. For 
instance, my implementation samples starting from the current state, instead of an initial 
state, to a terminal state within a preset number of steps, sampling a policy greedy with 
respect to the current estimates. 

But you can try something else. As long as you are sampling a trajectory, you can call that 
trajectory sampling.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

214



22 Chapter 7 I achieving goals more effectively and efficiently
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The Trajectory Sampling agent 1/3

def trajectory_sampling(env,
                        gamma=1.0,
                        init_alpha=0.5,
                        min_alpha=0.01,
                        alpha_decay_ratio=0.5,
                        init_epsilon=1.0,
                        min_epsilon=0.1,
                        epsilon_decay_ratio=0.9,
                        max_trajectory_depth=100,
                        n_episodes=3000):

    nS, nA = env.observation_space.n, env.action_space.n
    pi_track = []

    Q = np.zeros((nS, nA), dtype=np.float64)
    Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

    T_count = np.zeros((nS, nA, nS), dtype=np.int)
    R_model = np.zeros((nS, nA, nS), dtype=np.float64)

    select_action = lambda state, Q, epsilon: \
        np.argmax(Q[state]) \
        if np.random.random() > epsilon \
        else np.random.randint(len(Q[state]))

    alphas = decay_schedule(
        init_alpha, min_alpha, 
        alpha_decay_ratio, n_episodes)

    epsilons = decay_schedule(
        init_epsilon, min_epsilon, 
        epsilon_decay_ratio, n_episodes)

    for e in tqdm(range(n_episodes), leave=False):

(1) Trajectory 
sampling is for the 
most part the same 
as Dyna-Q, with a 
few exceptions.

(2) Instead of 'n_
planning' we use a 
'max_trajectory_
depth' to restrict 
the trajectory 
length.

(3) Most of the algorithm is the same as Dyna-Q.

(4) The Q-function, etc.

(5) We create the same variables to model the transition function.
(6) And another one for the reward signal.

(7) The 'select_
action' function, the 
'alphas' vector, and 
'epsilons' vector are 
all the same.

(8) To be continued...
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The Trajectory Sampling agent 2/3

    for e in tqdm(range(n_episodes), leave=False):

        state, done = env.reset(), False
        while not done:

            action = select_action(state, Q, epsilons[e])

            next_state, reward, done, _ = env.step(action)

            T_count[state][action][next_state] += 1

            r_diff = reward - \
                             R_model[state][action][next_state]

            R_model[state][action][next_state] += \
                  (r_diff / T_count[state][action][next_state])

            td_target = reward + gamma * \
                               Q[next_state].max() * (not done)

            td_error = td_target - Q[state][action]
            Q[state][action] = Q[state][action] + \ 
                                           alphas[e] * td_error

            backup_next_state = next_state
            for _ in range(max_trajectory_depth):

(9) Continues on the episode loop.

(10) Again, each new episode, we start by resetting the environment and obtaining the 
initial state. We also set the 'done' flag to False and enter the step interaction loop.

(11) We select the action.

(12) We step the environment and get the experience tuple.

(13) We learn the model just like in Dyna-Q: increment the transition count for the state-
action-next_state triplet indicating that full transition occurred.

(14) Then, again, calculate an incremental mean of the reward signal, first get the difference.

(15) Then, use that difference and the transition count to learn the reward signal.

(16) We calculate the TD target as usual.

(17) The TD error using the TD target and the current estimate.

(18) Then, update the Q-function.
(19) And right before we get into the planning steps, we backup the next state variable.

(20) To be continued...
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i speAk python

The Trajectory Sampling agent 3/3

            for _ in range(max_trajectory_depth):

                if Q.sum() == 0: break

                # action = select_action(state, Q, epsilons[e])
                action = Q[state].argmax()

                if not T_count[state][action].sum(): break

                probs = T_count[state][action] / \
                                   T_count[state][action].sum()
                next_state = np.random.choice( \ 
                             np.arange(nS), size=1, p=probs)[0]

                reward = R_model[state][action][next_state]

                td_target = reward + gamma * \ 
                                            Q[next_state].max()
                td_error = td_target - Q[state][action]
                Q[state][action] = Q[state][action] + \ 
                                           alphas[e] * td_error
                state = next_state

            state = backup_next_state

        Q_track[e] = Q
        pi_track.append(np.argmax(Q, axis=1))
    V = np.max(Q, axis=1)
    pi = lambda s: {s:a for s, a in enumerate( \
                                      np.argmax(Q, axis=1))}[s]
    return Q, V, pi, Q_track, pi_track

(21) Notice we are now using a 'max_trajectory_depth' variable, but still planning.

(22) We still check for the Q-function to have any difference... so it is worth our compute.

(23) Select the action either on-policy or off-policy (using the greedy policy.)

(24) If we haven't experienced the transition, planning would be a mess, so break out.

(25) Otherwise, we get the probabilities of 'next_state' and sample the model accordingly.

(26) Then, get the reward as prescribed by the reward-signal model.

(27) And continue updating the Q-function as if with real experience.

(28) Notice here we 
update the 'state' 
variable right before 
we loop and continue 
the on-policy 
planning steps.

(29) Outside the 
planning loop we restore 
the state, and continue 
real interaction steps.(30) Everything else just as usual.
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tALLy it up

Dyna-Q and Trajectory Sampling sample the learned model differently
(1) This first plot is the states 
that were sampled by the planning 
phase of Dyna-Q and the actions 
selected in those states. As you 
can see, Dyna-Q samples uniformly 
at random, not only the states, 
but also the actions taken in 
those states.
(2) With Trajectory Sampling you 
have a very different sampling 
strategy. Remember, in the SWS 
environment the rightmost 
state, state 8, is the only non-
zero reward state. Landing on 
state 8 provides a reward of +1. 
The greedy trajectory sampling 
strategy samples the model in an 
attempt to improve greedy action 
selection. This is the reason why 
the states sampled are skewed 
towards the goal state, state 
8. The same happens with the 
sampling of the action. As you can 
see, the right action is sampled far 
more than the left action across 
the board.
(3) To understand the implications 
of the different sampling 
strategies, I plotted the landing 
states after sampling an action 
in state 7, which is the state 
to the left of the goal state. 
As we've seen Dyna-Q does the 
sampling uniformly at random so 
probabilities reflect the MDP.
(4) Trajectory sampling, on the 
other hand, lands on the goal 
state far more often therefore 
experiencing non-zero rewards 
from the model more frequently.
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concRete exAmpLe

The Frozen Lake environment

In chapter 2, we developed the MDP for an environment called Frozen Lake (FL). As you 
remember, FL is a simple grid-world (GW) environment. It has discrete state and action 
spaces, with 16 states and 4 actions.

The goal of the agent is to go from a start location to a goal location while avoiding falling 
into holes. In this particular instantiation of the Frozen Lake environment, the goal is to go 
from state 0 to state 15. The challenge is that the surface of the lake is frozen, and therefore 
slippery, very slippery.

The FL environment is a 4x4 grid with 16 cells, states 0-15, top-left to bottom-right. State 
0 is the only state in the initial state distribution, meaning that on every new episode, the 
agent shows up in that (START) state. States 5, 7, 11, 12, and 15 are terminal states, meaning, 
once the agent lands on any of those states, the episode terminates. States 5, 7, 11, and 12 
are holes, and state 15 is the "goal." What makes "holes" and "goal" be any different is the 
reward function. All transitions landing on the goal states, state 15, provide a +1 reward, 
while every other transition in the entire grid-world provides a 0 reward, no reward. The 
agent will naturally try to get to that +1 transition, and that involves avoiding the holes. The 
challenge of the environment is that actions have stochastic effects, so the agent moves 
only a third of the time as intended. The other two-thirds is split evenly in orthogonal 
directions. If the agent tries to move out of the grid world, it will just bounce back to the cell 
from which it tried to move.

Agent starts each trial here. Slippery frozen surface 
may send the agent to 
unintended places.

Agents gets a +1 when 
he arrives here.

These are holes that will 
end the trial if the agent 
falls into any of them.

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL
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it's in the DetAiLs

Hyperparameter values for the Frozen Lake environment

The Frozen Lake (FL) environment is a more challenging environment than, for instance, 
the Slippery Walk Seven (SWS) environment. Therefore, one of the most important changes 
we need to make is to increase the number of episodes the agent interacts with the 
environment.

While in the SWS environment we allow the agent to interact for only 3,000 episodes, in the 
FL environment we let the agent gather experience for 10,000 episodes. This simple change 
also automatically adjusts the decay schedule for both alpha and epsilon.

Simply changing the value of the 'n_episodes' parameter from 3,000 to 10,000, 
automatically 
changes the 
amount of 
exploration 
and learning 
of the agent. 
Alpha now 
decays from 
an initial value 
of 0.5 to a 
minimum 
value of 0.01 
after 50% 
of the total 
episodes 
which is 5,000 
episodes, and epsilon decays from an initial value of 1.0 to a minimum value of 0.1 after 
90% of the total episodes, which is 9,000 episodes.

Finally, it's important to mention that I'm using a gamma of 0.99, and that the Frozen Lake 
environment, when used with OpenAI Gym, is automatically wrapped with a time limit 
Gym Wrapper. This "TimeWrapper" instance makes sure the agent terminates an episode 
with no more than 100 steps. Technically speaking, these two decisions (gamma and 
the time wrapper) change the optimal policy and value function the agent learns, and 
should not be taken lightly. I recommend playing with the FL environment in chapter 7's 
Notebook and changing gamma to different values (1, 0.5, 0) and also removing the time 
wrapper by getting the environment instance attribute 'unwrapped', for instance 'env = env.
unwrapped'. Try to understand how these two things affect the policies and value functions 
found.
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tALLy it up

Model-based RL methods get estimates closer to actual in fewer episodes

(1) One interesting experiment 
you should try is training vanilla 
Sarsa and Q-learning agents on 
this environment and comparing 
the results. But just look at the 
Sarsa-lambda agent struggle 
estimating the optimal state-
value function. Remember in 
these plots the horizontal lines 
represent the optimal state-value 
function for a handful of states, in 
this case, I pulled states 0, 4, 6, 
9, and 10.
(2) The Q-lambda agent is off-
policy and you can see it moving 
the estimates of the optimal 
state-value function towards the 
true values, unlike Sarsa-lambda. 
Now, to be clear, this is a matter 
of number of steps, I'm sure 
Sarsa-lambda would converge 
to the true values if given more 
episodes.
(3) The Dyna-Q agent is even 
faster than the Q-lambda agent 
at tracking the true values, but 
notice too, how there is a large 
error spike at the beginning of 
training. This is likely because the 
model is incorrect early on, and 
Dyna-Q randomly samples states 
from the learned model, even 
states not sufficiently visited.
(4) My implementation of 
trajectory sampling uses the  
greedy trajectory, so the agent 
samples states likely to be 
encountered. Perhaps, the reason 
why there is more stability in TS.
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tALLy it up

Both traces and model-based methods are efficient at processing experiences
(1) Now, lets discuss how the results 
shown in the previous page relate to 
success. As you can see on the first 
plot to the right, all algorithms except 
Sarsa-lambda reach the same success 
rate as an optimal policy. Also, model-
based RL methods appear to get there 
first, but not by much, though. Recall that 
"success" here just means the number of 
times the agent reached the goal state 
(state 15 in the FL environment.)
(2) On the second plot to the right, you 
can see the estimated expected return 
of the initial state. Notice how both 
model-based methods have a huge error 
spike at the beginning of the training run, 
Trajectory Sampling stabilizes a little bit 
sooner than Dyna-Q, yet the spike is still 
significant. Q-lambda methods get there 
without the spike and soon enough, while 
Sarsa-lambda methods never make it 
before training is stopped.
(3) The third plot is the actual episode 
return averaged over 100 episodes. 
As you can see, both model-based 
methods and Q-lambda agents obtain 
the expected return after approximately 
2,000 episodes. Sarsa-lambda agents 
don't get there before the training 
process is stopped. Again, I'm pretty sure 
given enough time, Sarsa-lambda agents 
would get there.
(4) This last plot is the action-value 
function mean absolute error. As you can 
see, the model-based methods also bring 
the error down close to zero the fastest. 
However, shortly after 2,000 episodes 
both model-based and Q-lambda methods 
are pretty much the same. Sarsa-lambda 
methods are also slow to optimal here.
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concRete exAmpLe

The Frozen Lake 8x8 environment

How about we step it up and try these algorithms in a very challenging environment?

This one is called Frozen Lake 8x8 (FL8x8) and as you might expect, this is an 8 by 8 grid 
world, with very similar properties to the FL. The initial state is state 0, the state on the top 
left corner, the terminal and goal state is state 63, the state on the bottom right corner. The 
stochasticity of action effects is the same, the agent moves to the intended cell with a mere 
33.33% chance, and the rest is split evenly in orthogonal directions.

The main difference in this environment, as you can see, is that there are many more holes, 
and obviously they are in different locations. States 19, 29, 35, 41, 42, 46, 49, 52, 54, and 59 
are holes, that's a total of 10 holes.

Similarly to the original FL environment, in FL8x8, the right policy allows the agent to 
be able to reach the terminal state 100% of the episodes. However, in the OpenAI Gym 
implementation agents that learn optimal policies do not find these particular policies 
because of gamma and the 'TimeWrapper' we discussed recently. Think about it for an 
second, given the stochasticity of these environments, a safe policy could terminate in 
zero rewards for the episode due to the time wrapper. Also, given a gamma value less than 
one, the more steps the agent takes, the lower the reward will impact the return. For these 
reasons, safe policies are not necessarily optimal policies, therefore the agent doesn't learn 
them. Remember that the goal is not simply to find a policy that reaches the goal 100% of 
the times, but to find a policy that reaches the goal within 100 steps in FL and 200 steps in 
FL8x8. Agents may need to take some risks to accomplish this goal.
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it's in the DetAiLs

Hyperparameter values for the Frozen Lake 8x8 environment

The Frozen Lake 8x8 (FL8x8) environment is the most challenging discrete state- and 
action-space environment that we discuss in this book. This environment is challenging for 
a number of reasons, first having 64 states, that's the largest number of states we've worked 
with, but more importantly having a single non-zero reward. That's truly what makes this 
environment particularly challenging.

What that really means is agents will only know they have done it right once they hit the 
terminal state for the first time, remember, this is randomly! After they find the non-zero 
reward transition, agents such as Sarsa and Q-learning (not the lambda versions, but the 
vanilla ones) will only update the value of the state from which the agent transitioned 
to the goal state. That's a one-step back up of the value function. Then, for that value 
function to be propagated back one more step, guess what, the agent needs to randomly 
hit that second-to-final state. But, that is for the non-lambda versions. With Sarsa-lambda 
and Q-lambda, the propagation of values depends on the value of lambda. For all the 
experiments in this chapter, I use a lambda of 0.5, which more or less tells the agent to 
propagate the values half the trajectory (also depending on the type of traces being used, 
but as a ballpark.)

Surprisingly enough, the only change we make to these agents is the number episodes 
we let them 
interact with the 
environments. 
While in the SWS 
environment 
we allow the 
agent to interact 
for only 3,000 
episodes, 
and in the FL 
environment 
we let the 
agent gather 
experience for 
10,000 episodes, 
in FL8x8 we 
let these agents gather 30,000 episodes. This means that alpha now decays from an initial 
value of 0.5 to a minimum value of 0.01 after 50% of the total episodes which is now 15,000 
episodes, and epsilon decays from an initial value of 1.0 to a minimum value of 0.1 after 
90% of the total episodes, which is now 27,000 episodes.
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tALLy it up

On-policy methods no longer keep up, off-policy with traces and model-based do
(1) Results show pretty much 
the same trends. the Sarsa-
lambda agent perhaps takes 
too long to be an interesting 
contender. I've mentioned 
before this is possibly due to 
being an on-policy algorithm. 
As you can see, non of the 
estimates gets even close to 
the optimal values.
(2) The Q-lambda agent, 
however, has estimates that 
do reflect the optimal values. A 
caveat that I want to mention, 
the optimal values shown in 
these graphs do not take into 
account the time step limit 
that the agent suffers through 
interaction. That should affect 
the estimates.
(3) The Dyna-Q agent has 
a big advantage. Being a 
model-based RL method, all 
of the interaction steps prior 
to hitting a terminal state 
actually help with something, 
help learning the MDP. Once the 
agent find the reward for the 
first time, the planning phase 
of model-based RL methods 
propagates the values quickly.
(4) We see a very similar trend 
with the Trajectory Sampling 
agent as before, the estimates 
do track the optimal values, 
and more importantly, there is 
not a huge spike due to model 
error. TS shows a much more 
stable curve for the estimates.
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tALLy it up

Some model-based methods show large error spikes to be aware of

(1) I had to separate the plotting of policy 
success rate and episode return.
(2) On the plot to the right, you can see how 
the error of the estimated expected return for 
Dyna-Q is very large, while Trajectory Sampling 
and Q-lambda agents are much more stable. 
You can see how Sarsa-lambda agents are just 
too off.
(3) The action-value function estimation error is 
pretty much the same with all agents. However, 
you may notice that Dyna-Q is the lowest 
error. Why do you think this is? Remember, 
my Trajectory Sampling implementation only 
generates greedy trajectory samples, that 
means that some states will not get updates 
(or visited) after a number of episodes, while 
methods such as Dyna-Q select uniformly at 
random, which means many state-action pairs 
will get updates, even if those are irrelevant for 
policy performance.
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Summary
In this chapter, you learned about making RL more effective and efficient. By effective here, 
I mean that agents presented in this chapter are capable of solving the environment in the 
limited number of episodes allowed for interaction. Other agents, such as vanilla Sarsa, or 
Q-Learning, or even Monte-Carlo control, would have trouble solving these challenges in 
the limited number of steps, at least for sure, they would have trouble solving the FL8x8 
environment in only 30,000 episodes. That is what effectiveness means to me in this chapter; 
agents are successful in producing the desired results.

We also explore more efficient algorithms. And by efficient here, I mean data-efficient; I 
mean that the agents we introduced in this chapter can do more with the same data than 
other agents. Sarsa(λ) and Q(λ), for instance, can propagate rewards to value-function 
estimates much quicker than their vanilla counterparts, Sarsa and Q-learning. By adjusting 
the λ hyperparameter, you can even assign credit to all states visited in an episode. A value 
of one for λ is not always the best, but at least you have the option when using Sarsa(λ) and 
Q(λ).

You also learned about model-based RL methods, such as Dyna-Q and Trajectory sampling. 
These methods are sample-efficient in a different way. They use samples to learn a model of 
the environment; if your agent lands 100% of 1M samples on state s' when taking action a, 
in state s, why not use that information to improve value functions and policies. Advanced 
model-based deep reinforcement learning methods are often used in environments in which 
gathering experience samples is costly. Domains such as robotic, or problems in which you 
don't have a high-speed simulation, or where hardware requires lots of financial resources.

For the rest of the book, we are moving on to discuss the subtleties that arise when using 
non-linear function approximation with reinforcement learning. Everything that you have 
learned so far still applies. The only difference is that instead of using vectors and matrices 
for holding value functions and policies, now we move into the world of supervised learning 
and function approximation. Remember, in DRL, agents learn from feedback that is 
simultaneously sequential (as opposed to one-shot), evaluative (as opposed to supervised), 
and sampled (as opposed to exhaustive). So far, we haven't touched the "sampled" part; 
agents have always been able to visit all states or state-action pairs, but starting with the next 
chapter, we concentrate on problems that cannot be exhaustively sampled.

By now you:

• Know how to develop RL agents that are more effective at reaching their goals.
• Know how to make RL agents that are mode sample-efficient.
• Know how to deal with feedback that is simultaneously sequential and evaluative.
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introduction to value-based
deep reinforcement learning 8

In this chapter

• You understand the inherent challenges of training 
reinforcement learning agents with non-linear function 
approximators.

• You create a deep reinforcement learning agent that 
when trained from scratch with minimal adjustments 
to hyperparameters can solve different kinds of 
problems.

• You identify the advantages and disadvantages 
of using value-based methods when solving 
reinforcement learning problems.

Human behavior flows from three main sources: 
desire, emotion, and knowledge. 

— Plato 
A philosopher in Classical Greece 

and Founder of the Academy in Athens
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Chapter 8 I introduction to value-based deep reinforcement learning2

We have made a great deal of progress so far, and you are ready to grok deep reinforcement 
learning truly. In chapter 2, you learned to represent problems in a way reinforcement 
learning agents can solve using Markov Decision Processes (MDP.) In chapter 3, you 
developed algorithms that solve these MDPs. That is agents that find optimal behavior in 
sequential decision-making problems. In chapter 4, you learned about algorithms that solve 
one-step MDPs without having access to these MDPs. These problems are uncertain because 
the agents do not have access to the MDP. Agents learn to find optimal behavior through 
trial-and-error learning. In chapter 5, we mixed these two types of problems: sequential and 
uncertain, so we explore agents that learn to evaluate policies. Agents didn't find optimal 
policies but were able to evaluate policies, were able to estimate value functions accurately. 
In chapter 6, we studied agents that find optimal policies on sequential decision-making 
problems under uncertainty. These agents go from random to optimal by merely interacting 
with their environment and deliberately gathering experiences for learning. In chapter 7, we 
learned about agents that are even better at finding optimal policies by getting the most out 
of their experiences.

Chapter 2 is a foundation for all chapters in this book use. Chapter 3 is about planning 
algorithms that deal with sequential feedback. Chapter 4 is about bandit algorithms that deal 
with evaluative feedback. Chapters 5, 6, and 7 are about RL algorithms, algorithms that deal 
with feedback that is simultaneously sequential and evaluative. This type of problem is what 
people refer to as 'tabular' reinforcement learning. Starting from this chapter, we dig into the 
details of deep reinforcement learning.

More specifically, in this chapter, we begin our incursion on the use of deep neural networks 
for solving reinforcement learning problems. In deep reinforcement learning, there are 
different ways of leveraging the power of highly non-linear function approximators, such 
as deep neural networks. They are value-based, policy-based, actor-critic, model-based, 
and gradient-free methods. This chapter goes in-depth on value-based deep reinforcement 
learning methods. 

Types of algorithmic approaches you learn 
about in this book

Policy-basedDerivative-free Actor-critic Value-based Model-based

(1) You are here for 
the next 3 chapters.
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3The kind of feedback deep reinforcement learning agents use 

The kind of feedback  
deep reinforcement learning agents use
In deep reinforcement learning, we build agents that are capable of learning from feedback 
that is simultaneously evaluative, sequential, and sampled. I've been restating this 
throughout the book because you need to understand what that means.

In the first chapter, I mentioned that deep reinforcement learning is about complex 
sequential decision-making problems under uncertainty. You probably thought, "what a 
bunch of words." But as I promised, all these words mean something. "Sequential decision-
making problems" is what you learned about in chapter 3. "Problems under uncertainty" is 
what you learned about in chapter 4. In chapters 5, 6, and 7, you learned about "sequential 
decision-making problems under uncertainty." In this chapter, we add the "complex" part 
back to that whole sentence. Let's use this introductory section to review one last time the 
three types of feedback a deep reinforcement learning agent uses for learning.

Boil it Down

Kinds of feedback in deep reinforcement learning

Sequential 
(as opposed 
to one-shot)

Evaluative
(as opposed 

to supervised)

Sampled
(as opposed 

to exhaustive)

Supervised  
Learning × × ✓

Planning  
(Chapter 3)

✓ × ×

Bandits  
(Chapter 4)

× ✓ ×

'Tabular'  
reinforcement  
learning  
(Chapters 5, 6, 7)

✓ ✓ ×

Deep  
reinforcement  
learning  
(Chapters 8, 9, 10, 11, 12)

✓ ✓ ✓
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Chapter 8 I introduction to value-based deep reinforcement learning4

Deep reinforcement learning agents  
deal with sequential feedback
Deep reinforcement learning agents have to deal with sequential feedback. One of the main 
challenges of sequential feedback is that your agents can receive delayed information. 

You can imagine a chess game in which you make a few wrong moves early on, but the 
consequences those wrong moves only manifest at the end of the game when and if you 
materialize a loss.

Delayed feedback makes it tricky to interpret the source of the feedback. Sequential 
feedback gives rise to the temporal credit assignment problem, which is the challenge of 
determining which state, action, or state-action pair is responsible for a reward. When there 
is a temporal component to a problem and actions have delayed consequences, it becomes 
challenging to assign credit for rewards.

Sequential feedback

we use value functions to decide on actions, and not merely rewards.
This is the challenge of sequential feedback, and one of the reasons 3

But before the agent can 
complete this 
“better–looking” path, it 
will get a high penalty.

2

Consider this environment in which one 
path looks obviously better than the 
other even after several steps.

1
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5The kind of feedback deep reinforcement learning agents use 

But, if it is not sequential, what is it?
The opposite of delayed feedback is immediate feedback. In other words, the opposite of 
sequential feedback is one-shot feedback. In problems that deal with one-shot feedback, 
such as supervised learning or multi-armed bandits, decisions do not have long-term 
consequences. For example, in a classification problem, classifying an image, whether 
correctly or not, has no bearing on future performance; for instance, the images presented 
to the model next are not any different whether the model classified correctly or not the 
previous batch. In DRL, this sequential dependency exists.

Moreover, in Bandit problems, there is also no long-term consequence, though perhaps a 
bit harder to see why. Bandits are one-state one-step MDPs in which episodes terminate 
immediately after a single action selection. Therefore, actions do not have long-term 
consequences in the performance of the agent during that episode.

2-armed bandit

Note: We assume slot machines have a 
stationary probability of pay off, meaning 
the probability of payoff will not change 
with a pull, which is likely incorrect for real 
slot machines.

When you go to a casino and play the 
slots machines, your goal is to find the 
machine that "pays" the most, and 
then stick to that arm. 

1

In bandit problems, we assume the 
probability of pay off stays the same 
after every pull. This makes it a 
one-shot-kind of problem. 

2

An intelligent agent, you!!!

Slot machines

Classification problem
Dataset

into the model.
A mini-batch is fed 

1 Model predicts
and calculates a loss.
E.g.: Accuracy 70%, or 
80% or 2%, or 100%.

2

But, the 'dataset' doesn’t really care how the model does. 
The model will be fed next another randomly sampled 
mini-batch in total disregard of model performance.
In other words, there are no long-term consequences.

3

Model

...
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Chapter 8 I introduction to value-based deep reinforcement learning6

Deep reinforcement learning agents  
deal with evaluative feedback
The second property we learned about is that of evaluative feedback. Deep reinforcement 
learning, 'tabular' reinforcement learning, and bandits, all deal with evaluative feedback. The 
crux of evaluative feedback is that the goodness of the feedback is only relative because the 
environment is uncertain. We do not know the actual dynamics of the environment; we do 
not have access to the transition function and reward signal. 

As a result, we must explore the environment around us to find out what's out there. The 
problem is, by exploring, we miss capitalizing on our current knowledge and, therefore, 
likely accumulate regret. Out of all this, the exploration-exploitation tradeoff arises. 
It's a constant by-product of uncertainty. While not having access to the model of the 
environment, we must explore to gather new information or improve on our current 
information.

Evaluative feedback

don't see entire maps such as this one
To understand the challenge of evaluative feedback you must be aware that agents 1

Instead, they only see the current state and reward such as this one.2

So, is that -10 bad? Is it good?3

-10 -10 -10
-10

-10

-1-1 -1-1

-10

-10

-10

-10

-10 -100

-1

-1

-1

-1

-1

0
-10

0
Start

Goal
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7The kind of feedback deep reinforcement learning agents use 

But, if it is not evaluative, what is it?
The opposite of evaluative feedback is supervised feedback. In a classification problem, your 
model receives supervision; that is, during learning, your model is given the correct labels 
for each of the samples provided. There is no guessing. If your model makes a mistake, the 
correct answer is provided immediately after. What a good life!

The fact that correct answers are given to the learning algorithm makes supervised feedback 
much easier to deal with than evaluative feedback. That is a clear distinction between 
supervised learning problems and evaluative-feedback problems, such as multi-armed 
bandits, 'tabular' reinforcement learning, and deep reinforcement learning.

Bandit problems may not have to deal with sequential feedback, but they do learn from 
evaluative feedback. That's the core issue bandit problems solve. When under evaluative 
feedback, agents must balance exploration vs. exploitation requirements. Now, if the 
feedback is evaluative and sequential at the same time, the challenge is even more 
significant. Algorithms must simultaneously balance immediate- and long-term goals and 
the gathering and utilization of information. Both, 'tabular' reinforcement learning, and 
deep reinforcement learning learn from feedback that is simultaneously sequential and 
evaluative.

Bandits deal with evaluative feedback

You go pull the first arm and get, 10 bucks.
Is that good or bad? What if the other gives 
you $50? What if it gives you $1 with every 
pull for the next 500 pulls?!!?

1

More importantly how do you 
know you could you do better 
trying the other machine?

2

Nobody is there to tell you 
there is no 'supervision'. 

3

You Slot machines

Clasification is "supervised"

Dataset

Each mini-batch 
contains the correct 
"answers" (labels), 
which are given to the 
"agent" (model)!

Somebody said 
cheating!?!?!

1

So, the model tries 
and will be given the 
correct answers after 
each trial.

2

But, you know life gives you no "right" answer!3

Model

...
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Chapter 8 I introduction to value-based deep reinforcement learning8

Deep reinforcement learning agents  
deal with sampled feedback
What differentiates deep reinforcement learning from 'tabular' reinforcement learning is the 
complexity of the problems. In deep reinforcement learning, agents are unlikely to be able to 
sample all possible feedback exhaustively. That means that agents need to generalize using 
the gathered feedback and come up with intelligent decisions based on that generalization.

Think about it. You can't expect exhaustive feedback from life. You can't be a doctor and a 
lawyer and an engineer all at once. At least not if you want to be good at any of these. So, 
you must use the experience you gather early on to make more intelligent decisions for 
your future. It's basic. Were you good at math in high-school? Great, then, pursue a math-
related degree. Were you better at the arts? Then, go to pursue that path. Generalizing helps 
you narrow your path going forward by helping you find patterns, make assumptions, and 
connect the dots, that help you reach your optimal self.

By the way, supervised learning deals with sampled feedback. Indeed, the core challenge in 
supervised learning is to learn from sampled feedback: to be able to generalize to unseen 
samples, which is something neither multi-armed bandit nor 'tabular' reinforcement 
learning problems do.

Sampled feedback

by 160 pixels.

Imagine you are feeding your agent images as states.1

Each image is 2102

With 3 channels 
representing the amount 
of red, green and blue.

3

Each pixel in an 
8-bit image can 
have a value 
from 0 to 255

4

How many possible states is that you ask?5

That’s (2553)210x160=(16,581,375)33,600 = a lot!6

For giggles, I ran this in Python and it returns a 242,580-digit number. To put it in 
perspective, the known, observable universe has between 1078 and 1082 atoms, which 
is an 83-digit number at most.

7
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9The kind of feedback deep reinforcement learning agents use 

But, if it is not sampled, what is it?
The opposite of sampled feedback is exhaustive feedback. To exhaustively sample 
environments means agents have access to all possible samples. 'Tabular' reinforcement 
learning, and bandits agents, for instance, only need to sample for long enough to gather all 
necessary information for optimal performance. To be able to gather exhaustive feedback 
is also why there are optimal convergence guarantees in 'tabular' reinforcement learning. 
Common assumptions, such as "infinite data" or "sampling every state-action pair infinitely 
often," are reasonable assumptions in small grid worlds with finite state and action spaces. 

This dimension we haven't dealt with until now. In this book so far, we surveyed the 
'tabular' reinforcement learning problem. 'Tabular' reinforcement learning learns from 
evaluative, sequential, and exhaustive feedback. But, what happens when we have more 
complex problems in which we cannot assume our agents will ever exhaustively sample 
environments? What if the state space is high-dimensional, such as a Go board with 10170 
states? How about ATARI games with (2553)210x160 at 60 Hz? What if the environment state 
space has continuous variables, such as a robotic arm indicating joint angles? How about 
problems with both high-dimensional and continuous states or even high-dimensional and 
continuous actions? These complex problems are the reason for the existence of the field of 
deep reinforcement learning.

Sequential, evaluative and exhaustive feedback

feedback looks like 
Again, this is what sequential 1

But, given you have a discrete number of states and actions, you can assume 
exhaustively sampling the environment. In a small state and action spaces, 
things are easy in practice, and theory is doable. As the number of states and 
actions spaces increase, the need for function approximation becomes evident.

3

feedback looks like 
And this is what evaluative 2

-10 -10 -10
-10

-10

-1-1 -1-1

-10

-10

-10

-10

-10 -100

-1

-1

-1

-1

-1

0
-10

0
Start

Goal
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Chapter 8 I introduction to value-based deep reinforcement learning10

Introduction to function approximation  
for reinforcement learning
It's essential to understand why we use function approximation for reinforcement learning 
in the first place. It is common to get lost in words and pick solutions due to the hype. You 
know, if you hear "deep learning," you get more excited than if you hear non-linear function 
approximation, yet they are the same. That's human nature. It happens to me; it happens to 
many, I'm sure. But our goal is to remove the cruft and simplify our thinking.

In this section, I motivate the use of function approximation to solve reinforcement learning 
problems in general. Perhaps a bit more specific to value functions, than RL overall, but the 
underlying motivation applies to all forms of DRL.

Reinforcement learning problems  
can have high-dimensional state and action spaces
The main drawback of 'tabular' reinforcement learning is that the use of a table to represent 
value functions is no longer practical in complex problems. Environments can have high-
dimensional state spaces, meaning that the number of variables that comprise a single state 
is vast. For example, ATARI games described above are high dimensional because of the 210 
by 160 pixels, and the 3 color channels. Regardless of the values that these pixels can take 
when we talk about 'dimensionality,' we are referring to the number of variables that make 
up a single state.

State

3 A high-dimensional state has 
many variables. A single image 
frame from ATARI, for example 
has 210x160x3 = 100,800 pixels. 

State

High-dimensional state spaces

This is a state.
Each state is a unique 
configuration of
variables.

1 2 For exampler, variables 
can be position, velocity, 
target, location, pixel, 
value, etc.
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11Introduction to function approximation for reinforcement learning 

Reinforcement learning problems 
can have continuous state and action spaces
Moreover, environments can additionally have continuous variables, meaning that a variable 
can take on an infinite number of values. Now, to clarify, state and action spaces can be 
high-dimensional with discrete variables, they can be low-dimensional with continuous 
variables, and so on. 

Now, even if the variables are not continuous and, therefore, not infinitely large, they can 
still take on a large number of values to make it impractical for learning without function 
approximation. This is the case of ATARI, for instance, where each image-pixel can take on 
256 values (0-255 integer values.) There you have a finite state-space, yet large enough to 
require function approximation for any learning to occur.

But, sometimes, even low-dimension state spaces can be infinitely large state spaces. For 
instance, imagine a problem in which only the x, y, z coordinates of a robot compose 
the state-space. Sure, a three-variable state-space is a pretty low-dimensional state-space 
environment, but what if any of the variables is provided in continuous form, that is, that 
variable can be of infinitesimal precision. Say, it could be a 1.56, or 1.5683, or 1.5683256, 
and so on. Then, how do you make a table that takes all these values into account? Yes, you 
could discretize the state space, but let me save you some time and get right to it: you need 
function approximation.

State

Continuous state spaces

State

0.0 - 100.0

This is a state.
Each state is a unique 
configuration of
variables.

1

3 A continuous state-space has at least one variable that can take on 
an infinite number of values. For example, position, angles, altitude, 
are variables that can have infinitesimal accuracy: say, 2.1, or 2.12, 
or 2.123, and so on.

2 Variables can be position, 
velocity, target, location, 
pixel, value, etc.
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Chapter 8 I introduction to value-based deep reinforcement learning12

ConCrete example

The Cart-Pole environment

The cart-pole environment is a classic in reinforcement learning. The state space is low-
dimensional but continuous, making it an excellent environment for developing algorithms; 
training is fast, yet still somewhat challenging, and function approximation can help.

Its state space is comprised of four variables:

• The cart position on the track (x axis) with a range from -2.4 to 2.4
• The cart velocity along the track (x axis) with a range from -inf to inf
• The pole angle with a range of ~-40 degrees to ~ 40 degrees 
• The pole velocity at the tip with a range of -inf to inf

There are two available actions in every state:

• Action 0 applies a -1 force to the cart (push it left)
• Action 1 applies a +1 force to the cart (push it right)

You reach a terminal state if:

• The pole angle is more than 12 degrees away from the vertical position
• The cart center is more than 2.4 units from the center of the track
• The episode count reaches 500 time steps (more on this later)

The reward function is:

• +1 for every time step

along a track

The cart-pole environment consists on balancing a pole1

that is hinged to a cart2

and can move 3
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13Introduction to function approximation for reinforcement learning 

There are advantages when using function approximation
I'm sure you get the point that in environments with high-dimensional or continuous 
state spaces, there are no practical reasons for not using function approximation. In earlier 
chapters, we discussed planning and reinforcement learning algorithms. All of those 
methods represent value functions using tables.

F5 refresh my memory

Algorithms such as Value Iteration and Q-learning use tables for value functions

Value iteration is a method that takes in an MDP and derives an optimal policy for such MDP 
by calculating the optimal state-value function, v*. To do this, value iteration keeps track of 
the changing state-value function, v, over multiple iterations. In value iteration, the state-
value function estimates are represented as a vector of values indexed by the states. This 
vector is stored with a lookup table for querying and updating estimates.

The Q-learning algorithm does not need an MDP and does not use a state-value function. 
Instead, in Q-learning, we estimate the values of the optimal action-value function, q*. 
Action-value functions are not vectors, but, instead, are represented by matrices. These 
matrices are 2-d tables indexed by states and actions. 

A state-value function
A state-value function 
is indexed by the state, 
and it returns a value 
representing the 
expected reward to go 
at the state

1

V -1.5

0

1.4-3.5

1

0.2

2

1.1

3 4

3.4

5State

An action-value function

a value representing the expeded reward to go for taking that action at that state. 
An action-value function, Q, is indexed by the state and and the action and it returns1

5.7-1.5

0

0

Q
-0.2

1

1.2

6.14.21 -2.1 2.7

2 3

States

Actions
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Chapter 8 I introduction to value-based deep reinforcement learning14

Boil it Down

Function approximation can make our algorithms more efficient

In the cart-pole environment, we want to use generalization because it is a more efficient 
use of experiences. With function approximation, agents learn and exploit patterns with less 
data (and perhaps faster). 

A state-value function with and without
function approximation

Imagine this state-value function.1

Without function approximation, each
value is independent.

2

With function approximation the 
underlying relationship 
of the states can be learned and 
exploited.

3

Without function 
approximation, the 
update only 
changes one state. 

5

With function 
approximation, the 
updates changes 
multiple states. 

6

Note: 
Of course, this is a simplified example, but it helps illustrate what’s happening. 
What would be different in ‘real’ examples?
First, if we approximate an action-value function, Q, we would have to add another 
dimension.
Also, with non-linear function approximator, such as a neural network, more complex 
relationship can be discovered.

7

Value

40 1 2 3

Value

40 1 2 3 40 1 2 3

these plots after just a single update.
The benefit of using function approximation is particularly obvious if you imagine 4

Value

40 1 2 3

V =[-2.5, -1.1, 0.7, 3.2, A.6]
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15NFQ: The first attempt to value-based deep reinforcement learning 

While the inability of Value Iteration and Q-learning to solve problems with sampled 
feedback make them impractical, the lack of generalization makes them inefficient. What 
I mean by this is that we could find ways to use tables in environment with continuous-
variable states, but we would be paying a price by doing so. Discretizing values could indeed 
make tables possible, for instance. But, even if we could engineer a way to use tables and 
store value functions, by doing so, we'd be missing out on the advantages of generalization.

For example, in the cart-pole environment, function approximation would help our agents 
learn a relationship in the x distance. Agents would likely learn that being 2.35 units away 
from the center is a bit more dangerous than being 2.2 away. We know that 2.4 is the x 
boundary. This additional reason for using generalization is not to be understated. Value 
functions often have underlying relationships that agents can learn and exploit. Function 
approximators, such as neural networks, can discover these underlying relationships.

NFQ: The first attempt to value-based  
deep reinforcement learning
The following algorithm is called Neural Fitted Q Iteration (NFQ), and it is probably one 
of the first algorithms to successfully use neural networks as a function approximation to 
solve reinforcement learning problems.

For the rest of this chapter, I discuss several components most value-based deep 
reinforcement learning algorithms have. I want you to see it as an opportunity to decide on 
different parts that we could've used. For instance, when I introduce using a loss function 
with NFQ, I discuss a few alternatives. My choices are not necessarily the choices that 
were made when the algorithm was originally introduced. Likewise, when I choose an 
optimization method, whether RMSprop or Adam, I give some reason why I use what I use, 
but more importantly, I give you context so you can pick and choose as you see fit.

What I hope you notice is that my goal is not only to teach you this specific algorithm but, 
more importantly, to show you the different places where you could try different things. 
Many RL algorithms feel this "plug-and-play" way, so pay attention.

Boil it Down

Reasons for using function approximation

Our motivation to using function approximation is not only to solve problems that are not 
solvable otherwise, but also to solve problems more efficiently.
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Chapter 8 I introduction to value-based deep reinforcement learning16

First decision point: Selecting a value function to approximate
Using neural networks to approximate value functions can be done in many different ways. 
To begin with, there are many different value functions we could approximate.

We'll study how to use the v(s) and a(s) functions in a few chapters. For now, let's settle 
on estimating the action-value function q(s,a), just like in Q-learning. We refer to the 
approximate action-value function estimate as Q(s,a; θ); that means the Q estimates are 
parameterized by θ, the weights of a neural network, a state s and an action a.

F5 refresh my memory

Value functions

You've learned about the following value functions: 

• The state-value function v(s)
• The action-value function q(s,a)
• The action-advantage function a(s,a)

You probably remember that the state-value function v(s), though useful for many purposes, 
is not sufficient on its own to solve the control problem. Finding v(s) helps you know how 
much expected total discounted reward you can obtain from state s and using policy 
π thereafter. But, in other to determine which action to take with a V-function, you also 
need the MDP of the environment so that you can do a one-step lookahead and take into 
account all possible next states after selecting each action.

You likely also remember that the action-value function q(s,a) allows us to solve the control 
problem, so it is more like what we need in order to solve the cart-pole environment: in the 
cart-pole environment we are looking to learn the values of actions for all states in order to 
balance the pole by controlling the cart. If we had the values of state-action pairs, we could 
differentiate the actions that would lead us to, either gain information, in the case of an 
exploratory action, or maximize the expected return, in the case of a greedy action.

I want you to notice too, that what we want to estimate the optimal action-value function 
and not just simply an action-value function. However, as we learned in the generalized 
policy iteration pattern, we can do on-policy learning using an epsilon-greedy policy and 
estimating its values directly, or we can do off-policy learning and always estimate the 
policy greedy with respect to the current estimates, which then becomes an optimal policy.

Lastly, we also learned about the action-advantage function a(s,a), which can help us 
differentiate between values of different actions, and it also lets us easily see how much 
better than average an action is. 
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17NFQ: The first attempt to value-based deep reinforcement learning 

Second decision point: Selecting a neural network architecture
We settled on learning the approximate the action-value function Q(s,a; θ). But although I 
suggested the function should be parameterized by θ, s, and a, that doesn't have to be the 
case. The next component we discuss is the neural network architecture.

When we implemented the Q-learning agent, you noticed how the matrix holding the 
action-value function 
was indexed by state 
and action pairs. A 
straightforward neural 
network architecture is 
to input the state (the 
4 state variables in the 
cart-pole environment), 
and the action to 
evaluate. The output 
would then be one node 
representing the Q-value 
for that state-action pair. 

This architecture would work just fine for the cart-pole environment. But, a more efficient 
architecture consists 
of only inputting the 
state (4 for the cart-
pole environment) to 
the neural network and 
outputting the Q-values 
for all the actions in that 
state (2 for the cart-pole 
environment). This is 
clearly advantageous 
when using exploration 
strategies such as 
epsilon-greedy or 
SoftMax, because having 
to do only one pass forward to get the values of all actions for any given state yields a high-
performance implementation, more so in environments with a large number of actions.

For our NFQ implementation, we use the state-in-values-out architecture: that is 4 input 
nodes and 2 output nodes for the cart-pole environment.

State-in-values-out architecture

State Variables In
  • Cart position
  • Cart velocity
  • Pole angle
  • Pole velocity at tip

Vector of values out
  • Action 0 (left)
  • Action 1 (right)

Q(s) E.g: 

[1.44, -3.5]
State s. E.g: 

[-0.1, 1.1, 2.3, 1.1]

State-action-in-value-out architecture

Action In

Value out
Q(s,a) E.g.: 

1.44

State Variables In
  • Cart position
  • Cart velocity
  • Pole angle
  • Pole velocity at tip
State s. E.g: 

[-0.1, 1.1, 2.3, 1.1]

Action a. E.g.: 

0
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Chapter 8 I introduction to value-based deep reinforcement learning18

i speak python

Fully-Connected Q-function (state-in-values-out)

class FCQ(nn.Module):
    def __init__(self, 
                 input_dim, 
                 output_dim, 
                 hidden_dims=(32,32), 
                 activation_fc=F.relu):
        super(FCQ, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer = nn.Linear(input_dim, 
                                     hidden_dims[0])
        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(
                hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.output_layer = nn.Linear(
            hidden_dims[-1], output_dim)

    def forward(self, state):
        x = state
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, 
                             device=self.device, 
                             dtype=torch.float32)
            x = x.unsqueeze(0)

        x = self.activation_fc(self.input_layer(x))
        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))
        x = self.output_layer(x)
        return x 

(1) Here you are just defining the 
input layer. See how we take in 'input_
dim' and output the first element of 
the 'hidden_dims' vector.

(2) We then create the hidden layers. Notice how flexible this class is that 
allows you to change the number of layers and units per layer. Just pass 
a different tuple, say (64,32,16), to the 'hidden_dims' variable, and it will 
create a network with 3 hidden layers of 64, 32 and 16 units respectively.

(3) We then connect 
the last  hidden layer 
to the output layer.

(4) In the forward function, we first take in 
the raw state and convert it into a tensor.

(5) We pass it through 
the input layer and 
then through the 
activation function.

(6) Then we do 
the same for all 
hidden layers.

(7) And finally for the output layer. Notice that 
we do not apply the activation function to the 
output but return it directly instead.
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19NFQ: The first attempt to value-based deep reinforcement learning 

Third decision point: Selecting what to optimize
Let's pretend for a second that the cart-pole environment is a supervised learning problem. 
Say you have a dataset with states as inputs and a value function as labels. Which value 
function would you wish to have for labels?

Of course, the dream labels for learning the optimal action-value function are the 
corresponding optimal q-values for the state-action input pair. That is exactly what the 
optimal action-value function q*(s,a) represents, as you know.

If we had access to the optimal action-value function, we would just use that, but if we had 
access to sampling the optimal action-value function, we could then minimize the loss 
between the approximate and optimal action-value functions, and that'd be it. 

The optimal action-value function is what we are after.

show me the math

Ideal objective

(1) An ideal objective in value-
based deep reinforcement 
learning would be to minimize 
the loss with respect to the 
optimal action-value function q*.

(3) If we had a solid estimate of q*, we 
then could use a greedy action with 
respect to these estimates to get near-
optimal behavior. Only if we had that q*.

(2) Because we 
would like to have an 
estimate of q*, Q, 
that tracks exactly 
that optimal function.

(4) Obviously, I'm not talking about 
having access to q* so that we can use it, 
otherwise, there is no need for learning. 
I'm talking about access to sampling the 
q* some way. Regression-style ML.
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But why is this an impossible dream? Well, the visible part is we don't have the optimal 
action-value function q*(s,a), but to top that off, we cannot even sample these optimal 
q-values because we do not have the optimal policy either.

Fortunately, we can use the same principles learned in generalized policy iteration in which 
we alternate between policy-evaluation and policy-improvement processes to find good 
policies. But so that you know, because we are using non-linear function approximation, 
convergence guarantees no longer exist. It's the wild west in the "deep" world.

For our NFQ implementation, we do just that. We start with a randomly initialized 
action-value function (and implicit policy.) Then, evaluate the policy by sampling actions 
from it, as we learned in chapter 5. Then, improve it with an exploration strategy such as 
epsilon-greedy, as we learned in chapter 4. Finally, keep iterating until we reach the desired 
performance, as we learned in chapters 6 and 7.

Boil it Down

We can't use the ideal objective

We can't use the ideal objective because we don't have access to the optimal action-value 
function and don't even have an optimal policy to sample from. Instead, we must alternate 
between evaluating a policy (by sampling actions from it), and improving it (using an 
exploration strategy, such as epsilon-greedy). Just like you learned in chapter 6, in the 
generalized policy iteration pattern.

F5 refresh my memory

Optimal action-value function

(1) As a reminder, here is the definition of the optimal action-value function.

(2) This is just telling us that the 
optimal action-value function...

(3) ... is the 
policy that 
gives...

(4) ... the 
maximum 
expected 
return...

(5) ... from 
each and every 
action in each 
and every state.
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Fourth decision point: Selecting the targets for policy evaluation
There are multiple ways we can evaluate a policy. More specifically, there are different targets
we can use for estimating the action-value function of a policy π. The core targets you 
learned about are the Monte-Carlo (MC) target, the Temporal-Difference (TD) target, the 
N-step target, and Lambda target.

We could use any of these targets and get solid results, but this time our NFQ 
implementation, we keep it simple and use the TD target for our experiments. 

Hopefully you remember that the TD targets can be either on-policy or off-policy 
depending on the way you bootstrap the target. The two main ways for bootstrapping the 
TD target are to either use the action-value function of the action the agent will take at the 
landing state, or alternatively, to use the value of the best action at the next state.

Often in the literature, these are called Sarsa target for the on-policy bootstrapping, and 
Q-learning target for the off-policy bootstrapping.

MC, TD, N-step and Lambda targets

MC TD LambdaN-Step
(n=2)

1 MC you use
all reward found
in a trajectory
from a start state
to the terminal state.

2 TD you use the value 
of the next state as an 
estimate
of all reward to go.

4 Lambda target mixes 
in an exponentially 
decaying fashion all 
n-step
targets into one.

3 N-step is like TD, but 
instead of 
bootstrapping
after 1 step, 
you use “n” steps.

We will be using the TD target 5
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In our NFQ implementation, we use the same off-policy TD target we used in the 
Q-learning algorithm. At this point, to get an objective function, we need to substitute the 
optimal action-value function q*(s,a), that we had as the ideal objective equation, by the 
Q-learning target.

show me the math

The Q-learning target, an off-policy TD target

(1) In practice, an online Q-learning target would look something like this.
(2) Bottom line is we use the 
experienced reward, and the 
next state to form the target.

(3) We can plug in a more general 
form of this Q-learning target here.(4) But it is basically 

the same. We are 
using the expectation 
of experience tuples. (5) To minimize the loss.
(6) Now, when differentiating 
through this equation, it is 
important you notice the gradient 
doesn't involve the target.

(7) The gradient must only go 
through the predicted value. This 
is one common source of error.

show me the math

On-policy and off-policy TD targets

(1) Notice that both on-policy and off-policy targets estimate an action-value function.
(2) However, if we were to use the on-policy target, the target would 
be approximating the behavioral policy. In other words, the policy 
generating behavior and the policy being learned would be the same.

(3) This is not true for the off-policy target in which 
we always approximate the greedy policy, even if 
the policy generating behavior is not totally greedy.
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I want to bring to your attention two issues that I, unfortunately, see very often in DRL 
implementations of algorithms that use TD targets.

First, you need to make sure that you only back-propagate through the "predicted" values. 
Let me explain. You know that in supervised learning, you have predicted values, which 
come from the learning model, and true values, which are commonly constants provided in 
advance. In RL, often the "true values" depend on predicted values themselves, they come 
from the model.

For instance, when you form a TD target, you use a reward, which is a constant, and the 
discounted value of the next state, which comes from the model. Notice, this value is also 
not a true value, which is going to cause all sorts of problems that we address in the next 
chapter. But what I also want you to notice now, is that the predicted value comes from the 
neural network. You have to make this predicted value a constant. In PyTorch, you do this 
only by calling the `detach` method. Please, look at the two previous boxes and understand 
these points. They are vital for the reliable implementation of DRL algorithms.

i speak python

Q-learning target

q_sp = self.online_model(next_states).detach()

max_a_q_sp = q_sp.max(1)[0].unsqueeze(1)

max_a_q_sp =* (1 - is_terminals)

target_q_s = rewards + self.gamma * max_a_q_sp

q_sa = self.online_model(states).gather(1, actions)

(1) First, we get the  
values of the Q-function  
at s prime (next state). 
The "s" in `next_states` 
means that this is a 
batch of `next_state`.

(4) The 'unsqueeze' just adds a dimension 
to the vector so the operations that 
follow work on the correct elements.

(2) The 'detach' here is important. We 
should not be propagating values through 
this. We are only calculating targets.

(3) Then, we get the max value 
of the next state 'max_a'. 

(5) One important step, often overlooked, is to 
ensure terminal states are grounded to zero.
(6) Also, notice the name "is_terminals" are 
batches of "is_terminal" flags, which are merely 
flags indicating whether the "next_state" is a 
terminal state or not.

(7) We now calculate the target.

(8) Finally, we get the current estimate of Q(s,a). 
At this point, we are ready to create our loss function.
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The second issue that I want to raise before we move on is the way terminal states are handle 
when using OpenAI Gym environments. The OpenAI Gym `step`, which is used to interact 
with the environment, returns after every step a handy flag indicating whether the agent just 
landed on a terminal state. This flag helps make the value of terminal states zero, which, as 
you remember from chapter 2, is a requirement to keep the value functions from diverging. 
You know the value of life after death is nil.

The tricky part is that some OpenAI 
Gym environments, such as the 
cart-pole, have a wrapper code that 
artificially terminates an episode 
after some time steps. In CartPole-v0, 
the time step limit is 200, and in 
CartPole-v1 is 500. Now, this wrapper 
code helps to prevent agents from 
taking too long to complete an episode, 
which can be useful, but it can get you 
in trouble. Think about it, what do 
you think the value of having the pole 
straight up in time step 500 be? I mean, 
if the pole is straight up, and you get +1 for every step, then straight-up is infinite. Yet since 
your agent landed in a terminal time, and you got a done flag, will you bootstrap on zero, 
then? This is bad. I cannot stress this enough. There are a handful of ways you can handle 
this issue. You can either (1) use the 'unwrapped' property of the 'env' instance to get an 
environment that doesn't time out, you can (2) keep a time step count and bootstrap when 
you reach it, or you can (3) check the return value of the '_past_limit' function of the 'env' 
instance and bootstrap on failure. (2) is the most common, but I'll use (3).

Can you guess what the value of this state is?1

HINT: This state looks pretty good to me! The cart pole 
seems to be “under control” in a straight-up position. 
Perhaps the best action is to push right, but it doesn’t 
seem like a critical state. Both actions are probably 
similarly valued.

2

i speak python

Properly handling terminal states

new_state, reward, is_terminal, _ = env.step(action)
past_limit = hasattr(env, '_past_limit') and env._past_limit()

is_failure = is_terminal and not past_limit

experience = (state, action, reward, new_state, float(is_failure)) 

(1) We collect a experience tuple as usual

(2) Then check if the '_past_limit' function exists and it returns True.

(3) A failure is defined 
as follows.

(4) Finally, we add the "terminal" flag if the episode ended in failure. 
If it is not a failure we want to bootstrap on the value of the "new_state".
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Fifth decision point: Selecting an exploration strategy
Another thing we need to decide is on which policy improvement step to use for our 
generalized policy iteration needs. You know this from chapters 6 and 7 in which we 
interleave a policy evaluation method, such as MC or TD, and a policy improvement 
method that accounts for exploration, such as decaying e-greedy.

In chapter 4, we surveyed many different ways to balance the exploration-exploitation 
tradeoff, and almost any of those techniques would work just fine. But in an attempt to keep 
it simple, we are going to use an epsilon-greedy strategy on our NFQ implementation.

But, I want to highlight the implication of the fact that we are training an off-policy learning 
algorithm here. What that means is that there are two policies: a policy that generates 
behavior, which in this case is an e-greedy policy, and a policy that we are learning about, 
which is the greedy (an ultimately optimal) policy.

One interesting fact of off-policy learning algorithms you studied in chapter 6 is that the 
policy generating behavior can be virtually anything. That is, it can be anything as long as 
it has broad support, which means it must ensure enough exploration of all state-action 
pairs. In our NFQ implementation, I use an epsilon-greedy strategy that selects an action 
randomly 50% of the time during training. However, when evaluating the agent, I use the 
action greedy with respect to the learned action-value function.

i speak python

Epsilon-greedy exploration strategy

class EGreedyStrategy():
    <...>
    def select_action(self, model, state):
        with torch.no_grad():
            q_values = model(state).cpu().detach()   
            q_values = q_values.data.numpy().squeeze()

        if np.random.rand() > self.epsilon:
            action = np.argmax(q_values)
        else: 
            action = np.random.randint(len(q_values))

        <...>
        return action

(1) The 'select_action' function of the 'EGreedy 
Strategy' starts by pulling out the q-values for state s.

(2) I make the values "numpy friendly" and remove an extra dimension.

(3) Then, get a random  
number and if greater  
than epsilon act greedily.

(4) Otherwise, act randomly in the number of actions.

(5) NOTE: I always query the model in order to calculate stats. 
But, you should not do that if your goal is performance!
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Sixth decision point: Selecting a loss function
A loss function is a measure of how well our neural network predictions are. In supervised 
learning, it is more straightforward to interpret the loss function: given a batch of 
predictions and their corresponding true values, the loss function computes a distance score 
indicating how well the network has done in this batch. 

There are many different ways for calculating this distance score, but I continue to keep it 
simple in this chapter and use one of the most common ones: MSE (mean squared error, or 
L2 loss).

Still, let me restate that one challenge in reinforcement learning, as compared to supervised 
learning, is that our "true values" use predictions that come from the network. 

MSE (or L2 loss) is defined as the average squared difference between the predicted and 
true values; in our case, the "predicted values" are the predicted values of the action-value 
function that come straight from the neural network, all good. But the "true values" are, yes, 
the TD targets, which depend on a prediction also coming from the network, the value of 
the next state.

As you may be thinking, this circular dependency is bad. It is not well-behaved as it doesn't 
respect some of the assumptions made in supervised learning problems. We'll cover what 
these assumptions are later in this chapter and the problems that arise when we violate them 
in the next chapter.

Circular dependency of the action-value function
Policy

Data

Is used to 
calculate the

are used to 
calculate the

Is used to 
calculate the

Produces

Targets Action-Value
Function
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Seventh decision point: Selecting an optimization method
Gradient descent is a stable optimization method given a couple of assumptions: one, 
referred to as the IID assumption, which stands for Independent and Identically Distributed, 
and another that targets are stationary. In reinforcement learning, however, we cannot 
ensure any of these assumptions hold, so choosing a robust optimization method to 
minimize the loss function can often make the difference between convergence and 
divergence.

If you visualize a loss function as a landscape with valleys, peaks, and planes, an 
optimization method is the hiking strategy for finding areas of interest, usually the lowest or 
highest point in that landscape. 

A classic optimization method in supervised learning is called batch gradient descent. The 
batch gradient descent algorithm takes the entire dataset at once, calculates the gradient 
of given the dataset, and steps towards this gradient a little bit at a time. Then, it repeats 
this cycle until convergence. In the landscape analogy, this gradient represents a signal 
telling us the direction we need to move. Batch gradient descent is not the first choice of 
researchers because it is not practical to process massive datasets at once. When you have 
a considerable dataset with millions of samples, batch gradient descent is too slow to be 
practical. Moreover, in reinforcement learning, we don't even have a dataset in advance, so 
batch gradient descent is not a practical method for our purpose either.

Batch gradient descent

1 Batch gradient descent goes smoothly 
towards the target because it uses the 
entire dataset at once, so lower variance 
is expected.
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Chapter 8 I introduction to value-based deep reinforcement learning28

An optimization method capable of handling smaller batches of data is called mini-batch 
gradient descent. In mini-batch gradient descent, we use only a fraction of the data at a 
time. We process a mini-batch of samples to find its loss, then back-propagate to compute 
the gradient of this loss, and then adjust the weights of the network to make the network 
better at predicting the values of that mini-batch. With mini-batch gradient descent, you can 
control size of the mini-batches, which allows the processing of large datasets.

As one extreme, you can set the size of your mini-batch to the size of your dataset, in which 
case, you are back at batch gradient descent. On the other hand, you can set the mini-batch 
size to a single sample per step; in this case, you are using an algorithm called stochastic 
gradient descent.

Stochastic gradient descent

1 With stochastic gradient descent every 
iteration we step only through one 
sample. This makes it a very noisy 
algorithm. It wouldn't be surprising to see 
some steps taking us further away from 
the target, and later back towards the 
target. 

Mini-batch gradient descent

1 In mini-batch gradient descent we use a 
uniformly sampled mini batch. This result 
in noisier updates, but also faster 
processing of the data.
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The larger the batch, the lower the variance the steps of the optimization method have. 
But a batch too large, and learning slows down considerably. Both extremes are too slow in 
practice. For these reasons, it is common to see mini-batch sizes ranging from 32 to 1024.

An improved gradient descent algorithm is called gradient descent with momentum, or just 
momentum for short. This method is a mini-batch gradient descent algorithm that updates 
the network's weights in the direction of the moving average of the gradients, instead of the 
gradient itself. 

An alternative to using momentum is called root mean square propagation (RMSprop). 
Both RMSprop and momentum do the same thing of dampening the oscillations and 
moving more directly towards the goal, but they do so in different ways.

Mini-batch gradient Descent vs Momentum

Mini-batch gradient
descent

Momentum

Zig-zag pattern of mini-batch
gradient descent

1 It is not uncommon to see mini-batch gradient descent develop
a zig-zag pattern towards the target.
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While momentum takes steps in the direction of the moving average of the gradients, 
RMSprop takes the safer bet of scaling the gradient in proportion to a moving average of the 
magnitude of gradients. It reduces oscillations by merely scaling the gradient in proportion 
to the square root of the moving average of the square of the gradients or, more simply put, 
in proportion to the average magnitude of recent gradients.

A final optimization method I'd like to introduce is called adaptive moment estimation 
(Adam). Adam is a combination of RMSprop and momentum. The Adam method steps 
in the direction of the velocity of the gradients, as in momentum. But, it scales updates in 
proportion to the moving average of the magnitude of the gradients, as in RMSprop. These 
properties make Adam an optimization method a bit more aggressive than RMSprop, yet 
not as aggressive as momentum.

In practice, both Adam and RMSprop are sensible choices for value-based deep 
reinforcement learning methods. I make extensive use of both in the chapters ahead. 
However, I do prefer RMSprop for value-based methods, as you'll soon notice. RMSprop 
is stable and less sensitive to hyperparameters, and this is particularly important in value-
based deep reinforcement learning.

! miguel's analogy

Optimization methods in value-based deep reinforcement learning

To visualize RMSprop, think of the steepness change of the surface of your loss function. If 
gradients are high, such as when going downhill, and the surface changes to a flat valley, 
where gradients are small, the moving average magnitude of gradients is higher than the 
most recent gradient, therefore, the size of the step is reduced, preventing oscillations or 
overshooting. 

If gradients are small, such as in a near-flat surface, and they change to a significant 
gradient, as when going downhill, the average magnitude of gradients is small, and the new 
gradient large, therefore increasing the step size and speeding up learning.

0001 a Bit of history

Introduction of the NFQ Algorithm

NFQ was introduced in 2005 by Martin Reidmiller on a paper called "Neural Fitted Q 
Iteration − First Experiences with a Data Efficient Neural Reinforcement Learning Method". 
After 13 years working as a Professor on a number of European Universities, Martin took a 
job as a Research Scientist at Google DeepMind.
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it's in the Details

The full Neural Fitted Q-Iteration (NFQ) algorithm

Currently, we have made the following selections, we:

• Approximate the action-value function Q(s,a; θ).
• Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
•  Optimize the action-value function to approximate the optimal action- 

value function q*(s,a).
• Use off-policy TD targets (r + γ*max_a'Q(s',a'; θ)) to evaluate policies.
• Use an epsilon-greedy strategy (epsilon set to 0.5) to improve policies.
• Use mean squared error (MSE) for our loss function.
• Use RMSprop as our optimizer with a learning rate of 0.0005.

NFQ has three main steps:

1. Collect E experiences: (s, a, r, s', d) tuples. We use 1024 samples.

2. Calculate the off-policy TD targets: r + γ*max_a'Q(s',a'; θ).
3. Fit the action-value function Q(s,a; θ): Using MSE and RMSprop.

Now, this algorithm repeats steps 2 and 3 K number of times before going back to step 1. 
That's what makes it "fitted"; the nested loop. We'll use 40 fitting steps K. 

NFQ

Collect 
E experience 

samples

Calculate
the off-policy
TD targets:

r + γ max_a’ Q (s‘, a’, θ)

Fit the action-value
function Q(s, a; θ)

with RMSprop and MSE

Repeat
K

Times

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

258



Chapter 8 I introduction to value-based deep reinforcement learning32

tally it up

NFQ passes the cart-pole environment

Although NFQ is far from a state-of-the-art value-based deep reinforcement learning 
method, in a somewhat simple environment, such as the cart pole, NFQ shows a decent 
performance. 

(1) One interesting point is, you 
can see the 'training' reward never 
reaches the max of 500-reward per 
episode. The reason is we are using 
an epsilon of 0.5. Having such high 
exploration rate helps with finding 
more accurate value functions but 
it shows worse performance during 
training.

(2) Now on the second figure 
we plot the mean reward during 
'evaluation' steps. The 'evaluation' 
steps are the best performance we 
can obtain from the agent.

(3) The main issue with NFQ is 
that it takes too many steps 
to get decent performance. In 
other words, in terms of sample 
efficiency, NFQ does poorly. It needs 
many samples before it gets decent 
results. It doesn't get the most out 
of each sample.

(4) The next two plots are related 
to time. You can see how NFQ takes 
approximately 80 seconds on 
average to pass the environment. 
'Training time' is the time excluding 
evaluation steps, statistics, etc.

(5) Wall-clock time is how long it 
takes to run from beginning to end.
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Things that could (and do) go wrong
There are two issues with our algorithm. First, because we are using a powerful function 
approximator, we can generalize across state-action pairs, which is excellent, but that also 
means that the neural network adjusts the values of all similar states at once. 

Now, think about this for a second, our target values depend on the values for the next state, 
which we can safely assume are similar to the states we are adjusting the values of in the first 
place. 

In other words, we are creating a non-stationary target for our learning updates. As we 
update the weights of the approximate Q-function, the targets also move and make our most 
recent update outdated. Thus, training becomes unstable very quickly.

Second, in NFQ, we batched 1024 experience samples collected online, and update the 
network from that mini-batch. As you can imagine, these samples are correlated, given that 
most of these samples come from the same trajectory and policy. That means the network 
learns from mini-batches of samples that are very similar, and later using different mini-
batches that are also internally correlated, but likely different from previous mini-batches, 
mainly if a different, older policy collected the samples. 

Non-stationary target

1 At first our optimization 
will behave as expected 
going after the target.

2 The problem is that as predictions improve, 
our target will improve too, and change.

3 Now, our optimization 
method can get in 
trouble. 
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All this means that we are not holding the IID assumption, and this is a problem because 
optimization methods assume the data samples they use for training are independent and 
identically distributed (IID). But we are training on almost the exact opposite: samples on 
our distribution are not independent because the outcome of a new state "s'" is dependent on 
our current state "s." 

And, also, our samples are not identically distributed because the underlying data generating 
process, which is our policy, is changing over time. That means we do not have a fixed data 
distribution. Instead, our policy, which is responsible for generating the data, is changing 
and hopefully improving periodically. So, every time our policy changes, we receive new 
and likely different experiences. Optimization methods allow us to relax the IID assumption 
to a certain degree, but reinforcement learning problems go all the way, so we need to do 
something about this, too.

In the next chapter, we look at ways of mitigating these two issues. We start by improving 
NFQ with the algorithm that arguably started the deep reinforcement learning 'revolution,' 
DQN. We then follow by exploring many of the several improvements proposed to the 
original DQN algorithm over the years. We look at Double DQN also in the next chapter, 
and then in chapter 10, we look at Dueling DQN and PER.

Data correlated with time

1 Imagine we generate these data points in a single trajectory. Say 
the y axis is the position of the cart along the track, and the x axis 
is the step of the trajectory. You can see how likely it is data points 
at adjacent time steps will be similar making our function 
approximator likely to overfit to that local region. 
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Summary
In this chapter, you learned about value-based deep reinforcement learning methods. You 
had an in-depth overview of different components commonly used when building deep 
reinforcement learning agents. You learned you could approximate different kinds of value 
functions, from the state-value function v(s) to the action-value q(s, a). Also, you learned 
different neural network architectures to approximate action-value functions; from the 
state-action pair in, value out, to the more efficient state-in, values out. 

You know there are many different targets you can use to train your network. You surveyed 
exploration strategies, loss functions, and optimization methods. You learned that deep 
reinforcement learning agents are susceptible to the loss and optimization methods we 
select. You learned about RMSprop and Adam as the stable options for optimization 
methods.

You learned to combine all of these components into an algorithm called Neural Fitted 
Q-iteration. You learned about the issues commonly occurring in value-based deep 
reinforcement learning methods. You learned about the IID assumption and the stationarity 
of the targets. You also learned that not being careful with these two issues can get us in 
trouble.

By now you:

• Can solve reinforcement learning problems with continuous state-spaces.
• Have an in-depth understanding of the components and issues in value-based deep 

reinforcement learning methods.
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more stable
value-based methods 9

In this chapter

• You improve on the methods you learned in the 
previous chapter by making them more stable and 
therefore less prone to divergence.

• You explore advanced value-based deep reinforcement 
learning methods, and the many components that 
make value-based methods better.

• You solve the cart-pole environment in a fewer number 
of samples, and with more reliable and consistent 
results.

Let thy step be slow and steady, that thou stumble not. 

— Tokugawa Ieyasu 
Founder and first shōgun of the Tokugawa shogunate of Japan 

and one of the three unifiers of Japan.
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2 Chapter 9 I More stable value-based methods

In the last chapter, you learned about value-based deep reinforcement learning. NFQ, the 
algorithm we developed, is a simple solution to the two most common issues value-based 
methods face: first, the issue that data in RL is not independent and identically distributed. 
It is probably the exact opposite. The experiences are dependent on the policy that generates 
them. And, they are not identically distributed since the policy changes throughout the 
training process. Second, the targets we use are not stationary, either. Optimization methods 
require fixed targets for robust performance. In supervised learning, this is easy to see. We 
have a dataset with pre-made labels as constants, and our optimization method uses these 
fixed targets for stochastically approximating the underlying data-generating function. In 
RL, on the other hand, targets such as the TD target, use the reward, and the discounted 
predicted return from the landing state as a target. But this predicted return comes from the 
network we are optimizing, which changes every time we execute the optimization steps. 
This issue creates a moving target that creates instabilities in the training process.

The way NFQ addresses these issues is through the use of batch. By growing a batch, we 
have the opportunity of optimizing several samples at the same time. The larger the batch, 
the more the opportunity for collecting a diverse set of experience samples. This somewhat 
addresses the IID assumption. NFQ addresses the stationarity of target requirements by 
using the same mini-batch in multiple sequential optimization steps. Remember that in 
NFQ, every E episodes, we “fit” the neural network to the same mini-batch K times. That K 
in there allows the optimization method to move toward the target more stably. Gathering a 
batch, and fitting the model for multiple iterations is similar to the way we train supervised 
learning methods, in which we gather a dataset and train for multiple epochs.

NFQ does OK job, but we can do better. Now that we know the issues, we can address them 
using better techniques. In this chapter, we explore algorithms that address not only these 
issues, but other issues that you learn about making value-based methods more stable.

DQN: Making reinforcement learning  
more like supervised learning
The first algorithm that we discuss in this chapter is called Deep Q-Network (DQN). DQN 
is one of the most popular DRL algorithms because it started a series of research innovations 
that mark the history of RL. DQN claimed for the first time super-human level performance 
on an ATARI benchmark in which agents learned from raw pixel data, from mere images. 

Throughout the year, there have been many improvements proposed to DQN. And while 
these days, DQN in its original form is not a go-to algorithm, with the improvements, 
many of which you learn about in this book, the algorithm still has a spot among the best 
performing DRL agents.
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Common problems in value-based deep reinforcement learning
We must be clear and understand the two most common problems that consistently show 
up in value-based deep reinforcement learning: the violations of the IID assumption, and 
the stationary of targets.

In supervised learning, we obtain a full dataset in advance. We pre-process it, shuffle it, 
and then split it into sets for training. One crucial step in this process is the shuffling of 
the dataset. By doing so, we allow our optimization method to avoid developing overfitting 
biases, to reduce the variance of the training process and speed up convergence, and 
overall learn a more general representation of the underlying data-generating process. 
In reinforcement learning, unfortunately, data is often gathered online, which as a result, 
the experience sample generated at time step t+1 correlates with the experience sample 
generated at time step t. Moreover, as the policy is to improve, and it changes the underlying 
data-generating process changes, too, which means that new data is locally correlated and 
not evenly distributed.

Also, in supervised learning, the targets used for training are fixed values on your dataset; 
they are fixed throughout the training process. In reinforcement learning in general, and 
even more so in the extreme case of online learning, targets move with every training step 
of the network. At every training update step, we optimize the approximate value function 
and therefore change the shape of the function, that is, of possibly the entire value function. 
Changing the value function means that the target values change as well. Which in turn 

Boil it Down

Data is not Independent and Identically distributed (IID)

The second problem is the non-compliance with the IID assumption of the data. 
Optimization methods have been developed with the assumption that samples in the 
dataset we train with are independent and identically distributed. 

We know, however, our samples are not independent, but instead, they come from a 
sequence, a time series, a trajectory. The sample at time step t+1, is dependent on sample at 
time step t. Samples are correlated and we can’t prevent that from happening, it is a natural 
consequence of online learning. 

But samples are also not identically distributed as they depend on the policy that generates 
the actions. We know the policy is changing through time, and for us that’s a good thing. 
We want policies to improve. But that also means the distribution of samples (state-action 
pairs visited) will change as we keep improving.
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means, the targets used are no longer valid. Even more, because the target come from 
the network, even before we use them, we can assume targets are invalid or biased at a 
minimum. 

In NFQ, we lessen this problem by using a batch and fitting the network to a small fixed 
dataset for multiple iterations. In NFQ, we collect a small dataset, calculating targets, 
optimize the network several times before going out to collect more samples. By doing this 
on a large batch of samples, the updates to the neural network are composed of many points 
across the function, additionally making changes even more stable.

DQN is an algorithm that addresses the question: How do we make reinforcement learning 
look more like supervised learning? Consider this question for a second, and think about 
the tweaks you would make to make the data look IID and the targets fixed.

Boil it Down

Non-stationarity of targets

The problem of the non-stationarity of the targets is depicted. These are the targets we use 
to train our network, but these targets are calculated using the network itself.

As a result, the function changes with every update, changing in turn the targets.

Q(s,a;θ)

(s, a)

Non-stationarity of targets

Value of next
state-action pair

(s,a)

4

Value of next
state-action pair 
changed.
Which means the
target in not stationary, 
it changed!

7

Sample state-action pairs at t and t+12

estimate
Current3

function
Old value1

Q(s,a;θ)

New
estimate of 6

New 
action-value 
function

5

(s’,a’) 
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5DQN: Making reinforcement learning more like supervised learning 

Using target networks
A very straightforward way to make target values more stationary is to have a separate 
network that we can fix for multiple steps and reserve it for calculating more stationary 
targets. The network with this purpose in DQN is called the target network.

3 we update it, and change it again. 
This stabilizes the process

Q-function approximation with a target network

And allows the algorithm
to converge

4

1 By freezing the target 2 We make stable progress 
towards it before

Q-function optimization without a target network

1 At first everything will look 
normal. We just chase the target.

2 But the target will move as
our Q-function improves.

3 Then, things go bad. 4 And the moving targets 
could create divergence.
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6 Chapter 9 I More stable value-based methods

By using a target network to fix targets, we mitigate the issue of “chasing your own tail” by 
artificially creating several small supervised learning problems presented sequentially to the 
agent. Our targets are fixed for as many steps as we fix our target network. This improves 
our chances of convergence, not to the optimal values because such things don’t exist with 
non-linear function approximation, but convergence in general. But, more importantly, it 
substantially reduces the chances of divergence, which are not uncommon in value-based 
deep reinforcement learning methods.

It is important to note that in practice, we don’t have two “networks,” but instead, we have 
two instances of the neural network weights. We use the same model architecture and 
frequently update the weights of the target network to match the weights of the online 
network, which is the network we optimize on every step. “Frequently” here means 
something different depending on the problem, unfortunately. It is common to freeze these 
target network weights for 10 to 10,000 steps at a time, again depending on the problem 
(that’s time steps, not episodes. Be careful there!). If you are using a convolutional neural 
network, such as what you’d use for learning in ATARI games, then a 10,000-step frequency 
is the norm. But for more straightforward problems such as the cart-pole environment, 10-
20 steps is more appropriate.

By using target networks, we prevent the training process from spiraling around because we 
are fixing the targets for multiple time steps, thus allowing the online network weights to 
move consistently towards the targets before an update changes the optimization problem, 
and a new one is set. By using target networks, we stabilize training, but we also slow down 
learning because you are no longer training on up-to-date values; the frozen weights of the 
target network can be lagging for up-to 10,000 steps at a time. It’s is essential to balance 
stability and speed and tune this hyperparameter.

Show Me the Math

Target network gradient update

(1) The only difference between these two 
equations is the age of the neural network weights.

(2) A target network is an previous instance of the neural network that we freeze 
for a number of steps. The gradient update has now time to catch up to the 
target, which is much more stable when froze. This adds stability to the updates.
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i Speak python

Use of the target and online networks in DQN

    def optimize_model(self, experiences):
        states, actions, rewards, \
            next_states, is_terminals = experiences
        batch_size = len(is_terminals)
        

        q_sp = self.target_model(next_states).detach()

        
        max_a_q_sp = q_sp.max(1)[0].unsqueeze(1)
        max_a_q_sp *= (1 - is_terminals)

        target_q_sa = rewards + self.gamma * max_a_q_sp

        q_sa = self.online_model(states).gather(1, actions)

        td_error = q_sa - target_q_sa
        value_loss = td_error.pow(2).mul(0.5).mean()
        self.value_optimizer.zero_grad()
        value_loss.backward()
        self.value_optimizer.step()

    def interaction_step(self, state, env):
        action = self.training_strategy.select_action(
                                  self.online_model, state)

        new_state, reward, is_terminal, _ = env.step(action)
        <...>
        return new_state, is_terminal
    

    def update_network(self):
        for target, online in zip(
                          self.target_model.parameters(), 
                          self.online_model.parameters()):
            target.data.copy_(online.data)

(1) Notice how we now query a target network 
to get the estimate of the next state.

(2) We grab the maximum of those values, and 
make sure to treat terminal states appropriately.

(3) Finally, we create the TD targets.

(5) Use those values to create the errors.

(4) Query the current “online” estimate.

(6) Calculate the 
loss, and optimize 
the online network.

(7) Notice how we use the online 
model for selecting actions.

(8) This is how the target network 
(lagging network) gets updated with the 
online network (up-to-date network).
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8 Chapter 9 I More stable value-based methods

Using larger networks
Another way you can lessen the non-stationarity issue, to some degree, is to use larger 
networks. With more powerful networks, subtle differences between states are more likely 
detected. Larger networks reduce the aliasing of state-action pairs; the more powerful the 
network, the lower the aliasing, the lower the aliasing, the less apparent correlation between 
consecutive samples. And all of this can make target values and current estimates look more 
independent of each other.

By “aliasing” here I refer to the fact that two states can look like the same (or very similar) 
state to the neural network, but still possibly require different actions. State aliasing can 
occur when networks lack representational power. After all, neural networks are trying 
to find similarities to generalize; their job is to find these similarities. But, too small of a 
network and the generalization can go wrong. The network could get fixated with simple, 
easy to find patterns.

One of the motivations for using a target network is that they allow you to differentiate 
between correlated states more easily. Using a more capable network helps your network 
learn subtle differences, too. 

But, a more powerful neural network takes longer to train. It needs not only more data 
(interaction time) but also more compute (processing time). Using a target network is a 
more robust approach to mitigating the non-stationary problem, but I want you to know all 
the tricks. It is favorable for you to know how these two properties of your agent (the size of 
your networks, and the use of target networks, along with the update frequency), interact 
and affect final performance in similar ways.

Boil it Down

Ways to mitigate the fact that targets in reinforcement learning are non-stationary

Allow me to restate that to mitigate the non-stationarity issue we can:

1. Create a target network that provides us with a temporarily stationary target value. 
2. Create large-enough networks so that they can “see” the small differences between 
similar states (like those temporally correlated).

Now, target networks work and work well, have been proven to work multiple times. 
The technique of “Larger networks” is more of a hand-wavy solution than something 
scientifically proven to work every time. Though, feel free to experiment with this chapter’s 
Notebook. You’ll find it very easy to change values and test hypotheses.
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Using experience replay
In our NFQ experiments, we use a mini-batch of 1,024 samples, and train with it for 40 
iterations, alternating between calculating new targets and optimizing the network. These 
1,024 samples are temporally correlated since most of them belong to the same trajectory 
since the maximum number of steps in a cart-pole episode is 500. One way to improve 
on this is to use a technique called experience replay. Experience replay consists of a data 
structure, often referred to as a replay buffer or a replay memory, that holds experience 
samples for several steps (much more than 1,024 steps), allowing the sampling of mini-
batches from a broad set of past experiences. Having a replay buffer allows the agent two 
critical things. First, the training process can use a more diverse mini-batch for performing 
updates. Second, the agent no longer has to fit the model to the same small mini-batch for 
multiple iterations. Adequately sampling a sufficiently large replay buffer yields a slow-
moving target, so the agent can now sample and train on every time step with a lower risk of 
divergence.

There are multiple benefits to using experience replay. By sampling at random, we increase 
the probability that our updates to the neural network have low variance. When we use 
the batch in NFQ, most of the samples in that batch were correlated and similar. Updating 
with similar samples concentrates the changes on a limited area of the function, and 
that potentially over-emphasizes the magnitude of the updates. If we sample uniformly 
at random from a substantial buffer, on the other hand, chances are, our updates to the 
network are better distributed all across, and therefore more representative of the true value 
function.

0001 a Bit of hiStory

Introduction of experience replay

Experience replay was introduced by Long-Ji Lin on a paper titled “Self-Improving Reactive 
Agents Based On Reinforcement Learning, Planning and Teaching”, believe it or not, 
published in 1992!

That’s right, 1992! Again, that’s when neural networks were referred to as “connectionism”... 
Sad times!

After getting his Ph.D. from CMU, Dr. Lin has moved through several technical roles in many 
different companies. Currently, he’s the Chief Scientist at Signifyd, leading a team that works 
on a system to predict and prevent online fraud.
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10 Chapter 9 I More stable value-based methods

Using a replay buffer also gives the impression our data is IID so that the optimization 
method is stable. Samples appear independent and identically distributed because of the 
sampling from multiple trajectories and even policies at once.

By storing experiences and later sampling them uniformly, we make the data entering the 
optimization method look independent and identically distributed. In practice, the replay 
buffer needs to have a considerable capacity to perform optimally, from 10,000 to 1,000,000 
experiences depending on the problem. Once you hit the maximum size, you evict the 
oldest experience before inserting the new one.

Unfortunately, the implementation becomes a little bit of a challenge when working with 
high-dimensional observations, because poorly implemented replay buffers hit a hardware 
memory limit quickly in high-dimensional environments. In image-based environments, 
for instance, where each state representation is a stack of the 4 latest image frames, as it is 
common for ATARI games, you probably don’t have enough memory on your personal 
computer to naively store 1,000,000 experience samples. For the cart-pole environment, this 
is not much of a problem. First, we don’t need 1,000,000 samples, and we use a buffer of size 
50,000 instead. But also, states are represented by 4-element vectors, so there is not much of 
an implementation performance challenge.

DQN with Replay Buffer

Environment

State

 Action

DQN Agent

Replay buffer

Mini  batch

Train

Store

Experience

Select

Action
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Nevertheless, by using a replay buffer, your data looks more IID and targets stationary than 
in reality. By training from uniformly sampled mini-batches, you make the RL experiences 
gathered online look more like a traditional supervised learning dataset with IID data and 
fixed targets. Sure, data is still changing as you add new and discard old samples, but these 
changes are happening slowly, and so they go somewhat unnoticed by the neural network 
and optimizer.

Boil it Down

Experience replay makes the data look IID, and targets somewhat stationary

The best solution to the problem of data not being IID is called experience replay. 

The technique is very simple and it’s been around for decades: As your agent collects 
experiences tuples et=(St,At,Rt+1,St+1) online, we insert them into a data structure, commonly 
referred to as the replay buffer D, such that D={e1, e2 , ... , eM}. M, the size of the replay buffer, is 
a value often between 10,000 to 1,000,000, depending on the problem. 

We then train the agent on mini-batches sampled, usually uniformly at random, from the 
buffer, so that each sample has equal probability of being selected. Though, as you learn on 
the next chapter, you could possibly sample with some other distribution. Just beware, it is 
not that straightforward, we’ll discuss details in the next chapter.

Show Me the Math

Replay buffer gradient update

(1) The only difference between these two equations is 
that we are now obtaining the experiences we use for 
training by sampling uniformly at random the replay buffer 
D, instead of using the online experiences as before.

(2) This is the full gradient update for DQN. More precisely the one referred 
to as Nature DQN, which is DQN with a target network and a replay buffer.
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i Speak python

A simple replay buffer

class ReplayBuffer():
    def __init__(self, 
                 m_size=50000, 
                 batch_size=64):
       self.ss_mem = np.empty(shape=(m_size), dtype=np.ndarray)
       self.as_mem = np.empty(shape=(m_size), dtype=np.ndarray) 
        <...>

        self.m_size, self.batch_size = m_size, batch_size
        self._idx, self.size = 0, 0
    
    def store(self, sample):
        s, a, r, p, d = sample
        self.ss_mem[self._idx] = s
        self.as_mem[self._idx] = a
        <...>

        self._idx += 1
        self._idx = self._idx % self.m_size

        self.size += 1
        self.size = min(self.size, self.m_size)

    def sample(self, batch_size=None):
        if batch_size == None:
            batch_size = self.batch_size
        idxs = np.random.choice(
            self.size, batch_size, replace=False)
        experiences = np.vstack(self.ss_mem[idxs]), \
                      np.vstack(self.as_mem[idxs]), \
                      np.vstack(self.rs_mem[idxs]), \
                      np.vstack(self.ps_mem[idxs]), \
                      np.vstack(self.ds_mem[idxs])
        return experiences

    def __len__(self):
        return self.size

(1) This is a simple replay buffer with a 
default maximum size of 50,000, and 
a default batch size of 64 samples.

(2) We initialize 5 arrays to hold states, actions, 
reward, next states and done flags. Shorten for brevity.

(3) We initialize several variables to do storage and sampling.

(4) When we store a new sample, we 
begin by unwrapping the sample variable, 
and then setting each array’s element 
to its corresponding value.(5) Again 

removed 
for 
brevity.

(6) _idx points to the next index to modify, so we 
increase it, and also make sure it loops back after 
reaching  the maximum size (the end of the buffer).

(7) Size also increases with every new sample stored, but 
it doesn’t loop back to 0, it stops growing instead.

(8) In the sample function, we begin by 
determining the batch size. We use the 
default of 64 if nothing else was passed.

(9) Sample batch_size 
ids from 0 to size.

(12) This is a handy function to return the correct 
size of the buffer when ‘len(buffer)’ is called.

(10) Then, extract the 
experiences from the buffer 
using the sampled ids.

(11) And return those experiences.
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Using other exploration strategies
Exploration is a vital component of reinforcement learning. In the NFQ algorithm, we use 
an epsilon-greedy exploration strategy, which consists of acting randomly with epsilon 
probability. We sample a number from a uniform distribution [0, 1). If the number is less 
than the hyperparameter constant, called epsilon, your agent selects an action uniformly at 
random (that’s including the greedy action), otherwise, it acts greedily.

For the DQN experiments, I added to chapter 9’s Notebook some of the other exploration 
strategies introduced in chapter 4. I adapted them to use them with neural networks, and 
the are re-introduced next. Make sure to checkout all Notebooks and play around.

i Speak python

Linearly decaying epsilon-greedy exploration strategy

class EGreedyLinearStrategy():
    <...>        
   def _epsilon_update(self):
      self.epsilon = 1 - self.t / self.max_steps
      self.epsilon = (self.init_epsilon - self.min_epsilon) * \
                                self.epsilon + self.min_epsilon
        self.epsilon = np.clip(self.epsilon, 
                               self.min_epsilon, 
                               self.init_epsilon)
        self.t += 1
        return self.epsilon

    def select_action(self, model, state):
        self.exploratory_action = False
        with torch.no_grad():
            q_values = model(state).cpu().detach()
            q_values = q_values.data.numpy().squeeze()

        if np.random.rand() > self.epsilon:
            action = np.argmax(q_values)
        else: 
            action = np.random.randint(len(q_values))

        self._epsilon_update()
        self.exploratory_action = action != np.argmax(q_values)
        return action 

(1) In an linearly decaying epsilon-greedy 
strategy we start with a high epsilon value 
and decay its value in a linear fashion.

(2) We clip epsilon 
to be between 
the initial and the 
minimum value.

(3) This is a variable holding 
the number of times 
epsilon has been updated. (4) In the ‘select_action’ 

method, we use a model 
and a state.

(5) For logging 
purposes, I 
always extract 
the q_values.

(6) We draw the random number 
from a uniform distribution and 
compare it to epsilon.

(7) If higher, we use the argmax of the 
q_values, otherwise a random action.

(8) Finally, we update epsilon, set a variable for logging 
purposes, and return the action selected.
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i Speak python

Exponentially decaying epsilon-greedy exploration strategy

class EGreedyExpStrategy():
    <...>

    def _epsilon_update(self):

        self.epsilon = max(self.min_epsilon, 
                           self.decay_rate * self.epsilon)
        return self.epsilon

    # def _epsilon_update(self):
    #     self.decay_rate = 0.0001
    #     epsilon = self.init_epsilon * np.exp( \
    #                                -self.decay_rate * self.t)
    #     epsilon = max(epsilon, self.min_epsilon)
    #     self.t += 1
    #     return epsilon

    def select_action(self, model, state):
        self.exploratory_action = False
        with torch.no_grad():
            q_values = model(state).cpu().detach()
            q_values = q_values.data.numpy().squeeze()

        if np.random.rand() > self.epsilon:
            action = np.argmax(q_values)
        else:
            action = np.random.randint(len(q_values))
        self._epsilon_update()

        self.exploratory_action = action != np.argmax(q_values)
        return action

(1) In the exponentially decaying strategy, the only difference 
is now epsilon is decaying in an exponential curve.

(2) This is yet another way to exponentially decay epsilon, this one 
actually uses the exponential function. The epsilon values will be pretty 
much the same, but the decay rate will have to be a different scale.

(4) ‘exploratory_action’ here is a variable used to calculate the percentage of 
exploratory actions taken per episode. Only used for logging information.

(3) This ‘select_action’ function is identical to the previous strategy. One thing I want to 
highlight is, I’m querying the q_values every time only because I’m collecting information to 
show to you. But if you care about performance, this is a bad idea. A faster implementation 
would only query the network after determining a greedy action is being called for.
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i Speak python

SoftMax exploration strategy

class SoftMaxStrategy():
    <...>
    def _update_temp(self):
      temp = 1 - self.t / (self.max_steps * self.explore_ratio)
      temp = (self.init_temp - self.min_temp) * \
                                           temp + self.min_temp

        temp = np.clip(temp, self.min_temp, self.init_temp)
        self.t += 1
        return temp

    def select_action(self, model, state):
        self.exploratory_action = False
        temp = self._update_temp()
        with torch.no_grad():

            q_values = model(state).cpu().detach()
            q_values = q_values.data.numpy().squeeze()

            scaled_qs = q_values/temp

            norm_qs = scaled_qs - scaled_qs.max()            
            e = np.exp(norm_qs)
            probs = e / np.sum(e)
            assert np.isclose(probs.sum(), 1.0)

        action = np.random.choice(np.arange(len(probs)), 
                                  size=1, p=probs)[0]

        self.exploratory_action = action != np.argmax(q_values)
        return action

(1) In the SoftMax strategy, we use a “temperature” parameter 
which, the closer the value to 0, the more pronounced the 
differences in the values will become, making action selection 
more “greedy”. The temperature is decayed linearly.

(2) Here, after decaying the temperature 
linearly we clip its value to make sure it is 
in an acceptable range.

(3) Notice that in the SoftMax strategy we really have no 
chance of going without extracting the q_values from the 
model. After all, actions depend directly on the values.

(4) After extracting the values, we want to accentuate their 
differences (unless temp equals 1).

(5) We normalize them to avoid an overflow in the ‘exp’ operation below.

(6) Calculate the exponential.
(7) Finally, convert to probabilities.

(8) Finally, we use the probabilities to select an action. Notice 
how we pass the probs variable to the p function argument.

(9) And just as before: Was the action the greedy or exploratory?
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it'S in the DetailS

Exploration strategies have an impactful effect on performance

(1) In NFQ, we used epsilon greedy with a constant value of 0.5. Yes! That is 50% of the 
time we acted greedily, and 50% of the time, we chose uniformly at random. Given that 
there are only two actions in this environment, the actual probability of choosing the 
greedy action is 75%, and the chance of selecting the non-greedy action is 25%. Notice 
that in large action space, the probability of selecting the greedy action would be smaller. 
In the Notebook, I output this effective probability value under ‘ex 100’. That means “ratio 
of exploratory action over the last 100 steps”.

(2) In DQN and all remaining value-based algorithms in this and the following 
chapter, I use the exponentially decaying epsilon-greedy strategy. I prefer this 
one because it is simple and it works well. But other, more advanced strategies 
may be worth trying. I noticed even a small difference in hyperparameters 
makes a significant difference in performance. Make sure to test that yourself.

(3) The plots in this box are the decaying schedules of all the different exploration 
strategies available in chapter 9’s Notebook. I highly encourage you to go through it 
and play with the many different hyperparameters and exploration strategies. There is 
a lot more to deep reinforcement learning than just the algorithms.
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it'S in the DetailS

The full Deep Q-Network (DQN) algorithm

Our DQN implementation has very similar components and settings to our NFQ, we:

• Approximate the action-value function Q(s,a; θ).
• Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
•  Optimize the action-value function to approximate the optimal action- 

value function q*(s,a).
• Use off-policy TD targets (r + gamma*max_a’Q(s’,a’; θ)) to evaluate policies.
• Use mean squared error (MSE) for our loss function.
• Use RMSprop as our optimizer with a learning rate of 0.0005.

Some of the differences are that in the DQN implementation we now:

•  Use an exponentially decaying epsilon-greedy strategy to improve policies, decay-
ing from 1.0 to 0.3 in roughly 20,000 steps.

• Use a replay buffer with 320 samples min, 50,000 max, and a mini-batches of 64.
• Use a target network that updates every 15 steps.

DQN has 3 main steps:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert it into the replay buffer.

2. Randomly sample a mini-batch from the buffer and calculate the off-policy TD 
targets for the whole batch: r + gamma*max_a’Q(s’,a’; θ).
3. Fit the action-value function Q(s,a; θ): Using MSE and RMSprop.

0001 a Bit of hiStory

Introduction of the DQN Algorithm

DQN was introduced in 2013 by Volodymyr “Vlad” Mnih in a paper called “Playing Atari with 
Deep Reinforcement Learning”. This paper introduced DQN with experience replay. In 2015, 
another paper came out: “Human-level control through deep reinforcement learning”. This 
second paper introduced DQN with the addition of target networks; the full DQN version 
you just learned about. 

Vlad got his Ph.D. under Geoffrey Hinton (one of the fathers of deep learning), and works as 
a Research Scientist at Google DeepMind. He’s been recognized for his DQN contributions, 
and has been included in the 2017 MIT Technology Review 35 Innovators under 35 list.
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tally it Up

DQN passes the cart-pole environment

The most remarkable part of the results is that NFQ needs far more samples than DQN to 
solve the environment; DQN is more sample efficient. However, they take about the same 
time, both training (compute) and wall-clock time.

(1) The most obvious conclusion 
we can draw from this first 
graph is the DQN is more sample 
efficient than NFQ. But, if you 
pay attention to the curves, you 
notice how NFQ is also noisier 
than DQN. This is one of the 
most important improvements 
we accomplished so far.
(2) As you can see, they both 
pass the cart-pole environment, 
but DQN takes about 250 
episodes  while NFQ takes 
almost 2,500 episodes. That’s a 
tenfold reduction in samples. 
(3) Here you can see the same 
trend in sample efficiency, but 
with time steps instead of 
episodes: DQN takes about 
50,000 experience tuples while 
NFQ uses about 250,000.
(4) But, DQN takes more 
training time than NFQ to 
pass the environment. Now, by 
training time here I mean the 
time from the beginning to the 
end of all episodes, not just 
computation.
(5) In terms of wall-clock time 
(that is training time, and 
statistics calculation, evaluation 
steps, etc) they are both about 
5 minutes.
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Double DQN: Mitigating the overestimation  
of action-value functions
In this section, we introduce one of the main improvements that have proposed to 
DQN throughout the year, called Double Deep Q-Networks (Double DQN, or DDQN). 
This improvement consists of adding Double learning to our DQN agent. It’s very 
straightforward to implement, and it yields agents with consistently better performance than 
DQN. The changes required are very similar to the changes applied to Q-learning to develop 
Double Q-learning; however, there are some differences that we need to discuss.

The problem of overestimation, take two
As you can probably remember from chapter 6, Q-learning tends to overestimate action-
value functions. Our DQN agent is no different; we are using the same off-policy TD target 
after all with that max operator. The crux of the problem is very simple: We are taking the 
max of estimated values. Estimated values are often off-center, some higher than the true 
values, some lower, but the bottom line is they are off. Now, the problem is that we are 
always taking the max of these values. So, we have a preference for higher values, even if 
they are not correct. So our algorithms show a positive bias, and performance suffers.

! MigUel'S analogy

The issue with over-optimistic agents, and people

I used to like super positive people until I learned about Double DQN. No, seriously, 
imagine you meet a very optimistic person, let’s call her DQN. DQN is very optimistic. She’s 
experienced many things in life, from the toughest defeat to the highest success. The 
problem with DQN, though, is she expects the sweetest possible outcome from every single 
thing she does, regardless of what she actually does. Is that a problem?

One day, DQN went to a local casino. It was the first time, but lucky DQN got the jackpot at 
the slot machines. Optimistic as she is, DQN immediately adjusted her value function. She 
thought, “Going to the casino is very rewarding (the value of Q(s,a) should be very high) 
because at the casino you can go to the slot machines (next state s’) and by playing the slot 
machines, you get the jackpot [max_a’ Q(s’, a’)]”.

But, there are multiple issues with this thinking. To begin with, not every time DQN goes to 
the casino, she plays the slot machines. She likes to try new things too (she explores), and 
sometimes she tries the roulette, poker, or blackjack (tries a different action). Sometimes the 
slot machines area is under maintenance and not accessible (the environment transitions 
her somewhere else.) Additionally, most of the time DQN plays the slot machines, she 
doesn’t get the jackpot (the environment is stochastic.) After all, slot machines are called 
bandits for a reason, not those bandits, the other – never mind.
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Separating action selection and action evaluation
One way to better understand the positive bias and how we can address it when using 
function approximation is by unwrapping the max operator in the target calculations. The 
max of a Q-function is the same as the Q-function of the argmax action.

So, let’s unpack the previous sentence with the max and argmax. Notice that we made pretty 
much the same changes when we went from Q-learning to Double Q-learning, but given we 
are using function approximation, we need to be cautious. At first, this unwrapping might 
seem like a silly step, but it actually helps me understand how to mitigate this problem.

F5 refreSh My MeMory

What’s an argmax, again?

The argmax function is defined as the arguments of the maxima. The argmax action-
value function, argmax Q-function, “argmaxaQ(s,a)” is just the index of the action with the 
maximum value at the given state s.

So, for example, if you have a Q(s) with values [-1, 0 , -4, -9] for actions 0-3, the maxaQ(s, 
a) is 0, which is the maximum value, and the argmaxaQ(s, a) is 1 which is the index of the 
maximum value.

Show Me the Math

Unwrapping the argmax

(1) What we are doing here is something 
silly. Take a look at the equations at the top 
and bottom of the box and compare them.

(2) There is no real difference between the 
two equations since both are using the same 
Q-values for the target. Bottom line is these 
two bits are the same thing written differently.
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All we are saying here is that taking the max is like asking the network: 

“What’s the value of the highest-valued action in state s?”

But, we are really asking two questions with a single question. First, we do an argmax, which 
is equivalent to asking: 

“Which action is the highest-valued action in state s?” 

And then, we use that action to get its value. Equivalent to asking: 

“What’s the value of this action (which happens to be the highest-valued action) in state s?”

One of the problems is that we are asking both questions to the same Q-function, which 
shows bias in the same direction in both answers.

In other words, the function approximator will answer: 

“I think this one is the highest-valued action in state s, and this is its value.”

i Speak python

Unwrapping the max in DQN

    q_sp = self.target_model(next_states).detach()
    max_a_q_sp = q_sp.max(1)[0].unsqueeze(1)

    max_a_q_sp *= (1 - is_terminals)
    target_q_sa = rewards + self.gamma * max_a_q_sp

    argmax_a_q_sp = self.target_model(next_states).max(1)[1]

    q_sp = self.target_model(next_states).detach()

    max_a_q_sp = q_sp[np.arange(batch_size), argmax_a_q_sp]
    max_a_q_sp = max_a_q_sp.unsqueeze(1)
    max_a_q_sp *= (1 - is_terminals)
    target_q_sa = rewards + self.gamma * max_a_q_sp

(1) This is the original DQN-way of calculating targets.

(3) We pull the q-values of the next state and get their max.

(4) Set the value of terminal states to 0, and calculate the targets.

(5) This is an equivalent way to calculating targets, “unwrapping the max”.

(6) First, get the argmax action of the next state.

(7) Then, get the q-values of the next state, just as before.
(8) Now, we use the indices to get the max values of the next states.

(9) And proceed as before.

(2) It’s 
important that 
we ‘detach’ 
the target so 
that we do 
not back-
propagate 
through it.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

283



22 Chapter 9 I More stable value-based methods

A solution
A way to reduce the chance of positive bias is to have two instances of the action-value 
function, just like we did in chapter 6.

If you had another source of the estimates, you could then ask one of the questions to one 
and the other question to the other. It’s somewhat like taking votes, or like an “I cut, you 
choose first” procedure, or just like getting a second doctor’s opinion on health matters. 

In double learning, one estimator selects the index of what it believes to be the highest-
valued action, and the other estimator gives the value of this action.

However, implementing this double learning procedure exactly as described when using 
function approximation (for DQN) creates unnecessary overhead. If we did so, we would 
end-up with four networks: two networks for training (QA, QB) and two target networks, one 
for each online network.

Additionally, it creates a slowdown in the training process, since we would be training only 
one of these networks at a time. Therefore, only one network would improve per step. This 
is certainly a waste. 

Doing this double learning procedure with function approximators may still be better 
than not doing it at all, despite the extra overhead. Fortunately for us, there is a simple 
modification to the original double learning procedure that adapts it to DQN and give us 
substantial improvements without the extra overhead.

F5 refreSh My MeMory

Double learning procedure

We did this procedure with tabular reinforcement learning in Chapter 6 under the Double 
Q-learning algorithm. It goes like this:

You create two action-value functions, QA and QB.

You flip a coin to decide which action-value function to update. E.g.: QA on heads, QB on tails. 

If you got a heads and thus get to update QA: You select the action index to evaluate from 
QB, and evaluate it using the estimate QA predicts. Then, you proceed to update QA as usual, 
and leave QB alone. 

If you got a tails and thus get to update QB, you do it the other way around: Get the index 
from QA, and get the value estimate from QB. QB gets updated, and QA is left alone.
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A more practical solution
Instead of adding this overhead that is a detriment to training speed, we can perform double 
learning with the other network we already have, which is the target network.

However, instead of training both the online and target networks, we continue training 
only the online network, but use the target network to help us, in a sense, cross-validate the 
estimates.

We want to be cautious as to which network to use for action selection and which network 
to use for action evaluation. Initially, we added the target network to stabilize training by 
preventing chasing a moving target. To continue on this path, we want to make sure we use 
the network we are training, the online network, for answering the first question. In other 
words, we use the online network to find the index of the best action. Then, use the target 
network to ask the second question, that is, to evaluate the previously selected action. 

This is the ordering that works best in practice, and it makes sense why it works. By using 
the target network for value estimates, we make sure the target values are frozen as needed 
for stability. If we were to implement it the other way around, the values would come from 
the online network, which is getting updated at every time step, and therefore changing 
continuously.

Q(s,0) = 3.5

“I think action 3 is
the best action”

“Great! the value of action
3 in states s is 3.6”

Q(s,1) = 1.2

Q(s,2) = -2

Q(s,3) = 3.9

Online
Network

Q(s,0) = 3.8

Q(s,1) = 1.0

Q(s,2) = -1.5

Q(s,3) = 3.6

Target
Network

Selecting action, evaluating action
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0001 a Bit of hiStory

Introduction of the Double DQN Algorithm

Double DQN was introduced in 2015 by Hado van Hasselt, shortly after the release of the 
2015 version of DQN (The 2015 version of DQN is sometimes referred to as ‘Nature’ DQN — 
because it was published in the Nature scientific journal, and sometimes as ‘Vanilla’ DQN — 
because it is the first of many other improvements over the years).

In 2010, Hado also authored the Double Q-learning algorithm (double learning for the 
tabular case), as an improvement to the Q-learning algorithm. This is the algorithm you 
learned about and implemented in chapter 6.

Double DQN, also referred to as DDQN, was the first of many improvements proposed over 
the years for DQN. Back in 2015 when it was first introduced, DDQN obtained state-of-the-
art (best at the moment) results in the ATARI domain.

Hado obtained his Ph.D. from the University of Utrecht in the Netherlands in Artificial 
Intelligence (Reinforcement Learning). After a couple of years as a postdoctoral researcher, 
he got a job at Google DeepMind as a Research Scientist. 

Show Me the Math

DDQN gradient update

(1) The only difference in DDQN is now we 
use the online weights to select the action, 
but still use the frozen weights to get the 
estimate.

(1) So far the gradient updates look as follows.
(2) We sample uniformly at random from 
the replay buffer a experience tuple (s, a, r,s’).

(3) We then calculate the TD target 
and error using the target network. (4) Finally calculate the 

gradients only through the 
predicted values.
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i Speak python

Double DQN

  def optimize_model(self, experiences):
      states, actions, rewards, \
          next_states, is_terminals = experiences
      batch_size = len(is_terminals)

      #argmax_a_q_sp = self.target_model(next_states).max(1)[1]
      argmax_a_q_sp = self.online_model(next_states).max(1)[1]

      q_sp = self.target_model(next_states).detach()

      max_a_q_sp = q_sp[np.arange(batch_size), argmax_a_q_sp]

      max_a_q_sp = max_a_q_sp.unsqueeze(1)
      max_a_q_sp *= (1 - is_terminals)
      target_q_sa = rewards + (self.gamma * max_a_q_sp)

      q_sa = self.online_model(states).gather(1, actions)
      td_error = q_sa - target_q_sa
      value_loss = td_error.pow(2).mul(0.5).mean()
      self.value_optimizer.zero_grad()
      value_loss.backward()        
      self.value_optimizer.step()

  def interaction_step(self, state, env):
      action = self.training_strategy.select_action(
                                self.online_model, state)

      new_state, reward, is_terminal, _ = env.step(action)
      return new_state, is_terminal

    
  def update_network(self):
      for target, online in zip(
                        self.target_model.parameters(), 
                        self.online_model.parameters()):
          target.data.copy_(online.data)

(1) In Double DQN, we use the online network to get the index of the 
highest-valued action of the next state, the ‘argmax’.

(2) Then, extract the q-values of the next state according to the target network.

(3) We then index the q-values provided by the target network 
with the action indices provided by the online network.

(4) Then setup the targets as usual.

(5) Get the current estimates. Note this is where the gradients are flowing through.

(6) Calculate the loss, and 
step the optimizer.

(7) Here we keep using the online network for action selection.

(8) Updating the target network 
is still the same as before.
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A more forgiving loss function
In the previous chapter, we selected the L2 loss, also known as Mean Square Error (MSE), as 
our loss function mostly for its widespread use and simplicity. And, in reality, in a problem 
such as the cart-pole environment, there might not be a good reason to look any further. 
However, because I’m teaching you the ins and outs of the algorithms and not just “how to 
hammer the nail,” I’d also like to make you aware of the different knobs available so you can 
play around when tackling more challenging problems.

MSE is a ubiquitous loss function because 
it is simple, it makes sense, and it works 
well. But, one of the issues with using 
MSE for reinforcement learning is that 
it penalizes large errors more than small 
errors. This makes sense when doing 
supervised learning because our targets 
are the true value from the get-go, and are 
fixed throughout the training process. That 
means we are confident that, if the model 
is very wrong, then it should be penalized 
more heavily than if it is just wrong.

But as stated now several times, in reinforcement learning, we do not have these true values, 
and the values we use to train our network are dependent on the agent itself. That’s a mind 
shift. Besides, targets are constantly changing; even when using target networks, they still 
change often. In reinforcement learning, being very wrong is something we expect and 
welcome. At the end of the day, if you think about it, we are not really “training” agents, our 
agents learn on their own. Think about that for a second.

A loss function not as unforgiving, and also more robust to outliers, is the Mean Absolute 
Error, also known as MAE or L1 loss. MAE is defined as the average absolute difference 
between the predicted and true values, that 
is, the predicted action-value function and 
the TD target. Given that MAE is a linear 
function as opposed to quadratic like MSE, 
we can expect MAE to be more successful 
at treating large errors the same way as 
small errors. This can come in handy in 
our case because we expect our action-
value function to give wrong values at some 
point during training, particularly at the 
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beginning. Being more resilient to outliers often implies errors have less effect, as compared 
to MSE, in terms of changes to our network, which means more stable learning.

Now, on the flip side, one of the helpful things of MSE that MAE does not have is the fact 
that its gradients decrease as the loss goes to zero. This feature is helpful for optimization 
methods as it makes it easier to reach the optima because lower gradients mean small 
changes to the network. But luckily for us, there is a loss function that is somewhat a mix of 
MSE and MAE, called the Huber loss. 

The Huber loss has the same useful 
property as MSE of quadratically penalizing 
the errors near zero, but it is not quadratic 
all the way out for huge errors. Instead, the 
Huber loss is quadratic (curved) near-
zero error, and it becomes linear (straight) 
for errors larger than a pre-set threshold. 
Having the best of both worlds makes 
the Huber loss robust to outliers, just like 
MAE, and differentiable at 0, just like MSE.

The Huber loss uses a hyperparameter, 
δ, to set this threshold in which the loss 
goes from quadratic to linear, basically, 
from MSE to MAE. If δ is zero, you are left 
precisely with MAE, and if δ is infinite, 
then you are left precisely with MSE. A 
typical value for δ is 1, but be aware that 
your loss function, optimization, and 
learning rate interaction in complex ways. 
So, if you change one, you may need to 
tune some of the others. Check out the 
Notebook for this chapter so you can play around.

Interestingly, there are at least two different ways of implementing the Huber loss function. 
You could either compute the Huber loss as defined, or compute the MSE loss instead, 
and then set all gradients larger than a threshold to a fixed magnitude value. You clip the 
magnitude of the gradients. The former depends on the deep learning framework you use, 
but the problem is, some frameworks don’t give you access to the δ hyperparameter, so you 
are stuck with δ set to 1, which doesn’t always work, and is not always the best. The latter 
often referred to as “loss clipping,” or better yet “gradient clipping,” is more flexible and, 
therefore, what I implement in the Notebook. 

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

289

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb


28 Chapter 9 I More stable value-based methods

Know that there is such a thing as “reward clipping,” which is different than “gradient 
clipping.” These are two very different things, so beware. One works on the rewards and the 
other on the errors (the loss). Now, above all is not to confuse either of these with “Q-value 
clipping,” which is undoubtedly a mistake. 

Remember, the goal in our case is to prevent gradients from becoming too large. For this, we 
either make the loss linear outside a given absolute TD error threshold or make the gradient 
constant outside a max gradient magnitude threshold.

In the cart-pole environment experiments that you find in the Notebook, I implemented the 
Huber loss function by using the “gradient clipping” technique: That is, I calculate MSE and 
then clip the gradients. However, as I mentioned before, I set the hyperparameter setting the 
maximum gradient values to infinity. Therefore, it is effectively using good-old MSE. But, 
please, experiment, play around, explore! The Notebooks I created should help you learn 
almost as much as the book. So, set yourself free over there.

i Speak python

Double DQN with Huber Loss

    def optimize_model(self, experiences):
        states, actions, rewards, \
            next_states, is_terminals = experiences
        batch_size = len(is_terminals)

        <...>
        td_error = q_sa - target_q_sa

        value_loss = td_error.pow(2).mul(0.5).mean()

        self.value_optimizer.zero_grad()
        value_loss.backward()

        torch.nn.utils.clip_grad_norm_(
                         self.online_model.parameters(), 
                         self.max_gradient_norm)

        self.value_optimizer.step()

(1) First, you calculate the targets and get the 
current values just as before, using double learning.

(2) Then, calculate the loss function as Mean 
Squared Error, just as before.

(3) Zero the optimizer and calculate the 
gradients in a backward step.

(4) Now, clip the gradients to the max_gradient_norm, this 
value can be virtually any value, but know that this interacts 
with other hyperparameters, such as learning rate.

(5) Finally, step the optimizer.
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it'S in the DetailS

The full Double Deep Q-Network (DDQN) algorithm

DDQN is almost identical to DQN, but there are still some differences. We still:

• Approximate the action-value function Q(s,a; θ).
• Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
•  Optimize the action-value function to approximate the optimal action- 

value function q*(s,a).
• Use off-policy TD targets (r + gamma*max_a’Q(s’,a’; θ)) to evaluate policies.

Notice that we now:

•  Use an adjustable Huber loss, which since we set the ‘max_gradient_norm’ variable 
to ‘float(‘inf’)’, we are effectively just using mean squared error (MSE) for our loss 
function.

•  Use RMSprop as our optimizer with a learning rate of 0.0007. Note that before we 
used 0.0005 because without double learning (vanilla DQN) some seeds fail if we 
train with a learning rate of 0.0007. Perhaps stability? In DDQN, on the other hand, 
training with a higher learning rate works best.

In DDQN we are still using:

•  An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly 
20,000 steps) to improve policies.

• A replay buffer with 320 samples min, 50,000 max, and a batch of 64.
• A target network that freezes for 15 steps and then updates fully.

DDQN, just like DQN has the same 3 main steps:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert it into the replay buffer.

2. Randomly sample a mini-batch from the buffer and calculate the off-policy TD 
targets for the whole batch: r + gamma*max_a’Q(s’,a’; θ).
3. Fit the action-value function Q(s,a; θ): Using MSE and RMSprop.

The bottom line is the DDQN implementation and hyperparameters are identical to those 
of DQN, except that we now use double learning and therefore train with a slightly higher 
learning rate. The addition of the Huber loss does not change anything because we are 
“clipping” gradients to a max value of infinite, which is equivalent to using MSE. However, 
for many other environments you will find it useful, so tune this hyperparameter.
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tally it Up

DDQN is more stable than NFQ or DQN

DQN and DDQN have very similar performance in the cart-pole environment. However, this 
is a simple environment with a very smooth reward function. In reality, DDQN should always 
give better performance.

(1) Pay attention, not just to 
the mean lines in the middle, but 
to the top and bottom bounds 
representing the maximum and 
minimum values obtained by 
any of the 5 seeds during that 
episode. DDQN shows tighter 
bounds, basically, showing more 
stability on performance.

(2) In the second plot, you see 
the same pattern, DDQN has 
narrower bounds. In terms of 
performance, DQN reaches the 
max in less number of episodes 
on the cart-pole environment for 
a seed, but DDQN reaches the 
max in similar number of episodes 
across all seeds: Stability.

(3) DQN goes through more 
steps in fewer episodes in that 
“lucky” seed and arguably related 
to performance (remember the 
cart-pole environment is about 
“lasting”).

(4) In terms of time, DDQN 
takes a bit longer than DQN 
to successfully pass the 
environment.

(5) For both, training and wall-
clock time.
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Things we can still improve on
Surely our current value-based deep reinforcement learning method is not perfect, but it 
is pretty solid. DDQN can reach super-human performance in many of the ATARI games. 
To replicate those results, you would have to change the network to take images as input (a 
stack of 4 images to be able to infer things such as direction and velocity from the images), 
and, of course, tune the hyperparameters.

Yet, we can still go a little further. There are at least a couple of other improvements to 
consider that are easy to implement and impact performance in a very positive way.

The first improvement requires us to reconsider the current network architecture. As of 
right now, we have a very naive representation of the Q-function on our neural network 
architecture.

F5 refreSh My MeMory

Current neural network architecture

We are literately “making reinforcement learning look like supervised learning”. But, we can, 
and should, break free from this constraint, and think out of the box.

Is there any better way of representing the Q-function? Think about this for a second while 
you look at the images on the next page.

State-in-values-out architecture

State Variables In
  • Cart position
  • Cart velocity
  • Pole angle
  • Pole velocity at tip

Vector of values out
  • Action 0 (left)
  • Action 1 (right)

Q(s) E.g: 

[1.44, -3.5]
State s. E.g: 

[-0.1, 1.1, 2.3, 1.1]
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The images on the right are bar plots 
representing the estimated action-value 
function Q, state-value function V, and 
action-advantage function A for the cart-pole 
environment with a state in which the pole is 
near vertical.

Notice the different functions and values and 
start thinking about how to better architect 
the neural network so that data is used more 
efficiently. As a hint, let me remind you that 
the Q-values of a state are related through the 
V-function. That is, the action-value function 
Q has an essential relationship with the state-
value function V, because of both actions in 
Q(s) and indexed by the same state s (in the 
example to the right s=[0.02, -0.01, -0.02, 
-0.04]). 

The question is, would you be able to learn 
anything about Q(s, 0) if you are using a 
Q(s, 1) sample? Look at the plot showing the 
action-advantage function A(s) and notice 
how much easier it is for you to eyeball the 
greedy action with respect to these estimates 
than when using the plot with the action-
value function Q(s). What can you do about this? In the next chapter, we look at a network 
architecture called the Dueling network that helps us exploit these relationships.

The other thing to consider improving is the way we sample experiences from the replay 
buffer. As of now, we pull samples from the buffer uniformly at random, and I’m sure your 
intuition questions this approach and suggests we can do better, and we can.

Humans don’t go around the world, just remembering random things to learn from 
at random times. There is a more systematic way in which intelligent agents “replay 
memories.” I’m pretty sure my dog chases rabbits in her sleep. Some experiences are more 
important than others to our goals. Humans often replay experiences that caused them 
unexpected joy or pain. And it makes sense, and you need to learn from these experiences 
to generate more or less of them. In the next chapter, we look at ways of prioritizing the 
sampling of experiences to get the most out of each sample, when we learn about the 
Prioritized Experience Replay (PER) method.
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Summary
In this chapter, you learned about stabilizing value-based deep reinforcement learning 
methods. You dug deep on the components that make value-based methods more stable. 
You learned about replay buffers and target networks on an algorithm known as DQN 
(‘Nature’ DQN, or ‘Vanilla’ DQN). You then improved on this by implementing a double 
learning strategy that, when using function approximation in an algorithm called DDQN, 
works efficiently. 

In addition to these new algorithms, you learned about different exploration strategies 
to use with value-based methods. You learned about linearly and exponentially decaying 
epsilon-greedy and SoftMax exploration strategies, this time, in the context of function 
approximation. Also, you learned about different loss functions and which ones make more 
sense for reinforcement learning and why. You learned that the Huber loss function allows 
you to tune between MSE and MAE with a single hyperparameter, and it is, therefore, one of 
the preferred loss functions used in value-based deep reinforcement learning methods.

By now you:

• Can solve reinforcement learning problems with continuous state-spaces with algo-
rithms that are more stable and therefore give more consistent results.

• Have an understanding of state-of-the-art value-based deep reinforcement learning 
methods and are able to solve complex problems.
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sample-efficient
value-based methods 10

In this chapter

• You implement a deep neural network architecture 
that exploits some of the nuances that exist in value-
based deep reinforcement learning methods.

• You create a replay buffer that prioritizes experiences 
by how surprising they are.

• You build an agent that trains to a near-optimal policy 
in fewer number of episodes than all previous value-
based deep reinforcement learning agents.

Intelligence is based on how efficient a species became 
at doing the things they need to survive. 

— Charles Darwin 
English naturalist, geologist, and biologist 

Best known for his contributions to the science of evolution.
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2 Chapter 10 I sample-efficient value-based methods

In the previous chapter, we improved on NFQ with the implementation of DQN and 
DDQN. In this chapter, we continue on this line of improvements to previous algorithms 
by presenting two additional techniques for improving value-based deep reinforcement 
learning methods. This time, though, the improvements are not so much about stability, 
although that could easily be a by-product. But more accurately, the techniques presented 
in this chapter improve the sample-efficiency of DQN, and other value-based DRL methods.

First, we introduce a functional neural network architecture that splits the Q-function 
representation into two streams. One stream approximates the V-function, and the other 
stream approximates the A-function. V-functions are per-state values, while A-functions 
express the distance of each action from their V-functions.

This is a handy fact for designing RL-specialized architectures that are capable of squeezing 
information from samples coming from all action in a given state into the V-function for 
that same state. What that means is that a single experience tuple can help improve the value 
estimates of all the actions in that state. Thus, improving the sample-efficiency of the agent.

The second improvement we introduce in this chapter is related to the replay buffer. As 
you remember from the previous chapter, the standard replay buffer in DQN samples 
experiences uniformly at random. Now, it is crucial to understand that sampling uniformly 
at random is a good thing for keeping gradients proportional to the true data-generating 
underlying distribution, and therefore keeping the updates unbiased. The issue is, however, 
that if we could devise a way for prioritizing experiences, we would be able to use the 
samples that are the most promising for learning. Therefore, in this chapter, we introduce a 
different technique for sampling experiences that allows us to draw samples that appear to 
provide the most information to the agent for actually making improvements.

Dueling DDQN: A reinforcement-learning-aware  
neural network architecture
Let's now dig into the details of this specialized neural network architecture called the 
Dueling network architecture. The dueling network is an improvement that applies only to 
the network architecture and not the algorithm. That is, we won't make any changes to the 
algorithm, but the only modifications go into the network architecture. This property allows 
dueling networks to be combined with virtually any of the improvements proposed over the 
years to the original DQN algorithm. For instance, we could have a Dueling DQN agent, 
and a Dueling Double DQN agent (or the way I'm referring to it - Dueling DDQN), and 
more. Many of these improvements are just plug-and-play, which we take advantage of that 
in this chapter. Let's now implement a dueling architecture to be used in our experiments 
and learn about it while building it.
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3Dueling DDQN: A reinforcement-learning-aware neural network architecture 

Reinforcement learning is not a supervised learning problem
In the previous chapter, we concentrated our efforts into making reinforcement learning 
look more like a supervised learning problem. By using a replay buffer, we made online data, 
which is experienced and collected sequentially by the agent, look more like an independent 
and identically distributed dataset, such as those commonly found in supervised learning.

We also made targets look more static, which also is a common trait of supervised learning 
problems. This surely helps stabilize training, but ignoring the fact that reinforcement 
learning problems are problems of their own is not the smartest approach to solving these 
problems.

One of the subtleties value-based deep reinforcement learning agents have, and that we 
will exploit in this chapter, is in the way the value functions relate to one another. More 
specifically, we can use the fact that the state-value function V(s) and the action-value 
function Q(s, a) are related to each other through the action-advantage function A(s, a).

F5 RefResh My MeMoRy

Value functions recap

(1) Recall the action-value function of a policy is its expectation of returns 
given you take action a in state s and continue following that policy.

(2) The state-value function of state s for a policy is the expectation of 
returns from that state, assuming you continue following that policy.

(3) The action-advantage function tells us the difference between 
taking an action a in state s and of choosing the policy's default action.

(4) Infinitely sampling the policy for the state-action pair yields 0. 
Why? Because there is no advantage for taking the default action.

(5) Finally, we wrap-up with this 
re-write of the advantage equation 
above. We will use it shortly.
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4 Chapter 10 I sample-efficient value-based methods

Nuances of value-based deep reinforcement learning methods
The action-value function Q(s, a) can be defined as the sum of the state-value function V(s) 
and the action-advantage function A(s, a). This means that we can decompose Q-function 
into two components. One that is shared across all actions, and another that is unique to 
each action. Or to say it another way, a component that is dependent on the action and 
another that is not.

Currently, we are learning the action-value function Q(s, a) for each action separately, 
but that's inefficient. Of course, there is some generalization happening because networks 
internally connected. Therefore, the information is shared between the nodes of the 
network. But, when learning about Q(s, a1), we are ignoring the fact that we could use the 
same information to learn something about Q(s, a2), Q(s, a3), and all other actions available 
in state s. The fact that V(s) is common to all actions a1, a2, a3, ..., aN.

Efficient use of experiences

Experience
tuple

Information

Q(s, left) Q(s, right) V(s) A(s, right)A(s, left)

By approximating Q-Functions directly we 
squeeze information from each sample and 
dump it all into the same bucket.

(technically these 
buckets, are 
connected through 
the network, but 
stay with me) Information in the 

V(s) bucket gets used 
by all A(s,a)

1 If we create two separate streams: one to 
collect the common information (V(s)), and 
the other to collect the differences 
between the actions (A(s,a1) and A(s,a2)), 
we would become more accurate faster.

2

Boil it Down

The action-value function Q(s, a) depends on the state-value function V(s)

The bottom line is, the values of actions depend on the values of states, and it would be 
nice to leverage this fact. In the end, taking the worst action in a good state could be better 
than taking the best action is a bad state. You see how "the values of actions depend on 
values of states"?

The dueling network architecture uses this dependency of the action-value function Q(s, a)
on the state-value function V(s) such that every update improves the state-value function 
V(s) estimate which is common to all actions.
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5Dueling DDQN: A reinforcement-learning-aware neural network architecture 

Advantage of using advantages
Now, let me give you an example. In the cart-pole environment, when the pole is in the 
upright position, the value of the left and right action are virtually the same. It doesn't 
matter what you do when the pole is precisely upright (for the sake of argument, assume the 
cart is precisely in the middle of the track and that all velocities are 0). Going either left or 
right should have the same value in this perfect state.

However, it does matter what action you take when the pole is tilted 10 degrees to the right, 
for instance. In this state, pushing the cart to the right to counter the tilt is the best action 
the agent can take. Conversely,  going left, and consequently pronouncing the tilt is probably 
a bad idea. 

Notice that this is what the action-advantage function A(s, a) represents: How much better 
than average is taking this particular action a in the current state s?

Relationship between value functions

The state on the left is a pretty 
good state because the pole is 
almost in the upright position and the
cart somewhat in the middle of the 
track. On the other hand, the state 
on the right is not as good because
the pole is falling over to the right.

1

The state-value function captures 
this “goodness” of the situation. 
The state on the left is 10-times 
more valuable than the one on 
the right (at least according to a 
highly-trained agent).

2

The action-value function doesn’t 
capture this relationship directly, 
but instead it helps determine what 
are some favorable actions to take.
On the left, it is not clear what to do,
while on the right it is pretty obvious
you should move the cart right.

3

The action-advantage function also 
captures this aspect of “favorability”,
but notice how it is much easier 
to “see” the differences of 
advantageous actions with it than 
with the action-value function. The
state on the left helps illustrate 
this property fairly well.

4
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6 Chapter 10 I sample-efficient value-based methods

A reinforcement-learning-aware architecture
The dueling network architecture consists of creating two separate estimators, one of the 
state-value function V(s), and the other, of the action-advantage function A(s, a). Before 
splitting up the network, though, you want to make sure your network shares internal 
nodes. For instance, if you are using images as inputs, you want the convolutions to be 
shared so that feature-extraction layers are shared. In the cart-pole environment, we share 
the hidden layers.

After sharing most of the internal nodes and layers, the layer before the output layers splits 
into two streams: a stream for the state-value function V(s), and another for the action-
advantage function A(s, a). The V-function output layer always ends in a single node 
because the value of a state is always a single number. The output layer for the Q-function, 
however, outputs a vector of the same size as the number of actions. In the cart-pole 
environment, the output layer of the action-advantage function stream has two nodes, one 
for the left action, and the other for the right action.

Dueling Architecture

The state-value 
function node

The action-value 
function output

The action-advantage
function nodes

Input the same
4 variables

Hidden
layers

The special module
merging the state-value
and the action-value functions

0001 A Bit of histoRy

Introduction of the Dueling network architecture

The Dueling neural network architecture was introduced in 2015 on a paper called "Dueling 
Network Architectures for Deep Reinforcement Learning" by Ziyu Wang when he was a 
Ph.D. student at the University of Oxford. This was arguably the first paper to introduce 
a custom deep neural network architecture designed specifically for value-based deep 
reinforcement learning methods.

Ziyu is now a Research Scientist at Google DeepMind where he continues to contribute to 
the field of deep reinforcement learning.
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7Dueling DDQN: A reinforcement-learning-aware neural network architecture 

Building a dueling network
Building the dueling network is very straightforward. I noticed that you could split the 
network anywhere after the input layer, and it'd work just fine. I can imagine you could 
even have two separate networks, but I don't see the benefits of doing that. In general, my 
recommendation is to share as many layers as possible and split only in two heads a layer 
before the output layer.

i speAk python

Building the dueling network

class FCDuelingQ(nn.Module):
    def __init__(self, 
                 input_dim, 
                 output_dim, 
                 hidden_dims=(32,32), 
                 activation_fc=F.relu):
        super(FCDuelingQ, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer = nn.Linear(input_dim, 
                                     hidden_dims[0])

        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(
                hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.value_output = nn.Linear(hidden_dims[-1], 1)
        self.advantage_output = nn.Linear(
            hidden_dims[-1], output_dim)

(1) The dueling network is very similar to the 
regular network. We need variables for the 
number of nodes in the input and output 
layers, the shape of the hidden layers, and the 
activation function, just as before.

(2) Next, we create the input layer and "connect" it to the first hidden layer. Here the 'input_
dim' variable is the number of input nodes, and 'hidden_dims[0]' is the number of nodes of the 
first hidden layer. 'nn.Linear' creates a layer with inputs and outputs.

(3) Here we create the hidden layers by creating layers as defined in the 'hidden_dims' 
variable. For example, a value of '(64, 32, 16)' will create a layer with 64 input nodes and 32 
output nodes, and then a layer with 32 input nodes and 16 output nodes.

(4) Finally, we build the two output layers, both "connected" to the last hidden 
layer. The 'value_output' has a single node output, and the 'advantage_output' has 
'output_dim' nodes. In the cart-pole environment, that number is two.
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8 Chapter 10 I sample-efficient value-based methods

Reconstructing the action-value function
First, let me clarify that the motivation of the dueling architecture is to create a new network 
that improves on the previous network, but without having to change the underlying control 
method. We need changes that are not disruptive and that are compatible with previous 
methods. We need to be able just to swap the neural network and be done with it.

For this, we need to find a way to aggregate the two outputs from the network and 
reconstruct the action-value function Q(s, a), so that any of the previous methods could use 
the dueling network model. This way, we create the Dueling DDQN agent when using the 
dueling architecture with the DDQN agent. A dueling network and the DQN agent would 
make the Dueling DQN agent.

So, how do we join the outputs? Some of you are thinking, add them up, right? I mean, that 
is the definition that I provided, after all. Though, some of you may have noticed that there 
is no way to recover V(s) and A(s, a) uniquely given only Q(s, a). Think about it; if you add 
+10 to V(s) and remove it from A(s, a) you obtain the same Q(s, a) with two very different 
values for V(s) and A(s, a).

The way we address this issue in the dueling architecture is by subtracting the mean of the 
advantages from the aggregated action-value function Q(s, a) estimate. Doing this shifts 
V(s) and A(s, a) off by a constant, but also stabilizes the optimization process.

While estimates are off by a constant, they do not change the relative rank of A(s, a), and 
therefore Q(s, a) also has the appropriate rank. All of this, while still using the same control 
algorithm. Big win.

show Me the MAth

Dueling architecture aggregating equations

(1) The Q-function is parameterized by theta, alpha, and beta. Theta represents the weights 
of the shared layers, alpha the weights of the action-advantage function stream, and beta the 
weights of the state-value function stream.

(2) But because we cannot uniquely recover the Q from V and A, we use the following 
equation in practice. This removes one degree of freedom from the Q-function. The action-
advantage and state-value functions lose their true meaning by doing this. But in practice, 
they are just off-centered by a constant and are now more stable when optimizing.
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9Dueling DDQN: A reinforcement-learning-aware neural network architecture 

i speAk python

The forward pass of a dueling network

class FCDuelingQ(nn.Module):
    <...>
    def forward(self, state):

        x = state
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, 
                             device=self.device, 
                             dtype=torch.float32)
            x = x.unsqueeze(0)      

        x = self.activation_fc(self.input_layer(x))

        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))

        a = self.advantage_output(x)
        v = self.value_output(x)
        v = v.expand_as(a)

        q = v + a - a.mean(1, keepdim=True).expand_as(a)
        return q 

(1) Notice that this is the same class as 
before. I just removed the code for building of 
the network for brevity.

(2) In the forward pass, we start by making sure the input to the network, the 'state', is of 
the expected type and shape. We do this because sometimes we input batches of states 
(training), sometimes single states (interacting). Sometimes these are numpy vectors.

(3) At this point, we have prepped the input (again single or batch of states) variable x to what 
the network expects. So, we pass the variable 'x' to the input layer, which remember takes in 
'input_dim' variables and outputs 'hidden_dim[0]' variables, those will then pass through the 
activation function.

(4) We use that output as the input for our first hidden layer. We pass the variable 'x', which 
you can think of as the current state of a pulse wave that goes from the input to the output 
of the network, sequentially to each hidden layer and the activation function.

(5) 'x' now contains the values that came out of the last hidden layer and its respective 
activation. We use those as the input to the 'advantage_output' and the 'value_output' 
layers. Since 'v' is a single value that will be added to 'a', we expand it.

(6) Finally, we add 'v' and 'a' and subtract the mean of 'a' from it. That is our Q(s, .) estimate, 
containing the estimates of all actions for all states.
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10 Chapter 10 I sample-efficient value-based methods

Continuously updating the target network
Currently, our agent is using a target network that can be outdated for several steps 
before it gets a big weight update when syncing with the online network. In the cart-pole 
environment, that is merely ~15 steps apart, but in more complex environments, that 
number can rise to tens of thousands.

There are at least a couple of issues with this approach. On the one hand, we are freezing the 
weights for several steps and calculating estimates with progressively increasing stale data. 
As we reach the end of an update cycle, the likelihood of the estimates being of no benefit 
to the training progress of the network is higher. On the other hand, every so often, a huge 
update is made to the network. Making a big update likely changes the whole landscape of 
the loss function all at once. This update-style seems to be both too conservative and too 
aggressive at the same time if that's possible.

Now, we got into this issue because we wanted our network not to move too quickly and 
therefore create instabilities, and we still want to preserve those desirable traits. But, can you 
think of other ways we can accomplish something similar but in a smooth manner? How 
about actually slowing down the target network, instead of freezing it?

We can do just that. The technique is called Polyak averaging, and it consists of mixing 
in online network weights into the target network on every step. Another way of seeing 
it, every step we create a new target network composed of a large percentage of the target 
network weights and a small percentage of the online network weights. We add a ~1% of 
new information every step to the network. Therefore, the network always lags, but by a 
much smaller gap. Additionally, we can now update the network on each step.

Full target net work update 

constant for a number of steps. 
Target network weights are held 1

increasing lang.
Creating a progressively 2

target network weights.
Every n steps we update the 3

t+n t+n+1 t+n+2 t+n+3 t+n+4 t+n+5 t+n+6 t+2n t+2n+1 t+2n+2
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11Dueling DDQN: A reinforcement-learning-aware neural network architecture 

i speAk python

Mixing in target and online network weights

class DuelingDDQN():
   <...>

    def update_network(self, tau=None):

        tau = self.tau if tau is None else tau
        for target, online in zip(
               self.target_model.parameters(), 
               self.online_model.parameters()):

            target_ratio = (1.0 - self.tau) * target.data
            online_ratio = self.tau * online.data

            mixed_weights = target_ratio + online_ratio
            target.data.copy_(mixed_weights)

(1) This is the same DuelingDDQN class, but with 
most of the code removed for brevity.

(2) 'tau' is a variable representing the ratio of the online network that will 
be mixed into the target network. A value of 1 is equivalent to a full update.

(3) 'zip' takes 
iterables and 
returns an iterator 
of tuples.

(4) Now, we calculate the ratios we are taking from the target and online weights.

(5) Finally, we mix the weights and copy the new values into the target network.

show Me the MAth

Polyak averaging
(1) Instead of making the target network equal to the online 
network every N time steps, and keep it frozen in the mean time.

(2) Why not mixing the 
target network with a tiny 
bit of the online network 
more frequently, perhaps 
every time step? (3) Here tau is the mixing factor.

(4) Since we are doing this with a dueling 
network, all parameters, including the ones for 
the action-advantage and state-value stream 
will be mixed in.
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12 Chapter 10 I sample-efficient value-based methods

What does the dueling network bring to the table?
Action-advantages are particularly useful when you have many similarly-valued actions, 
as you have been able to see by yourself. Technically speaking, the dueling architecture 
improves policy evaluation, especially in the face of many actions with similar values. Using 
a dueling network, our agent can more quickly and accurately compare similarly-valued 
actions, which is something useful in the cart-pole environment.

Function approximators, such as a neural network, have errors, that's expected. In a network 
with the architecture we were using before, these errors are potentially very different for 
all of the state-actions pairs, as they are all separate. But, given the fact that the state-value 
function is the component of the action-value function that is common to all actions in a 
state, by using a dueling architecture, we reduce the function error and error variance. This 
is because now the error in the component with the most significant magnitude in similarly-
valued actions (the state-value function V(s)) is now the same for all actions.

If the dueling network is improving policy evaluation in our agent, then a fully-trained 
Dueling DDQN agent should have better performance than the DDQN when the left and 
right actions have almost the same value. I ran an experiment by collecting the states of 100 
episodes for both, the DDQN and the Dueling DDQN agents. My intuition tells me that 
if one agent is better than the other at evaluating similarly-valued actions, then the better 
agent should have a smaller range along the track. This is because a better agent should 
learn the difference between going left and right, even when the pole is exactly upright. 
Warning! I didn't do ablation studies, but the results of my hand-wavy experiment suggest 
that the Dueling DDQN agent is indeed able to evaluate in those states better.

State-space visited by fully-trained cart-pole agents
I’m not going to make the mistake to draw any conclusions here. But you can notice the state-space of the cart-pole 
environment that was visited by a fully-trained DDQN and Dueling DDQN agents. The results reveal the better 
performance of the Dueling DDQN agent and it suggests this better performance is due to better policy evaluation, 
perhaps due to the dueling network. Have time to improve on this brief experiment and let others know your findings?

1
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13Dueling DDQN: A reinforcement-learning-aware neural network architecture 

it's in the DetAils

The Dueling Double Deep Q-Network (Dueling DDQN) algorithm

Dueling DDQN is almost identical to DDQN, and DQN, with only a few tweaks. My 
intention is to keep the differences of the algorithms to a minimal while still showing 
you the many different improvements that can be made. I'm certain that changing only 
a few hyperparameters by just a little bit has big effects in performance of many of these 
algorithms, therefore I don't optimize the agents. That being said, now let me go through 
the things that are still the same as before:

• Network outputs the action-value function Q(s,a; θ).
• Optimize the action-value function to approximate the optimal action-value func-
tion q*(s,a).
• Use off-policy TD targets (r + gamma*max_a'Q(s',a'; θ)) to evaluate policies.
• Use an adjustable Huber loss, but still with 'max_gradient_norm' variable set to 
'float('inf')'. Therefore, we are using MSE.
• Use RMSprop as our optimizer with a learning rate of 0.0007.
• An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly 
20,000 steps) to improve policies.
• A greedy action selection strategy for evaluation steps.
• A replay buffer with 320 samples min, 50,000 max, and a batch of 64.

We replaced:

• The neural network architecture. We now use a state-in-values-out dueling net-
work architecture (nodes: 4, 512,128, 1; 2, 2).
• The target network that use to freeze for 15 steps and update fully, now uses a 
Polyak averaging: every time step we mix in 0.1 of the online network and 0.9 of the 
target network to form the new target network weights.

Dueling DDQN, is the same exact algorithm than DDQN, just a different network:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert into the replay buffer.

2. Pull a batch out of the buffer and calculate the off-policy TD targets: R + 
gamma*max_a'Q(s',a'; θ), using double learning.
3. Fit the action-value function Q(s,a; θ), using MSE and RMSprop.

One pretty cool thing to notice is that all of these improvements are like Lego blocks for 
you to get creative. Maybe you like to try Dueling DQN, without the double learning, maybe 
you want the Huber loss to actually clip gradients, or maybe you like the Polyak averaging 
to mix 50:50 every 5 time steps. It's up to you! Hopefully, the way I have organized the code 
will give you the freedom to try things out.
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14 Chapter 10 I sample-efficient value-based methods

tAlly it Up

Dueling DDQN is more data efficient than all previous methods

Dueling DDQN and DDQN have very similar performance in the cart-pole environment. 
Dueling DDQN is slightly more data-efficient. The number of samples DDQN needs to pass 
the environment is higher than that of Dueling DDQN. However, Dueling DDQN takes 
slightly longer than DDQN.

(1) The training curves of 
Dueling DDQN are narrower and 
end sooner than DDQN. This 
suggest that Dueling DDQN 
is not only learning in fewer 
number of samples, but also 
learning more stable policies.

(2) The evaluation plot shows 
the same pattern. One 
interesting thing to note is 
that bump at around episode 
50. Both agents show it, but 
the Dueling DDQN has a higher 
lower bound throughout the 
entire training process.

(3) Dueling DDQN consumes 
less data, a fewer number of 
steps.

(4) But takes longer to train!  
About 50 seconds longer 
in average. Why would this 
be? Maybe because we now 
updating the target network 
every time step? Maybe the 
dueling network? Experiment 
and find out!

(5) No much difference between 
the two time plots.
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15PER: Prioritizing the replay of meaningful experiences 

PER: Prioritizing the replay  
of meaningful experiences
In this section, we introduce a more intelligent experience replay technique. The goal is to 
allocate resources for experience tuples that have the most significant potential for learning. 
Prioritized Experience Replay (PER) is a specialized replay buffer that does just that.

A smarter way to replay experiences
At the moment, our agent samples experience tuples from the replay buffer uniformly at 
random. Mathematically speaking, this feels right, and it is. But intuitively, this seems an 
inferior way of replaying experiences. Replaying uniformly at random allocates resources 
to unimportant experiences. It doesn't feel right that our agent spends time and compute 
power "learning" things that have nothing to offer to the current state of the agent

But, let's be careful here, while it is evident that uniformly at random is not good enough, 
it is also the case that human intuition might not work very well in determining a better 
learning signal. When I first implemented a prioritized replay buffer, before reading the PER 
paper, my first thought was: "Well, I want the agent to get the highest cumulative discounted 
rewards possible, I should have it replay experiences with high reward only." Yeah, that 
didn't work. I then realized agents also need negative experiences, so I thought: "Aha! I 
should have the agent replay experiences with the highest reward magnitude! Besides, I love 
using that 'abs' function!", but that didn't work either. Can you think why these experiments 
didn't work? It makes sense that if I want the agent to learn to experience rewarding states, I 
should have it replay those the most so that it learns to get there. Right?

! MigUel's AnAlogy

Human intuition and the relentless pursuit of happiness

I love my daughter. I love her so much. If fact, so much that I want her "to experience only 
the good things in life." No, seriously, if you are a parent, you know what I mean.

I noticed she likes chocolate a lot, or as she would say "a bunch". So, I started opening up 
to giving her candies every so often. And then more often than not. But, then she started 
getting mad at me when I didn't think she should get a candy.

Too much high-reward experiences, you think? You bet! Agents (maybe even humans) need 
to be reminded often of good and bad experiences alike, but they also need "mundane" 
experiences with low magnitude rewards. Now, in the end, none of these experiences give 
you the most learning, which is what we are after. Isn't that counterintuitive?
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16 Chapter 10 I sample-efficient value-based methods

Then, what is a good measure of "important" experiences?
What we are looking for is to learn from unexpectedly valued experiences, surprising 
experiences, experiences we thought should be valued this much, and ended up valued that 
much. That makes more sense; these experiences bring "reality" to us. We have a view of the 
world, we anticipate outcomes, and when the difference between expectation and reality is 
significant, we know we need to learn something from that.

In reinforcement learning, this measure of "surprise" is given by the TD error! Well, 
technically, the absolute TD error. The TD error provides us with the difference between the 
agent's current estimate and target value. The current estimate indicates the value our agent 
thinks is going to get for acting in a specific way. The target value suggests a new estimate 
for the same state-action pair, which can be seen as a reality check. The absolute difference 
between these values indicates how far off we are, how unexpected this experience is, 
how much new information we received, which makes it a good indicator for learning 
opportunity.

Now, the TD error is not the perfect indicator of the "highest learning opportunity," but 
maybe the best reasonable proxy for it. In reality, the best criterion for "learning the most" 
is really inside the network and hidden behind parameter updates. But, it seems impractical 
to calculate gradients for all experiences in the replay buffer every time step. The good thing 
about the TD error is that the machinery to calculate it is in there already. And of course, 
the fact that the TD error is still a good signal for prioritizing the replay of experiences.

show Me the MAth

The absolute TD error is the priority

(1) I'm calling it "Dueling DDQN" target to be very specific that we are using a target 
network, and a dueling architecture. However, this could be more-simply called TD target.
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17PER: Prioritizing the replay of meaningful experiences 

Greedy prioritization by TD error
Let's pretend we use TD errors for prioritizing experiences are follows:

• Take action a in state s and receive a new state s', a reward r, and a done flag d.
• Query the network for the estimate of the current state Q(s, a; θ).
• Calculate a new target value for that experience as target = r + gamma*max_a'Q(s',a'; 

θ).
• Calculate the absolute TD error as atd_err = abs(Q(s, a; θ) - target)
• Insert experience into the replay buffer as a tuple (s, a, r, s', d, atd_err)).
• Pull out the top experiences from the buffer when sorted by atd_err.
• Train with these experiences, and repeat.

There are multiple issues with this approach, but let's try to get them one by one. First, we 
are calculating the TD errors twice: we calculate the TD error before inserting it into the 
buffer, but then again when we train with the network. In addition to this, we are ignoring 
the fact that TD errors change every time the network changes because they are calculated 
using the network. But, the solution can't be updating all of the TD errors every time step. 
It's simply not cost-effective. 

A workaround for both these problems is to update the TD errors only for experiences that 
are used to update the network (the replayed experiences) and insert new experiences with 
the highest magnitude TD error in the buffer to ensure they are all replayed at least once.

However, from this workaround, other issues arise. First, a TD error of zero in the first 
update means that experience will likely never be replayed again. Second, when using 
function approximators, errors shrink slowly, and this means that updates concentrate 
heavily in a small subset of the replay buffer. And finally, TD errors are noisy.

For these reasons, we need a strategy for sampling experiences based on the TD errors, 
but stochastically, not greedily. If we sample prioritized experiences stochastic, we can 
simultaneously ensure all experiences have a chance of being replayed, and that the 
probabilities of sampling experiences are monotonic in the absolute TD error.

Boil it Down

TD errors, priorities and probabilities

The most important takeaway from this page is that TD errors are not enough; We will use 
TD errors to calculate priorities, and from priorities we calculate probabilities.
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18 Chapter 10 I sample-efficient value-based methods

Sampling prioritized experiences stochastically
Allow me to dig deeper into why we need stochastic prioritization. In highly stochastic 
environments, learning from experiences sampled greedily based on the TD error may lead 
us to where the noise takes us. 

TD errors depend on the one-step reward and the action-value function of the next state, 
which can be both highly stochastic. So, highly-stochastic environments can have higher 
variance TD errors. In such environments, we can get ourselves into trouble if we let our 
agents strictly follow the TD error. We don't want our agents to get fixated with "surprising" 
situations, that's not the point. An additional source of noise in the TD error is the neural 
network. Using highly non-linear function approximators, also contribute to the noise 
in TD errors, especially early during training when errors are the highest. If we were to 
sample greedily solely based on TD-errors, a lot of the training time would be spent on the 
experiences with potentially inaccurately large magnitude TD error.

0001 A Bit of histoRy

Introduction of the Prioritized Experience Replay Buffer

The "Prioritized Experience Replay" (PER) paper was introduced simultaneously with the 
Dueling architecture paper in 2015 by the Google DeepMind folks.

Tom Schaul, a Senior Research Scientist at Google DeepMind, is the main author of the PER 
paper. Tom obtained his Ph.D. in 2011 from the Technical University of Munich. After 2 years 
as a Post Doc at New York University, Tom joined DeepMind Technologies which 6 months 
later would be acquired by Google and turned into what today is Google DeepMind.

Tom is a core developer of the PyBrain framework, a modular machine learning library 
for Python. PyBrain was probably one of the earlier frameworks to implement machine 
learning, reinforcement learning and black-box optimization algorithms. He is also a 
core developer of PyVGDL, a high-level video game description language built on top of 
PyGame.

Boil it Down

Sampling prioritized experiences stochastically

TD errors are noisy and shrink slowly. We don't want to stop replaying experiences that, 
due to noise, get a TD error value of zero. We don't want to get stuck with noisy experiences 
that, due to noise, get a significant TD error. And, we don't want to fixate on experiences 
with an initially high TD error.
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19PER: Prioritizing the replay of meaningful experiences 

Proportional prioritization
Let's calculate priorities for each sample in the buffer based on TD errors. A first approach 
to do so is to sample experiences in proportion to their absolute TD error. We can use the 
absolute TD error of each experience and add a small constant, epsilon, to make sure zero 
TD error samples still have a chance of being replayed. 

We scale this priority value by exponentiating it to alpha, a hyperparameter between zero 
and one. That allows us to interpolate between uniform and prioritized sampling. It allows 
us to perform the stochastic prioritization we discussed. 

When alpha is zero, all values become one, therefore an equal priority. When alpha is one, 
all values stay the same as the absolute TD error; therefore, the priority is proportional to 
the absolute TD error — a value in between blends the two sampling strategies.

These scaled priorities are converted to actual probabilities only by dividing their values by 
the sum of the values. Then, we can use these probabilities for drawing samples from the 
replay buffer.

show Me the MAth

Proportional prioritization

(1) The priority of sample i.
(2) Is the absolute TD error.

(3) And a small constant, 
epsilon, to avoid zero priority.

show Me the MAth

Priorities to probabilities

(1) We calculate the 
probabilities.

(2) By raising the priorities 
by alpha to blend uniform and 
prioritized experience replay.

(3) And then normalize them so that the sum of the probabilities add up to one.
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20 Chapter 10 I sample-efficient value-based methods

Rank-based prioritization
One issue with the proportional-prioritization approach is that it is sensitive to outliers. 
That means that experiences with much higher TD error than the rest, whether by fact or 
noise, are sampled more often than those with low magnitudes, which may be an undesired 
side effect.

A slightly different experience prioritization approach to calculating priorities is to sample 
them using the rank of the samples when sorted by their absolute TD error.

Rank here simply means the position of the sample when sorted in descending order by the 
absolute TD error — nothing else. For instance, prioritizing based on the rank makes the 
experience with the highest absolute TD error rank 1, the second is rank 2, and so on.

After we rank them by TD error, we calculate their priorities as the reciprocal of the rank. 
And again, for calculating priorities, we proceed by scaling the priorities with alpha, just 
as with the proportional strategy. And then, we calculate actual probabilities from these 
priorities. Also, just as before, by normalizing the values so that the sum is one.

Boil it Down

Rank-based prioritization

While proportional prioritization uses the absolute TD error and a small constant for 
including zero TD error experiences, rank-based prioritization uses the reciprocal of the rank 
of the sample when sorted in descending order by absolute TD error.

Both prioritization strategies then create probabilities from priorities the same way.

show Me the MAth

Rank-based prioritization

(1) For rank-based prioritization, 
we calculate the priorities as the 
reciprocal of the rank of that sample.
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21PER: Prioritizing the replay of meaningful experiences 

Prioritization bias
Using a distribution for estimating another one introduces bias in the estimates. So, because 
we are sampling based on these probabilities, priorities, and TD errors, we need to account 
for that.

First, let me explain in more depth the problem. The distribution of the updates must be 
from the same distribution as its expectation. When we update the action-value function of 
state s and an action a, we must be cognizant that we always update with targets.

Targets are samples of expectations. That means the reward and state at the next step could 
be stochastic; there could be many possible different rewards and states when taking action 
a in a state s.

If we were to ignore this fact and update a single sample more often than it appears in that 
expectation, we would create a bias toward this value. This issue is particularly impactful at 
the end of training when our methods are near convergence.

The way to mitigate this bias is to use a technique called weighted importance sampling. It 
consists of scaling the TD errors by weights calculated with the probabilities of each sample.

What weighted importance sampling does is reverting the changing the magnitude of the 
updates so that it appears the samples came from a uniform distribution. 

show Me the MAth

Weighted Importance Sampling weights calculation

(1) We calculate the importance-
sampling weights by multiplying 
each probabilities by number of 
samples in the replay buffer. (2) We then raise that value 

to the additive inverse of beta.

(3) We also down-scale the weights 
so that the largest weights are 1, 
and everything else lower.
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22 Chapter 10 I sample-efficient value-based methods

To do weighted importance sampling very effective with a prioritized replay buffer, we add a 
convenient hyperparameter, beta, that allows us to tune the degree of the corrections. When 
beta is zero, there is no correction, when beta is one, there is a full correction of the bias.

Additionally, we want to normalize the weights by their max so that the max weight 
becomes one, and all other weights scale down the TD errors. This way, we keep TD errors 
from growing too much and keep training stable.

These importance sampling weights are used in the loss function. Instead of using the 
TD errors straight in the gradient updates, in PER, we multiply them by the importance-
sampling weights and scale all TD errors down to compensate for the mismatch in the 
distributions.

show Me the MAth

Dueling DDQN with PER gradient update

(1) I don't really want to keep bloating this equation, 
so I'm only using theta to represent all parameters, 
the shared, for the action-advantage function, 
alpha, and for the state-value function, beta.

(2) Notice how 
I changed the U 
for a P, because 
we are doing 
a prioritized 
sampling, and 
not uniformly at 
random.

(3) Finally, notice how we are using the 
normalized importance sampling weights to 
modify the magnitude of the TD error.
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23PER: Prioritizing the replay of meaningful experiences 

i speAk python

Prioritized Replay Buffer 1/2

class PrioritizedReplayBuffer():
    <...>
    def store(self, sample):

        priority = 1.0
        if self.n_entries > 0:
            priority = self.memory[
                :self.n_entries, 
                self.td_error_index].max()

        self.memory[self.next_index, 
                    self.td_error_index] = priority
        self.memory[self.next_index, 
                    self.sample_index] = np.array(sample)

        self.n_entries = min(self.n_entries + 1,
                                              self.max_samples)

        self.next_index += 1
        self.next_index = self.next_index % self.max_samples

    def update(self, idxs, td_errors):

        self.memory[idxs,
                    self.td_error_index] = np.abs(td_errors)

        if self.rank_based:
            sorted_arg = self.memory[:self.n_entries, 
                    self.td_error_index].argsort()[::-1]
            self.memory[:self.n_entries] = self.memory[
                                                    sorted_arg]

(1) The 'store' function of the 'PrioritizedReplayBuffer' class is very straightforward. The 
first thing we do is calculate the priority for the sample. Remember, we set the priority to the 
maximum. Below is 1 as default, then overwritten with the max value.

(2) With the priority and sample (experience) in hand, we insert it into the memory.

(3) We increase the variable that indicates the number of experiences in the buffer, but we 
need to make sure the buffer doesn't increase beyond the 'max_samples'.

(4) This next variable indicates the index at which the next experience will be inserted. This 
variable loops back around from 'max_samples' to 0 and goes back up.

(5) The update function takes an array of experiences ids, and new TD error values. Then, we 
just simply insert the absolute TD errors into the right place.

(6) If we are doing the rank based sampling, we additionally sort the array. Notice that arrays 
are sub-optimal for implementing a prioritized replay buffer mainly because of this 'sort' that 
depends on the number of samples. Not good for performance.
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24 Chapter 10 I sample-efficient value-based methods

i speAk python

Prioritized Replay Buffer 2/2

class PrioritizedReplayBuffer():
    <...>
    def sample(self, batch_size=None):

        batch_size = self.batch_size if batch_size == None \
                                               else batch_size
        self._update_beta()
        entries = self.memory[:self.n_entries]

        if self.rank_based:
            priorities = 1/(np.arange(self.n_entries) + 1)
        else: # proportional
            priorities = entries[:, self.td_error_index] + EPS

        scaled_priorities = priorities**self.alpha
        pri_sum = np.sum(scaled_priorities)
        probs = np.array(scaled_priorities/pri_sum, 
                                              dtype=np.float64)

        weights = (self.n_entries * probs)**-self.beta

        normalized_weights = weights/weights.max()

        idxs = np.random.choice(self.n_entries, 
                            batch_size, replace=False, p=probs)

        samples = np.array([entries[idx] for idx in idxs])

        samples_stacks = [np.vstack(batch_type) for \
    batch_type in np.vstack(samples[:, self.sample_index]).T]
        idxs_stack = np.vstack(idxs)
        weights_stack = np.vstack(normalized_weights[idxs])
        return idxs_stack, weights_stack, samples_stacks

(1) Calculate the 'batch_size', anneal 'beta', and remove zeroed rows from entries.

(2) We now calculate priorities. If it's a rank-based prioritization, it's just one over the rank 
(we sorted these in the 'update' function). Proportional is the absolute TD error plus a small 
constant epsilon to avoid zero priorities.

(3) Now, we go from priorities to probabilities. First, we blend with uniform, then probs.

(4) We then calculate the importance sampling weights using the probabilities.

(5) Normalize the weights. The maximum weight will be 1.

(6) We sample indices of the experiences in the buffer using the probabilities.

(7) Get the samples out of the buffer.

(8) Finally, stack the samples by ids, weights and experience tuples, and return them.
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i speAk python

Prioritized Replay Buffer Loss Function 1/2

class PER():
    <...>

    def optimize_model(self, experiences):

       idxs, weights, \
       (states, actions, rewards, 
                      next_states, is_terminals) = experiences
       <...>

       argmax_a_q_sp = self.online_model(next_states).max(1)[1]
       q_sp = self.target_model(next_states).detach()
       max_a_q_sp = q_sp[np.arange(batch_size), argmax_a_q_sp]
       max_a_q_sp = max_a_q_sp.unsqueeze(1)
       max_a_q_sp *= (1 - is_terminals)
       target_q_sa = rewards + (self.gamma * max_a_q_sp)

       q_sa = self.online_model(states).gather(1, actions)

       td_error = q_sa - target_q_sa

       value_loss = (weights * td_error).pow(2).mul(0.5).mean()

       self.value_optimizer.zero_grad()
       value_loss.backward()        
       torch.nn.utils.clip_grad_norm_(
                                self.online_model.parameters(), 
                                self.max_gradient_norm)
       self.value_optimizer.step()

       priorities = np.abs(td_error.detach().cpu().numpy())
       self.replay_buffer.update(idxs, priorities)

(1) As I've pointed out in other occasions, this is just a part of the 
code. These are snippets that I feel are worth showing here.

(2) One thing to notice is that now we have ids and weights coming 
along with the experiences.

(3) We calculate the target values, just as before.

(4) We query the current estimates, nothing new.

(5) We calculate the TD errors, the same way.

(6) But, now the loss function has TD errors downscaled by the weights.

(7) We continue the optimization just as before.

(8) And update the priorities of the replayed batch using the absolute TD errors.
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26 Chapter 10 I sample-efficient value-based methods

i speAk python

Prioritized Replay Buffer Loss Function 2/2

class PER():
    <...>

    def train(self, make_env_fn, make_env_kargs, seed, gamma, 
              max_minutes, max_episodes, goal_mean_100_reward):

        <...>
        for episode in range(1, max_episodes + 1):

            <...>
            for step in count():
                state, is_terminal = \
                             self.interaction_step(state, env)

                <...>
                if len(self.replay_buffer) > min_samples:

                    experiences = self.replay_buffer.sample()

                    idxs, weights, samples = experiences
                    experiences = self.online_model.load(
                                                       samples)

                    experiences = (idxs, weights) + \
                                                 (experiences,)

                    self.optimize_model(experiences)

                if np.sum(self.episode_timestep) % \
                           self.update_target_every_steps == 0:
                    self.update_network()

                if is_terminal:
                    break

(1) This is the same 'PER' class, but we are 
now in  the 'train' function.

(2) Inside the episode loop.

(3) Inside the time step loop.

(4) So, every time step during training time.

(5) Look how we pull the 'experiences' from the buffer.

(6) From the experiences, we pull the idxs, weights and experience tuple.
Notice how we load the 'samples' variables into the GPU.

(7) Then, we stack the variables again. Note that we did that only to load the 
samples into the GPU, and have them ready for training.

(8) Then, we optimize the model (this is the function in the previous page).

(9) And, everything proceeds as usual.
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27PER: Prioritizing the replay of meaningful experiences 

it's in the DetAils

The Dueling DDQN with Prioritized Replay Buffer algorithm

One final time, we improve on all previous value-based deep reinforcement learning 
methods. This time, we do so by improving on the replay buffer. As you can imagine, most 
hyperparameter stay the same as the previous methods. Let's go into the details. These are 
the things that are still the same as before:

• Network outputs the action-value function Q(s,a; θ).
• We use a state-in-values-out dueling network architecture (nodes: 4, 512,128, 1; 2, 
2).
• Optimize the action-value function to approximate the optimal action-value func-
tion q*(s, a).
• Use an off-policy TD targets (r + gamma*max_a'Q(s',a'; θ)) to evaluate policies.
• Use an adjustable Huber loss with 'max_gradient_norm' variable set to 'float('inf')'. 
Therefore, MSE.
• Use RMSprop as our optimizer with a learning rate of 0.0007.
• An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly 
20,000 steps) to improve policies.
• A greedy action selection strategy for evaluation steps.
• A target network that updates every time step using Polyak averaging with a tau 
(the mix-in factor) of 0.1.
• A replay buffer with 320 samples minimum and a batch of 64.

Things we've changed:

• Use weighted important sampling to adjust the TD errors (which changes the loss 
function).
• Use a prioritized replay buffer with proportional prioritization, with a max number 
of samples of 10,000, an alpha (degree of prioritization vs uniform − 1 is full priority) 
value of 0.6, a beta0 (initial value of beta, which is bias correction − 1 is full correction) 
value of 0.1 and a beta annealing rate of 0.99992 (fully annealed in roughly 30,000 
time steps).

PER is the same base algorithm than Dueling DDQN, DDQN and DQN:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert into the replay buffer.

2. Pull a batch out of the buffer and calculate the off-policy TD targets: R + 
gamma*max_a'Q(s',a'; θ), using double learning.
3. Fit the action-value function Q(s,a; θ), using MSE and RMSprop.

4. Adjust TD errors in the replay buffer.
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28 Chapter 10 I sample-efficient value-based methods

tAlly it Up

PER improves data efficiency even more

The prioritized replay buffer uses fewer samples than any of the previous methods. And as 
you can see it in the graphs below, it even makes things look more stable. Maybe?

(1) PER uses data much more 
efficiently, and as you can see, 
it passes the environment in 
fewer episodes.

(2) Nothing really different 
in the evaluation plot in 
terms of sample complexity, 
but you can also see a bit 
more stability than previous 
methods near the 50 episode 
mark.

(3) The real indication 
of sample complexity is 
the number of steps, not 
episodes, because episodes 
contain a variable number of 
steps in this environment. 
However, the pattern is the 
same. PER is more sample 
efficient than all previous 
methods.

(4) But look at this! PER is 
much slower than Dueling 
DDQN. But know that this is 
an implementation-specific 
issue. If you get a high-quality 
implementation of PER, this 
should not happen.

(5) Again, no much difference 
between the two time plots.
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Summary
This chapter concludes the in-depth survey of value-based deep reinforcement learning 
methods. In this chapter, we explored ways to make value-based methods more data-
efficient. You learned about the dueling architecture, and how it leverages the nuances of 
value-based reinforcement learning by separating the action-value function Q(s, a) into its 
two components: the state-value function V(s) and the action-advantage function A(s, a). 
This separation allows every experience used for updating the network to add information 
to the estimate of the state-value function V(s), which is common to all actions. The final 
consequence of this is arriving at the correct estimates more quickly, therefore reducing 
sample complexity.

You also looked into the prioritization of experiences. You learned that TD errors are a good 
criterion for creating priorities and that from priorities, you can calculate probabilities. 
You learned that we must compensate for changing the distribution of the expectation we 
are estimating. For this, we used weighted importance sampling, which is a technique for 
correcting the bias.

In the past three chapters, we dived deep into the field of value-based deep reinforcement 
learning. We started with a simple approach, NFQ. Then, we made this technique more 
stable with the improvements presented in DQN and DDQN. Then, we made it more 
sample-efficient with Dueling DDQN and PER. Overall we have a pretty robust algorithm.

But, just like with everything in life, value-based methods also have cons. First, they 
are sensitive to hyperparameters. This something well-known, but you should try it for 
yourself; go and change a learning rate, or the size of the replay buffer, or the value of tau, 
epsilon, you can find more values that don't work, than values that do. Second, value-based 
methods assume they interact with a Markovian environment. They assume that the states 
contain all the information required by the agent. This assumption dissipates as we move 
away from bootstrapping and value-based methods in general. Lastly, the combination of 
bootstrapping, off-policy learning, and function approximators are known conjointly as 'the 
deadly triad.' While the 'deadly triad' is known to produce divergence, researchers still don't 
know exactly how to prevent it.

Now, by no means, I'm saying that value-based methods are inferior to the methods we 
survey in future chapters. Those methods have issues of their own, too. The fundamental 
takeaway is to know that value-based deep reinforcement learning methods are well-known 
to diverge, and that is their weakness. How to fix it is still a research question, but sound 
practical advice is to use target networks, replay buffers, double learning, sufficiently small 
learning rates (but not too small), and maybe a little bit of patience. I'm sorry about that; I 
don't make the rules.
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30 Chapter 10 I sample-efficient value-based methods

Finally, there are additional improvements available for value-based deep RL methods. And 
even though I'm not going to explain them in this book, I'd like to mention a few of them 
so that those with the inclination can go further and explore. If you like to learn more about 
value-based deep reinforcement learning, I recommend you checkout: Distributional DQN, 
N-step DQN, and Noisy DQN.

By now you:

• Can solve reinforcement learning problems with continuous state-spaces.
• Know how to stabilize value-based deep reinforcement learning agents.
• Know how to make value-based deep reinforcement learning agents more sample 

efficient.
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policy-gradient and
actor-critic methods 11

In this chapter

• You learn about a family of deep reinforcement 
learning methods that can optimize their performance 
directly, without the need for value functions.

• You learn how to use value function to make these 
algorithms even better.

• You implement deep reinforcement learning 
algorithms that use multiple processes at once for very 
fast learning.

There is no better than adversity. Every defeat, every 
heartbreak, every loss, contains its own seed, its own lesson on 
how to improve your performance the next time. 

— Malcolm X 
American Muslim minister and 

Human Rights activist.
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2 Chapter 11 I policy-gradient and actor-critic methods

So far, in this book, we have explored methods that can find optimal and near-optimal 
policies with the help of value functions. However, all of those algorithms learn value 
functions when what we need are policies.

In this chapter, we explore the other side of the spectrum and what is in the middle. We start 
exploring methods that optimize policies directly. These methods, referred to as policy-
based or policy-gradient methods, parameterize a policy and adjust it to maximize expected 
returns.

After introducing foundational policy-gradient methods, we explore a combined class 
of methods that learn both policies and value functions. These methods are referred to 
as actor-critic because the policy, which selects actions, can be seen as an actor, and the 
value function, which evaluates policies, can be seen as a critic. Actor-critic methods often 
perform better than value-based or policy-gradient methods alone on many of the deep 
reinforcement learning benchmarks. Learning about these methods allow you to tackle 
more challenging problems.

These methods combine what you learned in the previous three chapters concerning 
learning value functions and what you learn about in the first part of this chapter, about 
learning policies. Actor-critic methods often yield state-of-the-art performance in diverse 
sets of deep reinforcement learning benchmarks.

REINFORCE: Outcome-based policy learning
In this section, we begin motivating the use of policy-based methods, first with and 
introduction, then some of the advantages you can expect when using these kinds 
of methods, and finally, we introduce the simplest-policy gradient algorithm, called 
REINFORCE.

Policy-based, value-based and actor-critic methods

Policy-based Actor-critic Value-based
(2) You are here 
for the next 
two sections.

(3) And here 
through the end 
of the chapter.

(1) Last three 
chapters you 
were here.
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3REINFORCE: Outcome-based policy learning

Introduction to policy-gradient methods

The first point I'd like to emphasize is that in policy-gradient methods, unlike in value-
based methods, we are trying to maximize a performance objective. In value-based 
methods, the main focus is to learn to evaluate policies. For this, the objective is to minimize 
a loss between predicted and target values. More specifically, our goal was to match the true 
action-value function of a given policy, and therefore, we parameterized a value function, 
and minimize the mean squared error between predicted and target values. Note that we 
didn't have true target values, and instead, we used actual returns in Monte-Carlo methods 
or predicted returns in bootstrapping methods.

In policy-based methods, on the other hand, the objective is to maximize the performance 
of a parameterized policy, so we are running gradient ascent (or minimizing the negative 
performance and executing regular gradient descent.) Now, it is rather evident that the 
performance of an agent is the expected total discounted reward from the initial state, which 
is the same thing as the expected state-value function from all initial states of a given policy.

ŘŁ With An RL Accent

Value-based vs. policy-based vs. policy-gradient vs. actor-critic methods

Value-based methods: Refers to algorithms that learn value functions and only value 
functions. Q-learning, Sarsa, DQN, and company are all value-based methods.

Policy-based methods: Refers to a broad range of algorithms that optimize policies, 
including black-box optimization methods, such as Genetic Algorithms.

Policy-gradient methods: Refers to methods that solve an optimization problem on the 
gradient of the performance of a parameterized policy. Methods you learn in this chapter.

Actor-critic methods: Refers to methods that learn both a policy and a value function, 
primarily if the value-function is learned with bootstrapping and used as the score for the 
stochastic policy gradient. You learn about these methods in this and the next chapter.

ShoW Me the MAth

Value-based vs. policy-based methods objectives
(1) In value-based methods, the 
objective is to minimize the loss 
function, which is the mean squared 
error between the true Q-function 
and the parameterized Q-function.

(2) In policy-based methods the objective 
is to maximize a performance measure, 
which is the true value-function of the 
parameterized policy from all initial states.
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4 Chapter 11 I policy-gradient and actor-critic methods

Advantages of policy-gradient methods
The main advantage of learning parameterized policies is that policies can now be any 
learnable function. In value-based methods, we worked with discrete action-spaces mostly 
because we calculate the maximum value over the actions. In high-dimensional action-
spaces, this max could be prohibitively expensive. Moreover, in the case of continuous 
action-spaces, value-based methods are severely limited.

Policy-based methods, on the other hand, can more easily learn stochastic policies, which 
in turn has multiple additional advantages. First, learning stochastic policies means better 
performance under partially observable environments. The intuition is that because we 
can learn arbitrary probabilities of actions, the agent is less dependent on the Markov 
assumption. For example, if the agent can't distinguish a handful of states from their emitted 
observations, the best strategy is often to act randomly with specific probabilities.

Interestingly, even though we are learning stochastic policies, nothing prevents the learning 
algorithm from approaching a deterministic policy. This is unlike value-based methods, in 
which, throughout training, we have to force exploration with some probability to ensure 
optimality. In policy-based methods with stochastic policies, exploration is embedded in the 
learned function and converging to a deterministic policy for a given state while training is 
possible.

Learning stochastic policies could 
get us out of trouble

(1) Consider a Foggy Lake environment in which we don't slip like in the 
Frozen Lake, but instead we can't see which state we're in.

(2) If we could see well 
in every state, the 
optimal policy would 
be something like this.

(3) If we couldn't see in these 
two states, the optimal 
action in these states would 
be something like 50% left 
and %50 right.

(4) The more partially 
observable, the more 
complex the probability 
distribution to learn for 
optimal action selection.
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5REINFORCE: Outcome-based policy learning

Another advantage of learning stochastic policies is that it could be more straightforward 
for function approximation to represent a policy than a value function. Sometimes value 
functions are too much information for what is truly needed. It could be that calculating the 
exact value of a state or state-action pair is complicated, or just unnecessary.

A final advantage to mention is that because policies are parameterized with continuous 
values, the action probabilities change smoothly as a function of the learned parameters. 
Therefore, policy-based methods often have better convergence properties. As you 
remember from previous chapters, value-based methods are prone to oscillations and even 
divergence. One of the reasons for this is that tiny changes in value-function space may 
imply significant changes in action space. A significant difference in actions can create 
entirely unusual new trajectories, and therefore create instabilities.

In value-based methods, we use an aggressive operator to change the value function; we 
take the maximum over Q-value estimates. In policy-based methods, we, instead, follow the 
gradient with respect to stochastic policies, which only progressively and smoothly change 
the actions. If you directly follow the gradient of the policy, you are guaranteed convergence 
to, at least, a local optimum.

Learning policies could be an easier, more 
generalizable problem to solve

(1) Consider a Near-infinite Corridor deterministic environment in which there is a very 
large number of cells, say 1,000,001. There are two goals, one in the leftmost cell, the 
other in the rightmost cell, and every non-terminal states is in the set of initial states.

(2) In an environment like this, the optimal policy would look as follows. In 
the middle cell, cell 500,000, a 50% left and a 50% right is optimal. The 
rest of the actions should point to the closest goal.

(3) The optimal policy in this environment is rather obvious, but what is not so 
obvious is that learning and generalizing over policies is likely easier and more 
straightforward than learning value functions. For instance, do I care whether 
cell 1000 is 0.0001 or 0.00014 or anything else, if the action is obviously 
left? Allocating resources for accurately estimating value functions is unlikely 
to yield any advantages over simply discovering the pattern over actions.
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6 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Stochastic policy for discrete action-spaces 1/2

class FCDP(nn.Module):
    def __init__(self, 
                 input_dim, 
                 output_dim,
                 hidden_dims=(32,32), 
                 init_std=1,
                 activation_fc=F.relu):
        super(FCDP, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer = nn.Linear(
            input_dim, hidden_dims[0])

        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(
                hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.output_layer = nn.Linear(
            hidden_dims[-1], output_dim)

    def forward(self, state):
        x = state
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, dtype=torch.float32)
            x = x.unsqueeze(0)

        x = self.activation_fc(self.input_layer(x))

        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))

        return self.output_layer(x)

(1) This class `FCDP` stands for Fully-
Connected Discrete-action Policy.

(2) The parameters allow you 
to specify a fully-connected 
architecture, activation function, 
and weight and bias max magnitude. 

(3) The `__init__` function 
creates a linear connection 
between the input and the 
first hidden layer.

(4) Then, it creates 
connections across 
all hidden layers.

(5) Lastly, it connects the 
final hidden layer to the output 
nodes, creating the output layer.

(6) Here we have the method that takes care of the forward functionality.

(7) First, we make sure the state is of the type of variable and shape we expect before we can 
pass it through the network.
(8) Next, we pass the properly formatted state into the input layer and then through the 
activation function.

(9) Then, we pass the output of the first activation through the sequence of hidden 
layers and respective activations.

(10) Finally, we obtain the output, which 
are logits, preferences over actions.
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7REINFORCE: Outcome-based policy learning

i SpeAk python

Stochastic policy for discrete action-spaces 2/2

       return self.output_layer(x)

    def full_pass(self, state):

        logits = self.forward(state)

        dist = torch.distributions.Categorical(logits=logits)

        action = dist.sample()

        logpa = dist.log_prob(action).unsqueeze(-1)

        entropy = dist.entropy().unsqueeze(-1)

        is_exploratory = action != np.argmax( \
                                       logits.detach().numpy())

        return action.item(), is_exploratory.item(), \
                                                 logpa, entropy

    def select_action(self, state):
        logits = self.forward(state)
        dist = torch.distributions.Categorical(logits=logits)
        action = dist.sample()
        return action.item()

    def select_greedy_action(self, state):
        logits = self.forward(state)
        return np.argmax(logits.detach().numpy())

(11) This line is just a repeat from 
the last line on the previous page.

(12) Here we do the full forward pass. This is 
just a handy function to obtain probabilities, 
actions, and everything needed for training.

(13) The forward pass returns the logits, the preferences over actions.

(14) Next, we sample the action from the probability distribution.

(15) Then, calculate the log probability of that action and format it for training.

(16) Here we calculate the entropy of the policy.

(17) And in here, for stats, we determine whether the policy selected was exploratory or not.

(18) Finally, we return an action that can be directly passed into the 
environment, the flag indicating whether the action was exploratory, 
the log probability of the action, and the entropy of the policy.

(19) This is a helper function for 
when we only need sampled action.

(20) And this one is for selecting the 
greedy action according to the policy.
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8 Chapter 11 I policy-gradient and actor-critic methods

Learning policies directly
One of the main advantage of optimizing policies directly is that, well, it's the right 
objective. We learn a policy that optimizes the value function directly, without learning a 
value function, and without taking into account the dynamics of the environment. How is 
this possible? Let me show you.

ShoW Me the MAth

Deriving the policy gradient

(1) First, let's bring a simplified version of the 
objective equation a couple of pages back.
(2) We know what we want is to find the gradient 
with respect to that performance metric.
(3) To simplify notation, let's use Tau as a variable 
representing the full trajectory.
(4) This way we can abuse notation and use 
the `G` function to obtain the return of the full 
trajectory.
(5) We can also get the probability of a 
trajectory.

(6) This is just the probability of thee initial states, then the action, then the transition and so 
on until we have the product of all the probabilities that make the trajectory likely.

(7) After all that notation change, we 
can say that the objective is this.
(8) Next, let's look at a way for 
estimating gradients of expectations, 
called the score function gradient 
estimator.
(9) With that identity, we can 
substitute values and get.
(10) Notice the dependence on the 
probability of the trajectory.
(11) Now, if substitute the probability of trajectory, take the logarithm, turn products into 
thee sum and differentiate with respect to theta, all dependence of the transition function is 
drops, and we are left with a function that we can work with.
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9REINFORCE: Outcome-based policy learning

Reducing the variance of the policy gradient
It's useful to have a way to compute the policy gradient without knowing anything about the 
environment's transition function. This algorithm increases the log-probability of all actions 
in a trajectory, proportional to the goodness of the full return. In other words, we first 
collect a full trajectory and calculate the full discounted return, then use that score to weight 
the log-probabilities of every action taken in that trajectory: At, At+1, ..., AT-1.

0001 A Bit of hiStoRy

Introduction of the REINFORCE algorithm

Ronald J. Williams introduced the REINFORCE-family of algorithms in 1992 on a paper 
titled: "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement 
Learning."

In 1986, he co-authored a paper with Geoffrey Hinton et al. called "Learning representations 
by back-propagating errors," triggering growth in ANN research at the time.

ShoW Me the MAth

Reducing the variance of the policy gradient

(1) This is the gradient we try to estimate in the REINFORCE algorithm coming up next.

(2) All this 
is saying is, 
we sample a 
trajectory.

(3) Then, for each step 
in the trajectory, we 
calculate the return 
from that step.

(4) And use that value as 
the score to weight the 
log-probability of the action 
taken at that time step.

(1) This is somewhat counterintuitive 
because we are increasing the likelihood 
of action A2 in the same proportion than 
action A0, even if the return after A0 is 
greater than the return after A2. We know 
we can't go back on time and current 
actions are not responsible for past 
reward. We can do something about that.

Let's use only rewards consequence of actions
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10 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

REINFORCE 1/2

class REINFORCE():
    <...>

    def optimize_model(self):
        T = len(self.rewards)
        discounts = np.logspace(0, T, num=T, base=self.gamma,
                                endpoint=False)

        returns = np.array(
                  [np.sum(discounts[:T-t] * self.rewards[t:]) \
                                            for t in range(T)])

        <...>
        policy_loss = -(discounts * returns * \
                                    self.logpas).mean()

        self.policy_optimizer.zero_grad()
        policy_loss.backward()
        self.policy_optimizer.step()

    def interaction_step(self, state, env):
        action, is_exploratory, logpa, _ = \
                             self.policy_model.full_pass(state)
        new_state, reward, is_terminal, _ = env.step(action)
        <...>
        return new_state, is_terminal

(1) This is the REINFORCE algorithm. When you see 
the <...>, that means code was removed for simplicity. 
Go to the chapter's Notebook for the complete code.

(2) First, we calculate the discounts as in all Monte-Carlo methods. The `logspace` function 
with these parameters returns the series of per timestep gammas. E.g.: [1, 0.99, 0.9801, ...].

(4) To emphasize, this is the returns for every timestep in the episode, 
from the initial state at timestep 0, to one before the terminal T-1.

(3) Next, we calculate 
the sum of discounted 
returns for all timesteps.

(5) This is policy loss; it's the log probability of the actions 
selected weighted by the returns obtained after that action 
was selected. Notice that because we are minimizing this loss, 
we use the negative mean. Also, we account for discounted 
policy gradients, so we multiply the returns by the discounts. (6) In these three steps, we 

first zero the gradients in the 
optimizer, then do a backward 
pass, and then step in the 
direction of the gradient.

(7) This function is obtain an action to be passed to 
the environment and all variables required for training.
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11REINFORCE: Outcome-based policy learning

i SpeAk python

REINFORCE 2/2

class REINFORCE():
    <...>

    def train(self, make_env_fn, make_env_kargs, seed, gamma, 
              max_minutes, max_episodes, goal_mean_100_reward):
        for episode in range(1, max_episodes + 1):

            state, is_terminal = env.reset(), False

            <...>

            self.logpas, self.rewards = [], []

            for step in count():
                state, is_terminal = \
                              self.interaction_step(state, env)

                if is_terminal:
                    break

            self.optimize_model()

    def evaluate(self, eval_policy_model, 
                 eval_env, n_episodes=1, 
                 greedy=True):
        rs = []
        for _ in range(n_episodes):
            <...>
            for _ in count():

                if greedy:
                    a = eval_policy_model.\
                     select_greedy_action(s)
                else: 
                    a = eval_policy_model.select_action(s)
                s, r, d, _ = eval_env.step(a)
                <...>
        return np.mean(rs), np.std(rs)

(8) Still exploring functions of the `REINFORCE` class.

(9) The `train` method is the entry point for training the agent. 

(10) We begin by looping through the episodes.

(11) Each new episode, we initialize the 
variables needed for training and stats.

(12) Then, do the following for each timestep.

(13) First, we 
collect experiences 
until we hit a 
terminal state.

(14) Then, we run one optimization step with 
the batch of all timesteps in the episode.

(15) Another thing I want you to 
see is the way I select the policy 
during evaluation. Instead of 
selecting a greedy policy I sample 
from the learned stochastic 
policy. The correct thing to do 
here depends on the environment, 
but sampling is the safe bet.
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12 Chapter 11 I policy-gradient and actor-critic methods

VPG: Learning a value function
The REINFORCE algorithm that learned about in the previous section works well in simple 
problems, and it has convergence guarantees. But because we are using full Monte-Carlo 
returns for calculating the gradient, its variance is a problem. In this section, we discuss 
a few approaches for dealing with this variance in an algorithm called Vanilla Policy 
Gradient or REINFORCE with baseline.

Further reducing the variance of the policy gradient

REINFORCE is a principled algorithm, but it has a high variance. You probably 
remember from the discussion in chapter 5 about Monte-Carlo targets, but let restate. The 
accumulation of random events along a trajectory, including the initial state sampled from 
the initial state distribution, transition function probabilities, but now in this chapter with 
stochastic policies, the randomness action selection adds to the mix. All this randomness is 
compounded inside the return, making it a high-variance signal challenging to interpret.

One way for reducing the variance is to use partial returns instead of the full return for 
changing the log-probabilities of actions. We already implemented this improvement. 
But another issue is that action log-probabilities change in the proportion of the return. 
Meaning, if we receive a significant positive return, the probabilities of the actions that led 
to that return are increased by a large margin. And if the return is a significant negative 
magnitude, then the probabilities are decreased by a large margin.

However, imagine an environment such as the Cart Pole, in which all rewards and returns 
are positive. In other to accurately separate OK actions from the best, we need lots of data. 
The variance is, otherwise, very hard to muffle. It would be handy if we could, instead of 
using noisy returns, use something that allows us to differentiate the values of actions in the 
same state. Recall?

F5 RefReSh My MeMoRy

Using estimated advantages in policy gradient methods

(1) Remember the definition of the true action-
advantage function.
(2) We can say that the advantage function is 
approximatelly the following.

(3) A not-too-bad estimate of it is the return 
Gt minus the estimated expected return from 
that state. This we can use very easily.
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13VPG: Learning a value function

Learning a value function

As you see on the previous page, we can further reduce the variance of the policy gradient 
by using an estimate of the action-advantage function, instead of the actual return. Using 
the advantage somewhat centers scores around zero; better than average actions have a 
positive score, worse than average, a negative score. The former decreases the probabilities, 
and the latter increases them.

We're going to do just that. Let's now create two neural networks, one for learning the 
policy, the other for learning a state-value function, V. Then, we use the state-value function 
and the return for calculating an estimate of the advantage function, as we see next.

ŘŁ With An RL Accent

REINFORCE, Vanilla Policy Gradient, Baselines, Actor-Critic

Some of you with prior DRL exposure may be wondering, is this a so-called "actor-critic"? It's 
learning a policy and a value-function, so it seems it should be. Unfortunately, this is one of 
those concepts where the "RL accent" confuses newcomers. Here why.

First, according to one of the fathers of RL, Rich Sutton, policy-gradient methods 
approximate the gradient of the performance measure, whether or not they learn an 
approximate value-function. However, David Silver, one of the most prominent figures 
in DRL, and a former student of Sutton disagrees. He says that policy-based methods do 
not additionally learn a value function, only actor-critic methods do. But, Sutton further 
explains that only methods that learn the value-function using bootstrapping should be 
called actor-critic, because it's bootstrapping what adds bias to the value function, and thus 
makes it a "critic." I like this distinction, therefore, REINFORCE and VPG, as presented in this 
book, are not considered actor-critic methods. But beware of the lingo, it's not consistent.

(1) The policy 
network we use 
for the cart-pole 
environment is the 
same exact as we 
use in REINFORCE: a 
4-node input layer, 
and a 2-node output 
layer. I provide 
more details on the 
experiments later.

Two neural networks, one for the policy, one for the value function

Policy network Value network (2) The value network 
we use for the cart-
pole environment is 
4-node input as well, 
representing the state, 
and a 1-node output, 
represented the value of 
that state. This network 
output the expected 
return from the input 
state. More details soon.
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14 Chapter 11 I policy-gradient and actor-critic methods

Encouraging exploration

Another essential improvement to policy-gradient methods is to add an entropy term to 
the loss function. We can interpret entropy in many different ways, from the amount of 
information one can gain by sampling from a distribution, to the number of ways one can 
order a set.

The way I like to think of entropy is 
straightforward. A uniform distribution, which 
has evenly distributed samples, has high entropy, 
in fact, the highest it can be. For instance, if you 
have two samples, and both can be drawn with 
a 50% chance, then the entropy is the highest 
it can be for a two-sample set. If you have four 
samples, each with a 25% chance, the entropy 
is the same, the highest it can be for a four-sample set. Conversely, if you have two samples, 
one has a 100% chance the other 0%, then the entropy is the lowest it can be, which is always 
zero. In PyTorch, the natural log is used for calculating the entropy instead of the binary 
log. Mostly because the natural log uses Euler's number e, and makes math more 'natural'. 
Practically speaking, however, there is no difference and the effects are the same. So, the 
entropy in the cart-pole environment, which has two actions, is between 0 and 0.6931.

The way to use entropy in policy-gradient methods is to add the negative weighted entropy 
to the loss function to encourage having evenly distributed actions. That way, a policy with 
evenly distributed actions, which yield the highest entropy, contributes to minimizing the 
loss. On the other hand, converging to a single action, which means entropy is zero, doesn't 
reduce the loss. So, the agent better converged to the optimal action, in that case.

ShoW Me the MAth

Losses to use for VPG
(1) This is the loss for the value function. It's 
simple, the mean squared Monte-Carlo error.

(2) The loss of 
the policy is this.

(3) The estimated 
advantage. (4) Log-probability of the 

action taken.
(5) The weighted 
entropy term.

(6) Entropy 
is good.(7) Mean over 

the samples.

(8) Negative 
because we 
are minimizing.
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15VPG: Learning a value function

i SpeAk python

State-value function neural network model

class FCV(nn.Module):

    def __init__(self,
                 input_dim,
                 hidden_dims=(32,32),
                 activation_fc=F.relu):
        super(FCV, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer = nn.Linear(input_dim, 
                                     hidden_dims[0])

        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(
                hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.output_layer = nn.Linear(
            hidden_dims[-1], 1)

    def forward(self, state):
        x = state
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, dtype=torch.float32)
            x = x.unsqueeze(0)

        x = self.activation_fc(self.input_layer(x))
        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))

        return self.output_layer(x)

(1) This is the state-value 
function neural network. Very 
similar to the Q-function network 
we have used in the past.
(2) Notice I left handy 
hyperparameters for you to play 
around, so go ahead and do so.

(3) Here we create linear connections between 
the input nodes, and the first hidden layer.

(4) Here we create the connections 
between the hidden layers.

(5) Here we connect the last hidden 
layer to the output layer, which has 
only one node, representing the 
value of the state.(6) This is the forward-pass function.

(7) This is formatting the input as we expect it.
(8) Doing 
a full 
forward 
pass.

(9) And returning the value of the state.
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16 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Vanilla Policy Gradient a.k.a. REINFORCE with Baseline

class VPG():
    <...>

    def optimize_model(self):
        T = len(self.rewards)
        discounts = np.logspace(0, T, num=T, base=self.gamma,
                                endpoint=False)
        returns = np.array(
[np.sum(discounts[:T-t] * self.rewards[t:]) for t in range(T)])

        value_error = returns - self.values
        policy_loss = -(
         discounts * value_error.detach() * self.logpas).mean()

        entropy_loss = -self.entropies.mean()
        loss = policy_loss + \
                        self.entropy_loss_weight * entropy_loss

        self.policy_optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(
                               self.policy_model.parameters(),
                               self.policy_model_max_grad_norm)
        self.policy_optimizer.step()

        value_loss = value_error.pow(2).mul(0.5).mean()
        self.value_optimizer.zero_grad()
        value_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                                self.value_model.parameters(),
                                self.value_model_max_grad_norm)
        self.value_optimizer.step()

(1) This is the VPG algorithm. I'm going to be removing lost of code, so 
if you want the full implementation, head to the chapter's Notebook.

(2) Very handy way for calculating the sum of discounted rewards from time step 0 to T.
(3) I want to emphasize that this loop is going through all steps from 0, then 1, 2, 3 all 
the way to the terminal state T, and calculating the return from that state, which is the 
sum of discounted rewards from that state at time step t to the terminal state T.

(4) First, calculate the value error, then use it to score the log-probabilities of the actions. Then, 
discount these to be compatible with discounted policy gradient. Then, use the negative mean.

(5) Calculate the entropy, and 
add a fraction to the loss. (6) Now, we optimize the 

policy. Zero the optimizer, 
do the backward pass, then 
clip the gradients, if desired.

(7) We step the optimizer.

(8) Lastly, we optimize the value-function neural network.
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17A3C: Parallel policy updates

A3C: Parallel policy updates
VPG is a pretty robust method for simple problems; it is, for the most part, unbiased 
because it uses an unbiased target for learning both the policy and value function. That is, 
it uses Monte-Carlo returns, which are complete actual returns experienced directly in the 
environment, without any bootstrapping. The only bias in the entire algorithm is because we 
use function approximation, which is inherently biased, but since the ANN is only a baseline 
used to reduce the variance of the actual return, there is very little bias introduced, if at all.

However, biased algorithms are necessarily a thing to avoid. Often, to reduce variance, we 
add bias. An algorithm called Asynchronous Advantage Actor-Critic (A3C) does a couple 
things to further reduce bias. First, it uses n-step returns, with bootstrapping, to learn the 
policy and value function, and second, it uses concurrent actors to generate a broad set of 
experience samples in parallel. Let's get into the details.

Using actor-workers

One of the main sources of variance in DRL algorithms is how correlated and non-
stationary online samples are. In value-based methods, we use a replay buffer to uniformly 
sample mini-batches of, for the most part, independent and identically distributed data. 
Unfortunately, using this experience-replay scheme for reducing variance is limited to off-
policy methods, because on-policy agents cannot reuse data generated by previous policies. 
In other words, every optimization step requires a fresh batch of on-policy experience.

Instead of using a replay buffer, what we can do in on-policy methods such as the policy-
gradient algorithms we learn about in this chapter, is to have multiple workers generating 
experience in parallel and asynchronously updating the policy and value function. Having 
multiple workers generating experience on multiple instances of the environment in parallel 
decorrelates the data used for training and reduces the variance of the algorithm.

(1) In A3C, we 
create multiple 
worker-learners. 
Each of them 
creates an instance 
of the environment, 
and the policy and 
V-function neural 
network weights 
use for generating 
experiences.

Asynchronous model updates
(2) After an 
experience batch 
is collected, each 
worker updates 
the global model 
asynchronously, 
without coordination 
with other workers. 
Then, they reload 
their copy of the 
models and keep at it.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

342

WOW! eBook 
www.wowebook.org



18 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

A3C worker logic 1/2

class A3C():
   <...>

    def work(self, rank):

        local_seed = self.seed + rank
        env = self.make_env_fn(
           **self.make_env_kargs,
           seed=local_seed)

        torch.manual_seed(local_seed)
        np.random.seed(local_seed)
        random.seed(local_seed)

        nS = env.observation_space.shape[0]
        nA = env.action_space.n

        local_policy_model = self.policy_model_fn(nS, nA)
        local_policy_model.load_state_dict(
                         self.shared_policy_model.state_dict())

        local_value_model = self.value_model_fn(nS)
        local_value_model.load_state_dict(
                          self.shared_value_model.state_dict())

        while not self.get_out_signal:
            state, is_terminal = env.reset(), False

            n_steps_start = 0
            logpas, entropies, rewards, values = [], [], [], []

            for step in count(start=1):

(1) This is the A3C agent.
(2) As usual, these are just snippets. You know where to find the 
working code.

(3) This is the work function each worker loops around 
in. The `rank` parameter is use as an ID for workers.

(4) See how we create a unique 
seed per worker. We want diverse 
experiences.
(5) We create a uniquely seeded 
environment for each worker.
(6) We also use that unique seed 
for PyTorch, Numpy and Python.

(7) Handy variables.

(8) Here we create a local policy model. See how we initialize its weights with the weights 
of a shared policy network. This network allow us to synchronize the agents periodically.

(9) We do the same thing with the value model. Notice we don't need `nA` for output dimensions.

(10) We start the training loop, until the worker is signaled to get out of it.

(11) The first thing is to reset the environment, and set the done or `is_terminal` flag to false.
(12) As you see next, we use n-step returns for training the policy and value functions.

(13) Let's continue 
on the next page.
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19A3C: Parallel policy updates

i SpeAk python

A3C worker logic 2/2

    for step in count(start=1):

        state, reward, is_terminal, is_exploratory = \
          self.interaction_step(
             state, env, local_policy_model, 
             local_value_model, logpas, 
             entropies, rewards, values)

        if is_terminal or step - n_steps_start == \
                                              self.max_n_steps:
            past_limit_enforced = \
                   env._elapsed_steps >= env._max_episode_steps

            failure = is_terminal and not past_limit_enforced

            next_value = 0 if failure else \
                       local_value_model(state).detach().item()

            rewards.append(next_value)

            self.optimize_model(
               logpas, entropies, rewards, values,
               local_policy_model, local_value_model)

            logpas, entropies, rewards, values = [], [], [], []
            n_steps_start = step

        if is_terminal:
            break
<...>

(14) I removed 8 spaces from the indentation to make it easier to read.
(15) We are the episode loop. First thing is to collect a step of experience.

(16) We collect n-steps maximum. If we hit a terminal state, we stop there.

(17) We check if the time wrapper was triggered by checking on the number of steps.

(18) Next, we determine if we are exiting either due to a failure, or a time out.

(19) If it is a failure, then the value of the next state is 0, otherwise, we bootstrap.

(20) Look! I'm being sneaky here and appending the next_value to the rewards. By doing this the 
optimization code from VPG remains largely the same, as you see soon. Make sure you see it.

(21) Next we optimize the model. We dig into that function shortly.

(22) We reset the variables after 
the optimization step and continue.

(23) And, if the state is terminal, 
of course exit the episode loop.

(24) There is lots removed.
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20 Chapter 11 I policy-gradient and actor-critic methods

Using n-step estimates

On the previous page, you notice that I append the value of the next state, whether terminal 
or not, to the reward sequence. That means that the reward variable contains all rewards 
from the partial trajectory and the state-value estimate of that last state. We can also see 
this as having the partial return and the predicted remaining return in the same place. The 
partial return is the sequence of rewards, and the predicted remaining return is a single-
number estimate. The only reason why this isn't a return is that it is not a discounted sum, 
but we can take care of that as well.

Now, realize that this is an n-step return, which you learned about in chapter 5. We go out 
for n-steps collecting rewards, and then bootstrap after that nth state, or before if we land on 
a terminal state, whichever comes first.

A3C takes advantage of the lower variance of n-step returns when compared to Monte-
Carlo returns. So, now, we use the value function also to predict the return used for 
updating the policy. You remember that bootstrapping reduces variance, but it adds bias. 
Therefore, we have now added a critic to our policy-gradient algorithm. Welcome to the 
world of actor-critic methods.

ShoW Me the MAth

Using n-step bootstrapping estimates

(1) Before we were using full returns 
for our advantage estimates.
(2) Now, we are using n-step 
returns, with bootstrapping.

(3) We now use this n-step advantage 
estimate for updating the action probabilities.

(4) We also use the n-step return to improve the value function estimate. Notice 
the bootstrapping here. This is what makes the algorithm an actor-critic method.
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i SpeAk python

A3C optimization step 1/2

class A3C():
    <...>

    def optimize_model(
             self, logpas, entropies, rewards, values, 
             local_policy_model, local_value_model):

        T = len(rewards)
        discounts = np.logspace(0, T, num=T, base=self.gamma,
                                endpoint=False)

        returns = np.array(
     [np.sum(discounts[:T-t] * rewards[t:]) for t in range(T)])

        discounts = torch.FloatTensor(
                                   discounts[:-1]).unsqueeze(1)
        returns = torch.FloatTensor(returns[:-1]).unsqueeze(1)

        value_error = returns - values

        policy_loss = -(discounts * value_error.detach() * \
                                                 logpas).mean()
        entropy_loss = -entropies.mean()
        loss = policy_loss + self.entropy_loss_weight * \
                                                   entropy_loss

        self.shared_policy_optimizer.zero_grad()
        loss.backward()

        torch.nn.utils.clip_grad_norm_(
              local_policy_model.parameters(), 
              self.policy_model_max_grad_norm)

        for param, shared_param in zip(

(1) A3C, optimization function.

(2) First get the length of the reward. Remember, 
`rewards` includes the bootstrapping value.

(3) Next, we calculate all discounts up to n+1.

(4) This now is the n-step predicted return.

(5) To continue, we need to remove the extra elements and format the variables as expected.

(6) Now, we calculate the value errors as the predicted return minus the estimated values.

(7) We calculate the loss just as before.

(8) Notice we now zero the shared 
policy optimizer, then calculate the loss.

(9) Then, clip the gradient magnitude.

(10) Continue on the next page.
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22 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

A3C optimization step 2/2

        for param, shared_param in zip(
                        local_policy_model.parameters(), 
                        self.shared_policy_model.parameters()):

            if shared_param.grad is None:
                shared_param._grad = param.grad

        self.shared_policy_optimizer.step()

        local_policy_model.load_state_dict(
                         self.shared_policy_model.state_dict())

        value_loss = value_error.pow(2).mul(0.5).mean()

        self.shared_value_optimizer.zero_grad()
        value_loss.backward()

        torch.nn.utils.clip_grad_norm_(
                                local_value_model.parameters(),
                                self.value_model_max_grad_norm)

        for param, shared_param in zip(
                         local_value_model.parameters(), 
                         self.shared_value_model.parameters()):
            if shared_param.grad is None:
                shared_param._grad = param.grad

        self.shared_value_optimizer.step()

        local_value_model.load_state_dict(
                          self.shared_value_model.state_dict())

(11) OK, so check this out. What 
we are doing here is iterating over 
all local and shared policy network 
parameters.

(12) And what we 
want to do is copy 
every gradient from 
the local to the 
shared model.

(13) Once the gradients are copied into the shared optimizer, we run an optimization step. 

(14) Immediately after, we load the shared model into the local model.

(15) Next, we do the same thing but with the state-value network. Calculate the loss.

(16) Zero the shared value optimizer.

(17) Backpropagate 
the gradients.
(18) Then, clip them.

(19) Then, copy all the gradients from the local model to the shared model.

(20) Step the optimizer.
(21) Finally, load the 
shared model into the 
local variable.
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23A3C: Parallel policy updates

Non-blocking model updates

One of the most critical aspects of A3C is that its network updates are asynchronous and 
lock-free. Having a shared model creates a tendency for competent software engineers 
to want a blocking mechanism to prevent workers from overwriting other updates. 
Interestingly, A3C uses an update-style called a Hogwild!, which is being shown not only to 
achieve a near-optimal rate of convergence but also outperform alternative schemes that use 
locking by an order of magnitude.

0001 A Bit of hiStoRy

Introduction of the Asynchronous Advantage Actor-Critic (A3C)

Vlad Mnih et al. introduced A3C in 2016 on a paper titled: "Asynchronous Methods for Deep 
Reinforcement Learning." If you remember correctly, Vlad also introduced the DQN agent in 
two papers, one in 2013 and the other in 2015. While DQN ignited growth in DRL research 
in general, A3C directed lots of attention to Actor-Critic methods more precisely.

i SpeAk python

Shared Adam optimizer

class SharedAdam(torch.optim.Adam):
    <...>

    for group in self.param_groups:
        for p in group['params']:
            state = self.state[p]
            state['step'] = 0
            state['shared_step'] = \
                                 torch.zeros(1).share_memory_()
            state['exp_avg'] = \
                       torch.zeros_like(p.data).share_memory_()
            <...>

    def step(self, closure=None):
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None: continue
                self.state[p]['steps'] = \
                            self.state[p]['shared_step'].item()
                self.state[p]['shared_step'] += 1
        super().step(closure)

(1) We need to create an Adam (and 
RMSprop in the Notebook) optimizer 
that puts internal variables into 
shared memory. Gladly, PyTorch 
makes this straightforward.
(2) We only need to call the `share_
memory_` method on the variables we 
need shared across workers.

(4) Then, override the step function 
so that we can manually increment 
the step variable, which is not 
easily put into shared memory.

(5) Lastly, call the parent's `step`.

(3) More 
variables 
than showing 
here.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

348

WOW! eBook 
www.wowebook.org

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_11/chapter-11.ipynb
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GAE: Robust advantage estimation
A3C uses n-step returns for reducing the variance of the targets. Still, as you probably 
remember from chapter 5, there is a more robust method that combines multiple n-step 
bootstrapping targets in a single target creating even more robust targets than a single 
n-step: the λ-target. Generalized Advantage Estimation (GAE) is analogous to the λ-target 
in TD(λ), but for advantages.

Generalized advantage estimation

GAE is not an agent on its own, but a way of estimating targets for the advantage function 
that most actor-critic methods can leverage. More specifically, GAE uses an exponentially-
weighted combination of n-step action-advantage function targets, just like the λ-target is 
an exponentially-weighted combination of n-step state-value function targets. This type 
of target, which we tune in the same way than the λ-target, can substantially reduce the 
variance of policy gradient estimates at the cost of some bias.

ShoW Me the MAth

Possible policy-gradient estimators

(1) In policy-gradient and actor-critic methods, 
we are trying to estimate the gradient of the 
following form.

(2) We can replace Psi for a number of expressions that 
estimate the score with different levels of variance and bias.

(3) This one is the 
total return starting 
from step 0, all the 
way to the end.

(4) But as we did in 
REINFORCE, we can start at 
the current time step, and 
go to the end of the episode.

(5) As we did in VPG, we 
can use a baseline, which 
in our case was the 
state-value function.

(6) In A3C, we used 
the n-step advantage 
estimate, which is the 
lowest variance.

(7) But, we 
could also use 
the true action-
value function.

(8) Or even the TD 
residual, which can be 
seen as a one-step 
advantage estimate.
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0001 A Bit of hiStoRy

Introduction of the Generalized Advantage Estimations

John Schulman published a paper titled: "High-dimensional Continuous Control Using 
Generalized Advantage Estimation" in which he introduces GAE.

John is a Research Scientist at OpenAI, and the lead inventor behind GAE, TRPO, and PPO, 
algorithms that you learn about in the next chapter. In 2018, John was recognized by 
Innovators under 35 for creating these algorithms, which are to this date state-of-the-art.

ShoW Me the MAth

GAE is a robust estimate of the advantage function

(1) N-step advantage 
estimates.

(2) Which we can mix to make an estimate 
analogous to TD lambda but for advantages.
(3) Similarly, a lambda of 
0 returns the one-step 
advantage estimate, 
and a lambda of 1 
returns the infinite-step 
advantage estimate.

ShoW Me the MAth

Possible value targets
(1) Notice we can use several different targets to train the state-
value function neural network use to calculate GAE values.
(2) We could use the reward to go, a.k.a. Monte-Carlo returns.
(3) The n-step 
bootstrapping target, 
including the TD target.
(4) Or the GAE, as a TD(lambda) estimate.
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i SpeAk python

GAE's policy optimization step

class GAE():
    <...>
    def optimize_model(
            self, logpas, entropies, rewards, values,
            local_policy_model, local_value_model):

        T = len(rewards)
        discounts = np.logspace(0, T, num=T, base=self.gamma,
                                endpoint=False)
        returns = np.array(
     [np.sum(discounts[:T-t] * rewards[t:]) for t in range(T)])

        np_values = values.view(-1).data.numpy()
        tau_discounts = np.logspace(0, T-1, num=T-1,
                      base=self.gamma*self.tau, endpoint=False)

        advs = rewards[:-1] + self.gamma * \
                                 np_values[1:] - np_values[:-1]

        gaes = np.array(
[np.sum(tau_discounts[:T-1-t] * advs[t:]) for t in range(T-1)])

        <...>

        policy_loss = -(discounts * gaes.detach() * \
                                                 logpas).mean()
        entropy_loss = -entropies.mean()
        loss = policy_loss + self.entropy_loss_weight * \
                                                   entropy_loss

        value_error = returns - values
        value_loss = value_error.pow(2).mul(0.5).mean()
        <...>

(1) This is the GAE  optimize model logic.

(2) First, we create the discounted returns, just as we did with A3C.

(3) These two lines are creating, first, a Numpy array with all the state values, and second an 
array with the `(gamma*lambda)^l`. BTW, lambda is often referred to as tau, too. I'm using that.

(4) This line creates an array of TD errors: R_t + gamma * value_t+1 - value_t, for t=0 to T.

(5) Here we create the GAES, by multiplying the tau discounts times the TD errors.

(6) We now use the gaes to calculate the policy loss.

(7) And proceed as usual.
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A2C: Synchronous policy updates
In A3C, workers update the neural networks asynchronously. But, asynchronous workers 
may not be what makes A3C such a high-performance algorithm. Advantage Actor-Critic 
(A2C) is a synchronous version of A3C, which despite the lower numbering order, was 
proposed after A3C and showed to perform comparably to A3C. In this section, we explore 
A2C, along with a few other changes we can apply to policy-gradient methods.

Weight-sharing model

One change to our current algorithm is to use a single neural network for both the policy 
and the value function. Sharing a model can be particularly beneficial when learning from 
images since feature extraction can be compute-intensive. However, model sharing can be 
challenging due to the potentially different scales of the policy and value function updates.

Sharing weights between policy and value outputs

Policy outputs
(1) We can share a few layers of the network 
in policy-gradient methods, too. The network 
would look just like the Dueling network you 
implemented in chapter 9 with outputs the 
size of the action space and another output 
for the state-value function.Value output

i SpeAk python

Weight-sharing actor-critic neural network model 1/2

class FCAC(nn.Module):
    def __init__(
       self, input_dim, output_dim, 
       hidden_dims=(32,32), activation_fc=F.relu):

        super(FCAC, self).__init__()
        self.activation_fc = activation_fc
        self.input_layer = nn.Linear(input_dim, hidden_dims[0])
        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(
                hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)
        self.value_output_layer = nn.Linear(

(1) This is the Fully-Connected Actor-Critic model.

(2) This is the network instantiation process. Very similar to the independed network model.

(3) Continues...
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28 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Weight-sharing actor-critic neural network model 2/2

        self.value_output_layer = nn.Linear(
            hidden_dims[-1], 1)
        self.policy_output_layer = nn.Linear(
            hidden_dims[-1], output_dim)

    def forward(self, state):
        x = state
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, dtype=torch.float32)
            if len(x.size()) == 1:
                x = x.unsqueeze(0)
        x = self.activation_fc(self.input_layer(x))
        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))
        return self.policy_output_layer(x), \
               self.value_output_layer(x)

    def full_pass(self, state):
        logits, value = self.forward(state)
        dist = torch.distributions.Categorical(logits=logits)
        action = dist.sample()
        logpa = dist.log_prob(action).unsqueeze(-1)
        entropy = dist.entropy().unsqueeze(-1)
        action = action.item() if len(action) == 1 \
                                       else action.data.numpy()
        is_exploratory = action != np.argmax(
              logits.detach().numpy(), axis=int(len(state)!=1))
        return action, is_exploratory, logpa, entropy, value

    def select_action(self, state):
        logits, _ = self.forward(state)
        dist = torch.distributions.Categorical(logits=logits)
        action = dist.sample()
        action = action.item() if len(action) == 1 \
                                       else action.data.numpy()
        return action

(4) OK. Here is where 
it is build, both the 
value output and the 
policy output connect 
to the last layer of 
the hidden layers.

(5) The forward 
pass starts by 
reshaping the 
input to match 
the expected 
variable type and 
shape.

(6) And notice how it 
outputs from the policy 
and a value layers.

(7) This is 
a handy 
function to 
get log-
probabilities, 
entropies 
and other 
variable at 
once.

(8) This selects the action or actions for the given state or batch of states.
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Restoring order in policy updates

Updating the neural network in a Hogwild!-style can be chaotic, yet introducing a lock 
mechanism lowers A3C performance considerably. In A2C, we move the workers from 
the agent down to the environment. So, instead of having multiple actor-learners, we have 
multiple actors with a single learner. As it turns out, having workers rolling out experiences 
is where the gains are in policy-gradient methods.

(1) In A2C, we have a single 
agent driving the interaction 
with the environment. But, in 
this case the environment is 
a multi-process class that 
gathers samples from multiple 
environments at once.

Synchronous model updates

(2) The neural 
networks now need 
to process batches 
of data. Which means 
in A2C we can take 
advantage of GPUs, 
unlike A3C in which 
CPUs are the most 
important resource.

i SpeAk python

Multi-process environment wrapper 1/2

class MultiprocessEnv(object):
    def __init__(self, make_env_fn,make_env_kargs,
                 seed, n_workers):
        self.make_env_fn = make_env_fn
        self.make_env_kargs = make_env_kargs
        self.seed = seed
        self.n_workers = n_workers

        self.pipes = [
                   mp.Pipe() for rank in range(self.n_workers)]

        self.workers = [
            mp.Process(target=self.work, 
                       args=(rank, self.pipes[rank][1])) \
                             for rank in range(self.n_workers)]

        [w.start() for w in self.workers]

(1) This is the multi-
process environment 
class, which creates 
pipes to communicate 
with the workers, and 
creates the workers 
themselves.

(2) Here we create the workers.

(3) Here we start them.
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i SpeAk python

Multi-process environment wrapper 2/2

        [w.start() for w in self.workers]

    def work(self, rank, worker_end):
        env = self.make_env_fn(
         **self.make_env_kargs, seed=self.seed + rank)
        while True:
            cmd, kwargs = worker_end.recv()
            if cmd == 'reset':
                worker_end.send(env.reset(**kwargs))
            elif cmd == 'step':
                worker_end.send(env.step(**kwargs))
            elif cmd == '_past_limit':
                worker_end.send(\
                  env._elapsed_steps >= env._max_episode_steps)
            else:
                # close command
                env.close(**kwargs)
                del env
                worker_end.close()
                break

    def step(self, actions):
        assert len(actions) == self.n_workers
        [self.send_msg(('step',{'action':actions[rank]}),rank)\
                             for rank in range(self.n_workers)]
        results = []
        for rank in range(self.n_workers):
            parent_end, _ = self.pipes[rank]
            o, r, d, _ = parent_end.recv()
            if d:
                self.send_msg(('reset', {}), rank)
                o = parent_end.recv()
            results.append((o, 
                            np.array(r, dtype=np.float), 
                            np.array(d, dtype=np.float), _))

        return \
            [np.vstack(block) for block in np.array(results).T]

(4) Continuation.

(5) Workers first create the environment.

(6) Get in this loop listening for commands.

(7) Each 
command calls 
the respective 
env function 
and sends the 
response back 
to the parent 
process..

(8) This is the main `step` function, for instance.
(9) When called it broadcasts the 
command and arguments to workers.

(10) Workers do their part 
and send back the data 
which is collected here.
(11) We automatically 
reset on done.

(12) Lastly append and stack the results 
by observations, rewards, dones, infos.
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i SpeAk python

The A2C train logic

class A2C():
    def train(self, make_envs_fn, make_env_fn,
              make_env_kargs, seed, gamma, max_minutes,
              max_episodes, goal_mean_100_reward):

        envs = self.make_envs_fn(make_env_fn,
                     make_env_kargs, self.seed, 
                     self.n_workers)
        <...>

        self.ac_model = self.ac_model_fn(nS, nA)
        self.ac_optimizer = self.ac_optimizer_fn(
                           self.ac_model, self.ac_optimizer_lr)

        states = envs.reset()

        for step in count(start=1):
            states, is_terminals = \
                            self.interaction_step(states, envs)

            if is_terminals.sum() or \
                      step - n_steps_start == self.max_n_steps:

                past_limits_enforced = envs._past_limit()
                failure = np.logical_and(is_terminals,
                          np.logical_not(past_limits_enforced))

                next_values = self.ac_model.evaluate_state(
                    states).detach().numpy() * (1 - failure)

                self.rewards.append(next_values)
                self.values.append(torch.Tensor(next_values))
                self.optimize_model()
                self.logpas, self.entropies = [], []
                self.rewards, self.values = [], []
                n_steps_start = step

(1) This is how we train with the multi-processor environment.

(2) Here, see how 
create, basically, 
vectorized 
environments.

(3) Here we create a single model. This is the 
actor-critic model with policy and value outpus.

(4) Look, we `reset` the multi-processor 
environment and get a stack of states back.

(5) The main thing is we work 
with stacks now.

(6) But, at 
its core, 
everything is 
the same.
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i SpeAk python

The A2C optimize-model logic

class A2C():
    def optimize_model(self):
        T = len(self.rewards)
        discounts = np.logspace(0, T, num=T, base=self.gamma,
                                endpoint=False)
        returns = np.array(
                     [[np.sum(discounts[:T-t] * rewards[t:, w])
                               for t in range(T)] \
                               for w in range(self.n_workers)])

        np_values = values.data.numpy()
        tau_discounts = np.logspace(0, T-1, num=T-1, 
                      base=self.gamma*self.tau, endpoint=False)
        advs = rewards[:-1] + self.gamma * np_values[1:] \
                                               - np_values[:-1]

        gaes = np.array(
            [[np.sum(tau_discounts[:T-1-t] * advs[t:, w]) \
                for t in range(T-1)] 
                for w in range(self.n_workers)])
        discounted_gaes = discounts[:-1] * gaes

        value_error = returns - values
        value_loss = value_error.pow(2).mul(0.5).mean()
        policy_loss = -(discounted_gaes.detach() * \
                                                 logpas).mean()
        entropy_loss = -entropies.mean()

        loss = self.policy_loss_weight * policy_loss + \
                self.value_loss_weight * value_loss + \
                self.entropy_loss_weight * entropy_loss

        self.ac_optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(
            self.ac_model.parameters(), 
            self.ac_model_max_grad_norm)
        self.ac_optimizer.step()

(1) This is how we optimize the model in A2C.

(2) The main thing to 
notice is now we work with 
matrices with vectors of 
time steps per worker.

(3) Some operation work the same exact way, surprisingly.

(4) And some, we 
just need to add 
a loop to include 
all workers.(5) Look 

how we 
build a 
single loss 
function.

(6) Finally, we 
optimize a single 
neural network.
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it'S in the DetAiLS

Running all policy-gradient methods in the CartPole-v1 environment

To demonstrate the policy-gradient algorithms, and to make comparison easier with the 
value-based methods explored in the previous chapters, I ran experiments with the same 
configurations as in the value-based method experiments. Here are the details:

REINFORCE:

• Runs a policy network with 4-128-64-2 nodes, Adam optimizer and lr 0.0007.
• Trained at the end of each episode with Monte-Carlo returns. No baseline.

VPG (REINFORCE with Monte-Carlo baseline):

• Same policy network as REINFORCE, but now we add an entropy term to the loss 
function with 0.001 weight, and clip the gradient norm to 1.
• We now learn a value function and use it as baseline, not as a critic. Meaning MC re-
turns are used without bootstrapping and the value function only reduces the scale of 
the returns. Value function is learned with a 4-256-128-1 network, RMSprop optimizer 
and a 0.001 learning rate. No gradient clipping, though it is possible.

A3C:

• We use the train the policy and value networks the same exact way.
• We now bootstrap the returns every 50 steps maximum (or when landing on a 
terminal state). This means this is an actor-critic method.
• We use 8 workers each with copies of the networks and doing Hogwild! updates.

GAE:

• Same exact hyperparameter as the rest of the algorithms.
• Main difference is GAE adds a `tau` hyperparameter to discount the advantages. 
We use 0.95 for tau here. Notice that the agent style has the same n-step bootstrap-
ping logic, which might not make this a pure GAE implementation. Usually, you see 
batches of full episodes being processed at once. It still performs pretty well.

A2C:

• A2C does change most of the hyperparameters. To begin with, we have a single 
network: 4-256-128-3 (2 and 1). Train with Adam, lr of 0.002, gradient norm of 1.
• The policy is weighted at 1.0, value function at 0.6, entropy at 0.001.
• We go for 10 step bootstrapping, 8 workers, and a 0.95 tau.

These algorithms were not tuned independently, I'm sure they could do even better.
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tALLy it Up

Policy-gradient and actor-critic methods on the CartPole environment

(1) I ran all policy-gradient algorithms in the cart-pole environment so 
that you can more-easily compare policy-based and value-based methods. 

(2) One of the main 
thing to notice is how 
VPG is more sample 
efficient than more-
complex methods, 
such as A3C or 
A2C. This is mostly 
because these two 
methods use multiple 
workers, which 
initially cost lots of 
data to get only a bit 
of progress.
(3) REINFORCE alone 
is too inefficient to be 
a practical algorithm.
(4) However, in terms 
of training time, 
you can see how 
REINFORCE uses 
very little resources. 
Also notice how 
algorithms with 
workers consume 
much more compute.
(5) Interestingly, in 
terms of wall-clock 
time, parallel methods 
and incredibly fast 
averaging ~10 
seconds to solve 
cart pole v1! The 
500 steps version. 
Impressive!
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35A2C: Synchronous policy updates

Summary
In this chapter, we survey policy-gradient and actor-critic methods. First, we set up the 
chapter with a few reasons to consider policy-gradient and actor-critic methods. You 
learned that directly learning a policy is the true objective of reinforcement learning 
methods. You learned that by learning policies, we could use stochastic policies, which can 
have better performance than value-based methods in partially-observable environments. 
You learned that even though we typically learn stochastic policies, nothing prevents the 
neural network from learning a deterministic policy.

You also learned about four algorithms. First, we studied REINFORCE and how it is a very 
straightforward way of improving a policy. In REINFORCE, we could use either the full 
return or the reward-to-go as the score for improving the policy.

You then learned about Vanilla Policy Gradient, also known as REINFORCE with Baseline. 
In this algorithm, we learn a value function using Monte-Carlo returns as targets. Then, 
we use the value function as a baseline, and not as a critic. We do not bootstrap in VPG; 
instead, we use the reward-to-go, such as in REINFORCE, and subtract the learned value 
function to reduce the variance of the gradient. In other words, we use the advantage 
function as the policy score.

We also studied the A3C algorithm. In A3C, we bootstrap the value function. Both for 
learning the value function and for scoring the policy. More specifically, we use n-step 
returns to improve the models. Additionally, we use multiple actor-learners that each rollout 
the policy, evaluate the returns, and update the policy and value models using a Hogwild! 
approach. In other words, workers update lock-free models.

We then learned about GAE, and how this is a way for estimating advantages analogous 
to TD(λ) and the λ-return. GAE uses an exponentially-weighted mixture of all n-step 
advantages for creating a more robust advantage estimate that can be easily tuned to use 
more bootstrapping, and therefore bias, or actual returns and therefore variance.

Finally, we learned about A2C and how removing the asynchronous part of A3C yields a 
comparable algorithm without the need for implementing custom optimizers.

By now you:

• Understand the main differences between value-based, policy-based, policy-gradient, 
and actor-critic methods.

• Can implement fundamental policy-gradient and actor-critic methods by yourself.
• Can tune policy-gradient and actor-critic algorithms to pass a variety of environments.
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advanced
actor-critic methods 12

In this chapter

• You learn about more advanced deep reinforcement 
learning methods, which are, to this day, the state-
of-the-art algorithmic advancements in deep 
reinforcement learning.

• You learn about solving a variety of deep 
reinforcement learning problems, from problems with 
continuous-action spaces, to problem with high-
dimensional action spaces.

• You build state-of-the-art actor-critic methods from 
scratch and open the door to understanding more 
advanced concepts related to artificial general 
intelligence.

Criticism may not be agreeable, but it is necessary. It fulfills the 
same function as pain in the human body. It calls attention to an 
unhealthy state of things. 

— Winston Churchill 
British politician, army officer, writer, and 

Prime Minister of the United Kingdom
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2 Chapter 12 I advanced actor-critic methods

In the last chapter, you learned about a different, more direct technique for solving deep 
reinforcement learning problems. You first were introduced to policy-gradient methods 
in which agents learn policies by approximating them directly. In pure policy-gradient 
methods, we do not use value functions as a proxy for finding policies, and in fact, we do 
not use value functions at all. We instead learn stochastic policies directly.

However, you quickly noticed that value functions can still play an important role and make 
policy-gradient methods better. And so you were introduced to actor-critic methods. In 
these methods, the agent learns both a policy and a value function. With this approach, you 
could use the strengths of one function approximation to mitigate the weaknesses of the 
other approximation. For instance, learning policy can be more straightforward in some 
environments than learning a sufficiently accurate value function, as the relationships in 
action-space may be more tightly related, than the relationships of values. Still, even though 
knowing the value of states precisely can be more complicated, a rough approximation can 
be useful for reducing the variance of the policy gradient objective. As you explored in 
the previous chapter, learning a value function and using it as a baseline or for calculating 
advantages can considerably reduce the variance of the targets used for policy-gradient 
updates. Moreover, reducing the variance often leads to faster learning.

However, in the previous chapter, we focused on using the value function as a critic for 
updating a stochastic policy. We used different targets for learning the value function and 
parallelized the workflows in a few different ways. However, algorithms used the learned 
value function in the same general way to train the policy, and the policy learned had the 
same properties, it was a stochastic policy. So, we scratched the surface of using a learned 
policy and value function. In this chapter, we go deeper into the paradigm of actor-critic 
methods and train them in four different challenging environments: Pendulum, Hopper, 
Cheetah, and Lunar Lander. As you soon see, in addition to being more challenging 
environments, most of these have a continuous action space, which we face for the first 
time, and it'll require using unique polices models.

To solve these environments, we first explore methods that learn deterministic policies. 
That is policies that, when presented with the same state, return the same action, the action 
believed to be optimal. We also study a collection of improvements that make deterministic 
policy-gradient algorithms one of the state-of-the-art approaches to date for solving deep 
reinforcement learning problems. We then explore an actor-critic method that, instead 
of using the entropy in the loss function, it directly uses the entropy in the value function 
equation. In other words, it maximizes the return along with the long-term entropy of the 
policy. Finally, we close with an algorithm that allows for more stable policy improvement 
steps by restraining the updates to the policy to small changes. Small changes in policies 
make policy-gradient methods show steady and often monotonic improvements in 
performance, allowing for state-of-the-art performance in several DRL benchmarks.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

362
WOW! eBook 

www.wowebook.org



3DDPG: Approximating a deterministic policy

DDPG: Approximating a deterministic policy
In this section, we explore an algorithm called Deep Deterministic Policy Gradient
(DDPG). DDPG can be seen as an approximate DQN, or better yet, a DQN for continuous 
action-spaces. DDPG uses many of the same techniques found in DQN: it uses a replay 
buffer to train an action-value function in an off-policy manner, and target networks to 
stabilize training. However, DDPG also trains a policy, which approximates the optimal 
action. Because of this, DDPG is a deterministic policy-gradient method restricted to 
continuous action spaces.

DDPG uses lots of tricks from DQN
Start by visualizing DDPG as an algorithm with the same architecture as DQN. The training 
process is very similar: the agent collects experiences in an online manner and stores these 
online experience samples into a replay buffer. On every step, the agent pulls out a mini-
batch from the replay buffer that is commonly sampled uniformly at random. The agent 
then uses this mini-batch to calculate a bootstrapped TD target and train a Q-function.

The main difference between DQN and DDPG is that while DQN uses the target 
Q-function for getting the greedy action using an argmax, DDPG uses a target 
deterministic-policy function that is trained to approximate that greedy action. That means 
that instead of using the argmax of the Q-function of the next state to get the greedy action 
as we do in DQN, in DDPG, we directly approximate the best action in the next state using a 
policy function. Then, in both, we use that action with the Q-function to get the max value.

Show Me the Math

DQN vs. DDPG value function objectives
(1) Recall this function. This is the DQN loss function for the Q-function. It's straightforward...

(2) We sample a mini-
batch from the buffer D, 
uniformly at random.

(3) Then, calculate the TD target using the 
reward and the discounted maximum value of the 
next state, according to the target network.

(4) Also, recall this re-write of the same exact equation. We just change the max for the argmax.

(5) In DDPG, we also 
sample the mini-
batch as in DQN.

(6) But, instead of the 
argmax according to Q, 
we learn a policy, mu.

(7) Mu learns the deterministic greedy 
action in the state in question. Also, 
notice phi is also a target network (-).
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4 Chapter 12 I advanced actor-critic methods

I Speak python

DDPG's Q-function network

class FCQV(nn.Module):
    def __init__(self,
                 input_dim,
                 output_dim,
                 hidden_dims=(32,32),
                 activation_fc=F.relu):
        super(FCQV, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer = nn.Linear(input_dim, hidden_dims[0])
        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            in_dim = hidden_dims[i]

            if i == 0: 
                in_dim += output_dim

            hidden_layer = nn.Linear(in_dim, hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.output_layer = nn.Linear(hidden_dims[-1], 1)

       <...>

    def forward(self, state, action):
        x, u = self._format(state, action)
        x = self.activation_fc(self.input_layer(x))

        for i, hidden_layer in enumerate(self.hidden_layers):

            if i == 0:
                x = torch.cat((x, u), dim=1)

            x = self.activation_fc(hidden_layer(x))

        return self.output_layer(x)

(1) This is the 
Q-function network 
used in DDPG.

(2) Here we start the 
architecture as usual.

(3) Here we have the first 
exception. We increase the 
dimension of the first hidden 
layer by the output dimension.

(4) Notice the output of the network is a single 
node representing the value of the state-action pair.

(5) The forward pass 
starts as expected.

(6) But we concatenate the action to the 
states right on the first hidden layer.

(6) Then, continue 
as expected.

(7) Finally return the output.
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5DDPG: Approximating a deterministic policy

Learning a deterministic policy
Now, the one thing we need to add to this algorithm to make it work is a policy network. We 
want to train a network that can give us the optimal action in a given state. That means that 
the network must be differentiable with respect to the action. Therefore, the action must be 
continuous to make for efficient gradient-based learning. The objective is simple; we can use 
the expected q-value using the policy network, mu. That is, the agent tries to find the action 
that maximizes this value. Notice that in practice, we use minimization techniques, and 
therefore minimize the negative of this objective.

Also notice, that in this case, we don't use target networks, but the online networks for both 
the policy, which is the action selection portion and the value function, which is the action 
evaluation portion. Additionally, given that we need to sample a mini-batch of states for 
training the value function, we can use these same states for training the policy network.

Show Me the Math

DDPG's deterministic-policy objective

(1) Learning the policy is very straightforward as well, we simply maximize the expected value 
of the Q-function using the state, and the policy's selected action for that state.

(2) For this we use the sampled 
states from the replay buffer.

(3) Query the policy 
for the best action 
in those states.

(4) And then query 
the Q-function for 
the q-value.

0001 a BIt of hIStory

Introduction of the DDPG algorithm

DDPG was introduced in 2015 on a paper titled "Continuous control with deep 
reinforcement learning." The paper was authored by Timothy Lillicrap while working at 
Google DeepMind as a Research Scientist. Since 2016, Tim has been working as a Staff 
Research Scientist at Google DeepMind and as an Adjunct Professor at University College 
London.

Tim has contributed to several other DeepMind papers such as the A3C algorithm, AlphaGo, 
AlphaZero, Q-prop, and StarCraft II, to name a few. One of the most interesting facts is that 
Tim has a background in Cognitive Science, and Systems Neuroscience, not a traditional 
Computer Science path into Deep Reinforcement Learning.
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6 Chapter 12 I advanced actor-critic methods

I Speak python

DDPG's deterministic-policy network

class FCDP(nn.Module):
    def __init__(self, 
                 input_dim,
                 action_bounds,
                 hidden_dims=(32,32), 
                 activation_fc=F.relu,
                 out_activation_fc=F.tanh):
        super(FCDP, self).__init__()

        self.activation_fc = activation_fc
        self.out_activation_fc = out_activation_fc
        self.env_min, self.env_max = action_bounds

        self.input_layer = nn.Linear(input_dim, hidden_dims[0])
        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(hidden_dims[i],
                                     hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.output_layer = nn.Linear(hidden_dims[-1],
                                      len(self.env_max))

    def forward(self, state):
        x = self._format(state)
        x = self.activation_fc(self.input_layer(x))
        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))
        x = self.output_layer(x)

        x = self.out_activation_fc(x)

        return self.rescale_fn(x)

(1) This is the policy network 
used in DDPG. Fully-Connected 
Deterministic Policy.

(2) Notice the activation 
of the output layer is 
different this time. We use 
tanh activation function to 
squash the output to (-1, 1).

(3) We need to get the minimum and maximum values of the actions, so 
that we can rescale the network's output (-1, 1) to the expected range.

(4) The 
architecture 
is as 
expected. 
States in, 
actions out.

(5) The forward pass is also straightforward.

(6) Input.

(7) Hidden.

(8) Output.

(9) Notice, however, that we activate the output using the output activation function.

(10) Also, very important, we rescale the action from the -1 to 1 range to the range specific to 
the environment. The `rescale_fn` is not shown in here, but you can go to the Notebook for details.
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7DDPG: Approximating a deterministic policy

I Speak python

DDPG's model-optimization step

    def optimize_model(self, experiences):

        states, actions, rewards, \
                  next_states, is_terminals = experiences
        batch_size = len(is_terminals)

        argmax_a_q_sp = self.target_policy_model(next_states)
        max_a_q_sp = self.target_value_model(next_states,
                                             argmax_a_q_sp)
        target_q_sa = rewards + self.gamma * max_a_q_sp * \
                                             (1 - is_terminals)

        q_sa = self.online_value_model(states, actions)
        td_error = q_sa - target_q_sa.detach()
        value_loss = td_error.pow(2).mul(0.5).mean()

        self.value_optimizer.zero_grad()
        value_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                          self.online_value_model.parameters(),
                          self.value_max_grad_norm)
        self.value_optimizer.step()

        argmax_a_q_s = self.online_policy_model(states)
        max_a_q_s = self.online_value_model(states,
                                            argmax_a_q_s)
        policy_loss = -max_a_q_s.mean()

        self.policy_optimizer.zero_grad()
        policy_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                         self.online_policy_model.parameters(),
                         self.policy_max_grad_norm)
        self.policy_optimizer.step()

(1) The `optimize_model` 
function takes in a mini-
batch of experiences.

(2) With it, we calculate the targets using the predicted max value of the next state, 
coming from the actions according to the policy and the values according to the Q-function.

(3) We then get the predictions, calculate the error and the loss. 
Notice where we use the `target` and `online` networks.

(4) The optimization step is 
just like all other networks.

(5) Next, we get the actions as predicted by the online policy for the states in the mini-
batch, then use those actions to get the value estimates using the online value network.

(6) Next, we get the policy loss.
(7) Finally, we zero the 
optimizer, do the backward pass 
on the loss, clip the gradients, 
and step the optimizer.
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8 Chapter 12 I advanced actor-critic methods

Exploration with deterministic policies
In DDPG, we train deterministic greedy policies. In a perfect world, this type of policy 
takes in a state and returns the optimal action for that state. But, in an untrained policy, the 
actions returned won't be accurate enough, yet still deterministic. As mentioned before, 
agents need to balance exploiting knowledge with exploring. But again, since the DDPG 
agent learns a deterministic policy, it won't explore on-policy. Imagine the agent is stubborn 
and always select the same actions. To deal with this issue, we must explore off-policy. And 
so in DDPG, we inject Gaussian noise into the actions selected by the policy.

You've learned about exploration in multiple DRL agents. In NFQ, DQN, etc., we use 
exploration strategies based on q-values. We get the values of actions in a given state using 
the learned Q-function and explore based on those values. In REINFORCE, VPG, etc., we 
use stochastic policies, and therefore, exploration is on-policy. That is, exploration is taken 
care of by the policy itself because it is stochastic, it has randomness. In DDPG, the agent 
explores by adding external noise to actions, using off-policy exploration strategies.

I Speak python

Exploration in deterministic policy gradients

class NormalNoiseDecayStrategy():
    def select_action(self, model,
                                 state, max_exploration=False):
        if max_exploration:
            noise_scale = self.high
        else:
            noise_scale = self.noise_ratio * self.high

        with torch.no_grad():
            greedy_action = model(state).cpu().detach().data
            greedy_action = greedy_action.numpy().squeeze()

        noise = np.random.normal(loc=0,
                                 scale=noise_scale,
                                 size=len(self.high))
        noisy_action = greedy_action + noise
        action = np.clip(noisy_action, self.low, self.high)

        self.noise_ratio = self._noise_ratio_update()
        return action

(1) This is the `select_action` 
function of the strategy.

(2) To maximize exploration, we set the 
noise scale to the maximum action.

(3) Otherwise, we scale the noise down.

(4) We get the 
greedy action 
straight from 
the network. (5) Next, we get the Gaussian noise for the action using the scale and 0 mean.

(6) Add the noise to the 
action, and clip it to be in range.

(7) Next, we update the noise ratio schedule. This could be constant, or linear, exponential, etc.

(8) Lastly, return the action.
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9DDPG: Approximating a deterministic policy

ConCrete exaMple

The Pendulum environment

The Pendulum-v0 environment consists of an inverted pendulum that the 
agent needs to swing-up, so it stays upright with the least effort possible. 
The state-space is a vector of 3 variables (cos(theta), sin(theta), theta dot) 
indicating the cosine of the angle of the rod, the sine, and the angular speed. 

The action space is a single continuous variable from -2 to 2, indicating the 
joint effort. The joint is that black dot at the bottom of the rod. The action is 
the effort either clockwise or counterclockwise.

The reward function is an equation based on angle, speed, and effort. The 
goal is to remain perfectly balanced upright with no effort. In such an ideal 
time step, the agent receives 0 rewards, the best it can do. The highest cost 
(lowest reward) the agent can get is approximately -16 reward. The precise 
equation is: `-(theta^2 + 0.1*theta_dt^2 + 0.001*action^2)`.

This is a continuing task, so there is no terminal state. However, the environment times out 
after 200 steps, which serves the same purpose. The environment is considered unsolved, 
which means there is no target return. However, -150 is a reasonable threshold to hit.

tally It Up

DDPG in the Pendulum environment

(1) On the right 
you see the results 
of training DDPG 
until it reaches 
-150 reward on the 
evaluation episodes. 
We use 5 seeds 
here, but the graph 
is truncated on the 
number of episodes 
the first seed 
ends. As you can 
see, the algorithm 
does a pretty good 
job, very quickly. 
Pendulum is a simple 
environment.
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10 Chapter 12 I advanced actor-critic methods

TD3: State-of-the-art improvements over DDPG
DDPG has been one of the state-of-the-art deep reinforcement learning methods for control 
for several years. However, there have been some improvements proposed that make a big 
difference in performance. In this section, we discussed a collection of improvements that 
together form a new algorithm called Twin-Delayed DDPG (TD3). TD3 introduces three 
main changes to the main DDPG algorithm. First, it adds a double learning technique, 
similar to what you learned in Double Q-learning and DDQN, but this time with a unique, 
"twin" network architecture. Second, it adds noise, not only to the action passed into the 
environment but also to the target actions, making the policy network more robust to 
approximation error. And, third, it delays updates to the policy network, its target network, 
and the twin target network, so that the twin network updates more frequently.

Double learning in DDPG
In TD3, we use a particular kind of Q-function network with two separate streams that end 
on two separate estimates of the state-action pair in question. For the most part, these two 
streams are totally independent, so one can think about them as two separate networks. 
However, it'd make sense to share feature layers if the environment was image-based. 
That way CNN would extract common features, and potentially learn faster. Nevertheless, 
sharing layers is also usually harder to train, so this is something you'd have to experiment 
and decide by yourself.

In the following implementation, the two streams are completely separate, and the only 
thing being shared between these two networks is the optimizer. As you see in the twin 
network loss function, we add up the losses for each of the networks and optimize both 
network on that joint loss.

Show Me the Math

Twin target in TD3
(1) The Twin 
network loss 
is the sum of 
MSEs of each 
of the steams.
(2) We calculate the target 
using the minimum between 
the two streams. This is not 
a complete TD3 target. We'll 
add to it in a couple of pages.

(3) But, notice how we use the target networks 
for both the policy and value networks.
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11TD3: State-of-the-art improvements over DDPG

I Speak python

TD3's Twin Q-Network 1/2

class FCTQV(nn.Module):
    def __init__(self, 
                 input_dim, 
                 output_dim, 
                 hidden_dims=(32,32),
                 activation_fc=F.relu):
        super(FCTQV, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer_a = nn.Linear(input_dim + output_dim,
                                       hidden_dims[0])
        self.input_layer_b = nn.Linear(input_dim + output_dim,
                                       hidden_dims[0])

        self.hidden_layers_a = nn.ModuleList()
        self.hidden_layers_b = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hid_a = nn.Linear(hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers_a.append(hid_a)
            hid_b = nn.Linear(hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers_b.append(hid_b)

        self.output_layer_a = nn.Linear(hidden_dims[-1], 1)
        self.output_layer_b = nn.Linear(hidden_dims[-1], 1)

    def forward(self, state, action):
        x, u = self._format(state, action)

        x = torch.cat((x, u), dim=1)
        xa = self.activation_fc(self.input_layer_a(x))
        xb = self.activation_fc(self.input_layer_b(x))

        for hidden_layer_a, hidden_layer_b in zip(
                   self.hidden_layers_a, self.hidden_layers_b):

(1) This is the Fully-Connected 
Twin Q-value network. This is what 
TD3 uses to approximate the 
Q-values, with the twin streams.

(2) Notice we have two input layers. Again, these streams are really two separate networks.

(3) Next, we create hidden layers for each of the streams.

(4) And we end with two output layers, each with a single node representing the Q-value.

(5) We start the forward pass formatting the inputs to match what the network expects.

(6) Next, we concatenate the state and action, and pass them through each stream.

(7) Continues...
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12 Chapter 12 I advanced actor-critic methods

Smoothing the targets used for policy updates
Remember how to improve exploration in DDPG, we inject Gaussian noise into the action 
used for the environment. In TD3, we take this concept further and add noise, not only to 
the action used for exploration but also to the action used to calculate the targets.

Training the policy with noisy targets can be seen as a regularizer because now the network 
is forced to generalize over similar actions. This technique prevents the policy network from 
converging to incorrect actions since early on during training, Q-functions can prematurely 
inaccurately value some actions. The noise over the actions spreads that value over a more 
inclusive range of actions than otherwise.

I Speak python

TD3's Twin Q-Network 2/2

        for hidden_layer_a, hidden_layer_b in zip(
                   self.hidden_layers_a, self.hidden_layers_b):
            xa = self.activation_fc(hidden_layer_a(xa))
            xb = self.activation_fc(hidden_layer_b(xb))

        xa = self.output_layer_a(xa)
        xb = self.output_layer_b(xb)
        return xa, xb

    def Qa(self, state, action):
        x, u = self._format(state, action)

        x = torch.cat((x, u), dim=1)
        xa = self.activation_fc(self.input_layer_a(x))

        for hidden_layer_a in self.hidden_layers_a:
            xa = self.activation_fc(hidden_layer_a(xa))

        return self.output_layer_a(xa)

(8) Here we pass through all the hidden layers and their respective activation function.

(9) Finally, we do a pass through the output layers, and return their direct output.

(10) This is the forward pass through 
the `Qa` stream. This is useful for 
getting the values when calculating 
the targets to the policy updates.

(11) We format the inputs, and concatenate them before passing it through the `a` stream.

(12) The pass through the `a`'s hidden layers.

(13) All the way through the output layer, just as if we had only one network to begin with.

©Manning Publications Co.  To comment go to  liveBook 
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

372
WOW! eBook 

www.wowebook.org



13TD3: State-of-the-art improvements over DDPG

Show Me the Math

Target smoothing procedure
(1) Let's consider a `clamp` function, 
which basically "clamps" or "clips" a value 
`x` between a low `l`, and a high `h`.

(2) In TD3, we smooth the action by adding clipped Gaussian noise, E. We first sample E, and 
clamp it to be between a preset min and max for E. We add that clipped Gaussian noise to the 
action, and then clamp the action to be between the min and max allowable according to the 
environment. Finally, we use that smoothed action.

I Speak python

TD3's model-optimization step 1/2

    def optimize_model(self, experiences):
        states, actions, rewards, \
           next_states, is_terminals = experiences
        batch_size = len(is_terminals)

        with torch.no_grad():
            env_min = self.target_policy_model.env_min
            env_max = self.target_policy_model.env_max
            a_ran = env_max - env_min
            a_noise = torch.randn_like(actions) * \
                                self.policy_noise_ratio * a_ran

            n_min = env_min * self.policy_noise_clip_ratio
            n_max = env_max * self.policy_noise_clip_ratio

            a_noise = torch.max(
                              torch.min(a_noise, n_max), n_min)

            argmax_a_q_sp = self.target_policy_model(
                                                   next_states)

            noisy_argmax_a_q_sp = argmax_a_q_sp + a_noise
            noisy_argmax_a_q_sp = torch.max(torch.min(
                        noisy_argmax_a_q_sp, env_max), env_min)

(1) To optimize the 
TD3 models, we 
take in a mini-batch 
of experiences.

(2) We first get the min and 
max of the environment.

(3) Get the 
noise and scale 
it to the range 
of the actions.
(4) Get the noise clip min and max.

(5) Then, clip the noise.

(6) Get the action from the target policy model.

(7) Then, add the noise to the action, and clip the action, too.
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I Speak python

TD3's model-optimization step 2/2

            noisy_argmax_a_q_sp = torch.max(torch.min(
                        noisy_argmax_a_q_sp, env_max), env_min)
            max_a_q_sp_a, max_a_q_sp_b = \
                   self.target_value_model(next_states,
                                           noisy_argmax_a_q_sp)

            max_a_q_sp = torch.min(max_a_q_sp_a, max_a_q_sp_b)
            target_q_sa = rewards + self.gamma * max_a_q_sp * \
                                             (1 - is_terminals)

        q_sa_a, q_sa_b = self.online_value_model(states,
                                                 actions)
        td_error_a = q_sa_a - target_q_sa
        td_error_b = q_sa_b - target_q_sa
        value_loss = td_error_a.pow(2).mul(0.5).mean() + \
                     td_error_b.pow(2).mul(0.5).mean()

        self.value_optimizer.zero_grad()
        value_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                          self.online_value_model.parameters(),
                          self.value_max_grad_norm)
        self.value_optimizer.step()

        if np.sum(self.episode_timestep) % \
                            self.train_policy_every_steps == 0:

            argmax_a_q_s = self.online_policy_model(states)
            max_a_q_s = self.online_value_model.Qa(
                                          states, argmax_a_q_s)
            policy_loss = -max_a_q_s.mean()

            self.policy_optimizer.zero_grad()
            policy_loss.backward()
            torch.nn.utils.clip_grad_norm_(
                         self.online_policy_model.parameters(),
                         self.policy_max_grad_norm)
            self.policy_optimizer.step()

(8) We use the 
clamped noisy 
action to get 
the max value.
(9) Recall we get the max value by getting the minimum predicted 
value between the two streams, and use it for the target.

(10) Next, we get the predicted values coming from both of the 
streams to calculate the errors and the joint loss.

(11) Then, we do the 
standard back-propagation 
steps for the twin network.

(12) Notice how we delay the policy updates here, I explain this a bit more on the next page.

(13) The update is very similar to DDPG, but using the single stream `Qa`.

(14) But, the loss is the same.

(15) Here are the policy optimization steps. The standard stuff.
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15TD3: State-of-the-art improvements over DDPG

Delaying updates
The final improvement that TD3 applies over DDPG is delaying the updates to the policy 
network and target networks so that the online Q-function updates at a higher rate than 
the rest. Delaying these networks is beneficial because often, the online Q-function changes 
shape abruptly early on in the training process. Slowing down the policy so that it updates 
after a couple of value function updates, allows the value function to settle into more 
accurate values before we let it guide the policy. The recommended delay for the policy and 
target networks is every other update to the online Q-function.

The other thing that you may notice in the policy updates is that we must use one of the 
streams of the online value model for getting the estimated q-value for the action coming 
from the policy. In TD3, we use one of the two streams, but the same stream every time.

0001 a BIt of hIStory

Introduction of the TD3 agent

TD3 was introduced by Scott Fujimoto in 2018 on a paper titled "Addressing Function 
Approximation Error in Actor-Critic Methods." 

Scott is a graduate student at McGill University working on a Ph.D. in Computer Science and 
Supervised by Prof. David Meger and Prof. Doina Precup.

ConCrete exaMple

The Hopper environment

The Hopper environment we use is an open-source version of the MuJoCo and Roboschool 
Hopper environments, powered by the Bullet Physics engine. MuJoCo is a physics engine 
with a variety of models and tasks. While MuJoCo is widely used in DRL research, it requires 
a license. If you are not a student, it can cost you a couple of thousand dollars. Roboschool 
was an attempt by OpenAI to create open-source versions of MuJoCo environments, but it 
was discontinued in favor of Bullet. Bullet Physics is an open-source project with lots of the 
same environments found in MuJoCo.

The Hopper environment features a vector with 15 
continuous variables as an unbounded observation space, 
representing the different joints of the hopper robot. It 
features a vector of 3 continuous variables bounded between 
-1 and 1 and representing actions for the thigh, leg, and foot 
joints. Note that a single action is a vector with 3 elements at 
once. The task of the agent is to move the hopper forward, 
and the reward function reinforces that, also promoting minimal energy cost.
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16 Chapter 12 I advanced actor-critic methods

It'S In the DetaIlS

Training TD3 in the Hopper environment

If you head to the chapter's Notebook, you may notice that we train the agent until it 
reaches a 1,500 mean reward for 100 consecutive episodes. In reality, the recommended 
threshold is 2,500. However, since we train using 5 different seeds, and each training run 
takes about an hour, I thought to reduce the time it takes to complete the Notebook by 
merely reducing the threshold. Even at 1,500, the hopper does a pretty decent job at 
moving forward, as you can see on the GIFs in the Notebook.

Now, you must know that all the book's implementations takes a very long time because 
they executes one evaluation episode after every episode. Evaluating performance on every 
episode is not necessary and likely overkill for most purposes. For our purposes, it's okay, 
but if you want to re-use the code, I recommend you remove that logic and instead check 
evaluation performance once every 10-100 or so episodes.

Also, take a look at the implementation details. The book's TD3 optimizes the policy and the 
value networks separately. If you wanted to train using CNNs, for instance, you may want to 
share the convolutions and optimize all at once. But again, that'd require lots of tunning.

tally It Up

TD3 in the Hopper environment
(1) TD3 does pretty 
well in the Hopper 
environment, even 
though this is a 
challenging one. 
You can see how 
the evaluation 
performance takes 
off a bit after 
1,000 episodes. 
You should head to 
the Notebook and 
enjoy the GIFs. In 
particular, take a 
look at the progress 
of the agent. It's 
fun to see the 
progression of the 
performance.
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17SAC: Maximizing the expected return and entropy

SAC: Maximizing the expected return and entropy
The previous two algorithms, DDPG, and TD3 are off-policy methods that train a 
deterministic policy. Recall, off-policy means that the method uses experiences generated 
by a behavior policy that is different from the policy optimized. In the case of DDPG and 
TD3, they both use a replay buffer that contains experiences generated by several previous 
policies. Also, because the policy being optimized is deterministic, meaning that it returns 
the same action every time it is queried, they both use off-policy exploration strategies. On 
our implementation, they both used Gaussian noise injection to the action vectors going 
into the environment. 

To put it into perspective, the agents that you learned about in the previous chapter, in 
contrast, learn on-policy. Remember, they train stochastic policies which by themselves 
introduce randomness and, therefore, exploration. To promote randomness in stochastic 
policies, we add an entropy term to the loss function.

In this section, we discuss an algorithm called Soft Actor-Critic (SAC), which is a hybrid 
between these two paradigms. On the one hand, SAC is an off-policy algorithm, just like 
DDPG and TD3, but on the other hand, it trains a stochastic policy like in REINFORCE, 
A3C, and company, instead of a deterministic policy, like in DDPG and TD3.

Adding the entropy to the Bellman equations
The most crucial characteristic of SAC is that the entropy of the stochastic policy becomes 
part of the value function that the agent attempts to maximize. As you see in this section, 
jointly maximizing the expected total reward and the expected total entropy naturally 
encourages behavior that is as diverse as possible while still maximizing the expected return.

Show Me the Math

The agent needs to also maximize the entropy

(1) In SAC, we define 
the action-value 
function as follows.

(2) Here is the expectation 
over the reward, next 
state, and next action.

(3) We are going to add up the 
reward, and the discounted value 
of the next state-action pair.

(4) However, we add the entropy of the 
policy at the next state. Alpha tunes the 
importance we give to the entropy term.
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18 Chapter 12 I advanced actor-critic methods

Learning the action-value function
In practice, SAC learns the value function in a similar way than TD3. That is, we use 
two networks approximating the Q-function and take the minimum estimate for most 
calculations. A few differences, however, is that, first, with SAC, the authors found that 
independently optimizing each Q-function yields better results, so we do that. Second, 
we add the entropy term to the target values. And lastly, we don't use the target action 
smoothing directly as we did in TD3. Other than that, the pattern is the same than TD3.

Learning the policy
This time for learning the stochastic policy, we use a squashed Gaussian policy that in the 
forward pass, it outputs the mean and standard deviation. Then we can use those to sample 
from that distribution, squash the values with a hyperbolic tangent function `tanh,` and 
then rescale the values to the range expected by the environment.

For training the policy, we use the reparameterization trick. This "trick" consists of 
moving the stochasticity out of the network and into an input. This way, the network 
is deterministic, and we can train it without problems. This trick is straightforwardly 
implemented in PyTorch, as you see next.

Show Me the Math

Action-value function target (we train doing MSE on this target)
(1) This is the target 
we use on SAC.

(2) We grab the reward 
plus the discounted...

(3) Minimum value of the 
next state-action pair.

(4) Notice the current policy 
provides the next actions.

(5) And the we use 
target networks.

(6) And subtract the 
weighted log probability.

Show Me the Math

Policy objective (we train minimizing the negative of this objective)
(1) This is the 
objective of the policy.

(2) Notice we sample the state from the 
buffer, but the action from the policy.

(3) We want the value minus the weighted 
log probability to be as high as possible.

(4) That means we want to minimize 
the negative of what's inside brackets.
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19SAC: Maximizing the expected return and entropy

Automatically tuning the entropy coefficient
The cherry on the cake of SAC is that alpha, which is the entropy coefficient, can be tuned 
automatically.  SAC employs gradient-based optimization of alpha towards a heuristic 
expected entropy. The recommended target entropy is based on the shape of the action 
space. More specifically, the negative of the vector product of the action shape. Using 
this target entropy, we can automatically optimize alpha so that there is virtually no 
hyperparameter to tune, related to regulating the entropy term.

Show Me the Math

Alpha objective function (we train minimizing the negative of this objective)
(1) This is the 
objective for alpha.

(2) Same as with the policy, we get the state 
from the buffer, and the action from the policy.

(3) We want the weighted H, which is the target entropy 
heuristic, plus the log probability to be as high as possible.

(4) Which means we minimize 
the negative of this.

I Speak python

SAC Gaussian policy 1/2

class FCGP(nn.Module):
    def __init__(self,
        <...>
        self.input_layer = nn.Linear(input_dim, 
                                     hidden_dims[0])
        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(hidden_dims[i],
                                     hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)

        self.output_layer_mean = nn.Linear(hidden_dims[-1],
                                           len(self.env_max))

        self.output_layer_log_std = nn.Linear(
                                             hidden_dims[-1],
                                             len(self.env_max))

(1) This is the Gaussian 
policy that we use in SAC.

(2) We start 
everything 
the same way 
other policy 
networks. 
Input, to 
hidden layers.

(3) But the hidden layers connect to the two streams. One represents the mean of the 
action and the other the log standard deviation.
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I Speak python

SAC Gaussian policy 2/2

        self.output_layer_log_std = nn.Linear(
                                             hidden_dims[-1],
                                             len(self.env_max))

        self.target_entropy = -np.prod(self.env_max.shape)
        self.logalpha = torch.zeros(1, 
                                    requires_grad=True,
                                    device=self.device)
        self.alpha_optimizer = optim.Adam([self.logalpha],
                                          lr=entropy_lr)

    def forward(self, state):
        x = self._format(state)
        x = self.activation_fc(self.input_layer(x))
        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))
        x_mean = self.output_layer_mean(x)
        x_log_std = self.output_layer_log_std(x)
        x_log_std = torch.clamp(x_log_std,
                                self.log_std_min,
                                self.log_std_max)
        return x_mean, x_log_std

    def full_pass(self, state, epsilon=1e-6):
        mean, log_std = self.forward(state)

        pi_s = Normal(mean, log_std.exp())

        pre_tanh_action = pi_s.rsample()
        tanh_action = torch.tanh(pre_tanh_action)

        action = self.rescale_fn(tanh_action)

        log_prob = pi_s.log_prob(pre_tanh_action) - torch.log(
                (1 - tanh_action.pow(2)).clamp(0, 1) + epsilon)

        log_prob = log_prob.sum(dim=1, keepdim=True)
        return action, log_prob, self.rescale_fn(
                                              torch.tanh(mean))

(4) Same line to help you keep the flow of the code.
(5) Here we calculate H, the target entropy heuristic.

(6) Next, we create a variable, initialize to zero, 
and create an optimizer to optimize the log alpha.

(7) The forward function is just as we'd expect. 

(8) We format the 
input variables, 
and pass them 
through the whole 
network.
(9) Clamp the 
log std to -20 
to 2, to control 
the std range to 
reasonable values.

(10) And return the values.

(11) In the full 
pass, we get the 
mean and log std.(12) Get a Normal distribution with those values.

(13) 'r'sample here does the reparameterization trick.

(14) Then we squash the action to be in range -1, 1.

(15) Then, rescale to be the environment expected range.

(16) We also need to re-scale the log probability, and the mean.
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I Speak python

SAC optimization step 1/2

    def optimize_model(self, experiences):
        states, actions, rewards, \
                        next_states, is_terminals = experiences
        batch_size = len(is_terminals)

        current_actions, \
               logpi_s, _ = self.policy_model.full_pass(states)

        target_alpha = (logpi_s + \
                     self.policy_model.target_entropy).detach()
        alpha_loss = -(self.policy_model.logalpha * \
                                           target_alpha).mean()

        self.policy_model.alpha_optimizer.zero_grad()
        alpha_loss.backward()
        self.policy_model.alpha_optimizer.step()

        alpha = self.policy_model.logalpha.exp()

        current_q_sa_a = self.online_value_model_a(
                                       states, current_actions)
        current_q_sa_b = self.online_value_model_b(
                                       states, current_actions)

        current_q_sa = torch.min(current_q_sa_a,
                                 current_q_sa_b)

        policy_loss = (alpha * logpi_s - current_q_sa).mean()

        ap, logpi_sp, _ = self.policy_model.full_pass(
                                                   next_states)

(1) This is the 
optimization step in SAC.

(2) First, get the experiences 
from the mini-batch.

(3) Next, we get the current actions, a-hat, and log probabilities of state s.

(4) Here, we calculate the loss of alpha, and here we step alpha's optimizer.

(5) This is how we get the current value of alpha.

(6) In these lines, we get the q-values using the online models, and a-hat.

(7) Then, we use the minimum q-value estimates.

(8) Here, we calculate the policy loss using that minimum q-value estimate.

(9) On the next page, we calculate the Q-functions loss.
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I Speak python

SAC optimization step 2/2

        ap, logpi_sp, _ = self.policy_model.full_pass(
                                                   next_states)

        q_spap_a = self.target_value_model_a(next_states, ap)
        q_spap_b = self.target_value_model_b(next_states, ap)
        q_spap = torch.min(q_spap_a, q_spap_b) - \
                                               alpha * logpi_sp

        target_q_sa = (rewards + self.gamma * \
                          q_spap * (1 - is_terminals)).detach()

        q_sa_a = self.online_value_model_a(states, actions)
        q_sa_b = self.online_value_model_b(states, actions)
        qa_loss = (q_sa_a - target_q_sa).pow(2).mul(0.5).mean()
        qb_loss = (q_sa_b - target_q_sa).pow(2).mul(0.5).mean()

        self.value_optimizer_a.zero_grad()
        qa_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                        self.online_value_model_a.parameters(),
                        self.value_max_grad_norm)
        self.value_optimizer_a.step()

        self.value_optimizer_b.zero_grad()
        qb_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                        self.online_value_model_b.parameters(),
                        self.value_max_grad_norm)
        self.value_optimizer_b.step()

        self.policy_optimizer.zero_grad()
        policy_loss.backward()
        torch.nn.utils.clip_grad_norm_(
                                self.policy_model.parameters(),
                                self.policy_max_grad_norm)
        self.policy_optimizer.step()

(10) To calculate the value loss, we get the predicted next action.

(11) Using the target value models, we calculate the q-value estimate of the next state-action pair.

(12) Get the minimum Q-value estimate, and factor in the entropy.
(13) This is how we calculate the target. Using the reward plus the 
discounted minimum value of the next state along with the entropy.

(14) Here we get the predicted values of the state-action pair using the online model.

(15) Calculate the loss and optimize each Q-function separately. First, a.

(16) Then, b.

(17) Finally, the policy.
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0001 a BIt of hIStory

Introduction of the SAC agent

SAC was introduced by Tuomas Haarnoja in 2018 on a paper titled "Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor." At the time 
of publish, Tuomas was a graduate student at Berkeley working on a Ph.D. in Computer 
Science under the supervision of Prof. Pieter Abbeel and Prof. Sergey Levine, and a Research 
Intern at Google. Since 2019, Tuomas is a Research Scientist at Google DeepMind.

ConCrete exaMple

The Cheetah environment

The Cheetah environment features a vector with 26 
continuous variables for the observation space, representing 
the joints of the robot. It features a vector of 6 continuous 
variables bounded between -1 and 1 and representing the 
actions. The task of the agent is to move the cheetah forward, 
and just like with the hopper, the reward function reinforces 
that also promoting minimal energy cost.

tally It Up

SAC on the Cheetah environment
(1) SAC does 
pretty well on 
the Cheetah 
environment. In 
only ~300-600 
episodes it learns 
to control the 
robot. Notice that 
this environment 
has a recommended 
reward threshold 
of 3,000, but at 
2,000 the agent 
does sufficiently 
well. Also, it already 
takes a few hours 
to train.
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24 Chapter 12 I advanced actor-critic methods

PPO: Restricting optimization steps
In this section, we introduce an actor-critic algorithm called Proximal Policy Optimization
(PPO). Think of PPO as an algorithm with the same underlying architecture as A2C. 
PPO can reuse lots of code developed for A2C. That is, we can roll out using multiple 
environments in parallel, aggregate the experiences into mini-batches, use a critic to get 
GAE estimates, and train the actor and critic in a similar way as in A2C.

The critical innovation in PPO is a surrogate objective function that allows an on-policy 
algorithm to perform multiple gradient steps on the same mini-batch of experiences. As you 
learned in the previous chapter, A2C, being an on-policy method, cannot reuse experiences 
for the optimization steps. In general, on-policy methods need to discard experience 
samples immediately after stepping the optimizer.

However, PPO introduces a clipped objective function that prevents the policy from getting 
too different after an optimization step. By optimizing the policy conservatively, we not only 
prevent performance collapse due to the innate high-variance of on-policy policy gradient 
methods but also can reuse mini-batches of experiences and perform multiple optimization 
steps per mini-batch. The ability to reuse experiences makes PPO a more sample efficient 
method than other on-policy methods, such as those you learned about in the previous 
chapter.

Using the same actor-critic architecture as A2C
Think of PPO as an improvement to A2C. What I mean by that, is that even though in this 
chapter we have learned about DDPG, TD3, and SAC, and all these algorithms have some 
commonness to them, PPO should not be confused as an improvement to SAC. TD3 is a 
direct improvement to DDPG. SAC was developed concurrently with TD3. However, the 
SAC author published a second version of the SAC paper shortly after the first one, which 
includes some of the features of TD3. So, while SAC is not a direct improvement to TD3, 
it does share some features. PPO, however, is an improvement to A2C, and we reuse some 
of the A2C code. More specifically, we sample parallel environments to gather the mini-
batches of data and use GAE for policy targets.

0001 a BIt of hIStory

Introduction of the PPO agent

PPO was introduced by John Schulman et al. in 2017 on a paper titled "Proximal Policy 
Optimization Algorithms." John is a Research Scientist, a co-founding member, and the 
co-lead of the reinforcement learning team at OpenAI. He received his Ph.D. in Computer 
Science from Berkeley, advised by Pieter Abbeel.
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25PPO: Restricting optimization steps

Batching experiences
One of the features of PPO that A2C did not have is that with PPO, we can reuse experience 
samples. To deal with this, we could gather large trajectory batches, like in NFQ, and 'fit' the 
model to the data optimizing it over and over again. However, a better approach is to create 
a replay buffer and sample a large mini-batch from it on every optimization step. That way, 
there is this effect of stochasticity on each mini-batch because samples are not always the 
same, yet we likely reuse all samples in the long term.

I Speak python

Episode replay buffer 1/4

class EpisodeBuffer():
    def fill(self, envs, policy_model, value_model):
        states = envs.reset()
        we_shape = (n_workers, self.max_episode_steps)
        worker_rewards = np.zeros(shape=we_shape,
                                  dtype=np.float32)
        worker_exploratory = np.zeros(shape=we_shape,
                                      dtype=np.bool)
        worker_steps = np.zeros(shape=(n_workers),
                                dtype=np.uint16)
        worker_seconds = np.array([time.time(),] * n_workers,
                                  dtype=np.float64)

        buffer_full = False
        while not buffer_full and \
              len(self.episode_steps[self.episode_steps>0]) < \
              self.max_episodes/2:
            with torch.no_grad():
                actions, logpas, \
                 are_exploratory = policy_model.np_pass(states)
                values = value_model(states)

            next_states, rewards, terminals, \
                                     infos = envs.step(actions)
            self.states_mem[self.current_ep_idxs, 
                            worker_steps] = states
            self.actions_mem[self.current_ep_idxs,
                             worker_steps] = actions
            self.logpas_mem[self.current_ep_idxs,
                            worker_steps] = logpas

(1) This is the `fill` of the `EpisodeBuffer` class.

(2) Variables 
to keep 
worker 
information 
grouped.

(3) Here we enter the main 
loop to fill up the buffer.

(4) We start by getting the current 
actions, log probabilities, and stats.

(5) We pass the actions to the environments, and get the experiences.

(6) Then, 
store the 
experiences 
into the 
replay 
buffer.
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I Speak python

Episode replay buffer 2/4

    self.logpas_mem[self.current_ep_idxs,
                    worker_steps] = logpas

    worker_exploratory[np.arange(self.n_workers),
                       worker_steps] = are_exploratory
    worker_rewards[np.arange(self.n_workers),
                           worker_steps] = rewards

    for w_idx in range(self.n_workers):
        if worker_steps[w_idx] + 1 == self.max_episode_steps:
            terminals[w_idx] = 1
            infos[w_idx]['TimeLimit.truncated'] = True

    if terminals.sum():
        idx_terminals = np.flatnonzero(terminals)
        next_values = np.zeros(shape=(n_workers))
        truncated = self._truncated_fn(infos)
        if truncated.sum():
            idx_truncated = np.flatnonzero(truncated)
            with torch.no_grad():
                next_values[idx_truncated] = value_model(\
                      next_states[idx_truncated]).cpu().numpy()

    states = next_states
    worker_steps += 1

    if terminals.sum():
        new_states = envs.reset(ranks=idx_terminals)
        states[idx_terminals] = new_states

        for w_idx in range(self.n_workers):
            if w_idx not in idx_terminals:
                continue

            e_idx = self.current_ep_idxs[w_idx]

(8) We create these two variables for each worker. Remember, workers are inside environments.

(7) Same line. Also, I removed 
spaces to make it easier to read.

(9) Here we manually truncate episodes that go for too many steps.

(10) We check for terminal states, and pre-process them.

(11) We 
bootstrap if 
the terminal 
state was 
truncated.

(12) We update the `states` 
variable and increase the step count.

(13) Here we process the 
workers if we have terminals.

(14) We process 
each terminal worker 
one at a time.
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    e_idx = self.current_ep_idxs[w_idx]
    T = worker_steps[w_idx]
    self.episode_steps[e_idx] = T

    self.episode_reward[e_idx] = worker_rewards[w_idx,:T].sum()
    self.episode_exploration[e_idx] = worker_exploratory[\
                                              w_idx, :T].mean()
    self.episode_seconds[e_idx] = time.time() - \
                                          worker_seconds[w_idx]

    ep_rewards = np.concatenate((worker_rewards[w_idx, :T],
                                [next_values[w_idx]]))
    ep_discounts = self.discounts[:T+1]
    ep_returns = np.array(\
               [np.sum(ep_discounts[:T+1-t] * ep_rewards[t:]) \
                                            for t in range(T)])
    self.returns_mem[e_idx, :T] = ep_returns

    ep_states = self.states_mem[e_idx, :T]
    with torch.no_grad():
        ep_values = torch.cat((value_model(ep_states), 
                              torch.tensor(\
                                     [next_values[w_idx]],
                                     device=value_model.device,
                                     dtype=torch.float32)))

    np_ep_values = ep_values.view(-1).cpu().numpy()
    ep_tau_discounts = self.tau_discounts[:T]
    deltas = ep_rewards[:-1] + self.gamma * \
                           np_ep_values[1:] - np_ep_values[:-1]
    gaes = np.array(\
               [np.sum(self.tau_discounts[:T-t] * deltas[t:]) \
                                            for t in range(T)])
    self.gaes_mem[e_idx, :T] = gaes

    worker_exploratory[w_idx, :] = 0
    worker_rewards[w_idx, :] = 0
    worker_steps[w_idx] = 0
    worker_seconds[w_idx] = time.time()

(15) Further removed spaces.

(16) Here we collect statistics to 
display and analyze after the fact.

(17) We append the bootstrapping value to the reward vector. Calculate the predicted returns.

(18) Here we get the predicted values, and also append the bootstrapping value to the vector.

(19) Here we calculate the generalized advantage estimators, and save them into the buffer.

(20) And start 
resetting all 
worker variables 
to process next 
episode.
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                worker_seconds[w_idx] = time.time()

                new_ep_id = max(self.current_ep_idxs) + 1
                if new_ep_id >= self.max_episodes:
                    buffer_full = True
                    break

                self.current_ep_idxs[w_idx] = new_ep_id

    ep_idxs = self.episode_steps > 0
    ep_t = self.episode_steps[ep_idxs]

    self.states_mem = [row[:ep_t[i]] for i, \
                   row in enumerate(self.states_mem[ep_idxs])]
    self.states_mem = np.concatenate(self.states_mem)
    self.actions_mem = [row[:ep_t[i]] for i, \
                   row in enumerate(self.actions_mem[ep_idxs])]
    self.actions_mem = np.concatenate(self.actions_mem)
    self.returns_mem = [row[:ep_t[i]] for i, \
                   row in enumerate(self.returns_mem[ep_idxs])]
    self.returns_mem = torch.tensor(np.concatenate(\
                  self.returns_mem), device=value_model.device)
    self.gaes_mem = [row[:ep_t[i]] for i, \
                   row in enumerate(self.gaes_mem[ep_idxs])]
    self.gaes_mem = torch.tensor(np.concatenate(\
                   self.gaes_mem), device=value_model.device)
    self.logpas_mem = [row[:ep_t[i]] for i, \
                   row in enumerate(self.logpas_mem[ep_idxs])]
    self.logpas_mem = torch.tensor(np.concatenate(\
                   self.logpas_mem), device=value_model.device)

    ep_r = self.episode_reward[ep_idxs]
    ep_x = self.episode_exploration[ep_idxs]
    ep_s = self.episode_seconds[ep_idxs]

    return ep_t, ep_r, ep_x, ep_s

(21) Same line, indentation edited again.

(22) Check which episode 
is next in queue and break 
if have too many.

(23) If buffer is not full, we set the 
id of the new episode to the worker.

(24) If we are in these lines, it means the episode is full, so we process the memory for sampling.

(25) Because we initialize the whole buffer at once, we need remove from the 
memory everything that is not a number, in the episode and the steps dimensions.

(26) Finally, we extract the statistics to display.

(27) And return the stats.
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Clipping the policy updates
The main issue with the regular policy gradient is that even a small change in parameter 
space can lead to a big difference in performance. The discrepancy between parameter space 
and performance is why we need to use small learning rates in policy-gradient methods, and 
even so, the variance of these methods can still be too large. The whole point of clipped PPO 
is to put a limit on the objective such that on each training step, the policy is only allowed 
to be so far away. Intuitively, you can think of this clipped objective as a coach preventing 
overreacting to outcomes. Did the team get a good score last night with a new tactic? Great, 
but don't exaggerate. Don't throw away a whole season of results for a new result. Instead, 
keep improving just a little bit at a time.

Clipping the value function updates
We can apply a similar clipping strategy to the value function with the same core concept: 
only let the changes in parameter space change the Q-values this much, but not more. As 
you can tell, this clipping technique keeps the variance of the things we care about smooth, 
whether changes in parameter space are smooth or not. We don't necessarily need small 
changes in parameter space; however, we'd like level changes in performance and values.

Show Me the Math

Clipped policy objective
(1) For the policy objective, we first extract 
the states, actions and GAEs from the buffer.

(2) Next, we calculate the ratio between the 
new and old policy, and use it for the objective.

(3) We want to use the minimum 
between the weighted GAE

(4) And the clipped-ratio 
version of the same objective.

Show Me the Math

Clipped value loss
(1) For the value function, we also sample from 
the replay buffer. G is the return, V the value.

(2) Look how we first move the predicted 
values, then clip the difference and shift it back.

(3) Notice, we take the maximum 
magnitude of the two errors.

(4) To estimate this through sampling, we do 
MSE on the path that the `max` chooses.
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    def optimize_model(self):

        states, actions, returns, \
                gaes, logpas = self.episode_buffer.get_stacks()

        values = self.value_model(states).detach()

        gaes = (gaes - gaes.mean()) / (gaes.std() + EPS)
        n_samples = len(actions)

        for i in range(self.policy_optimization_epochs):

            batch_size = int(self.policy_sample_ratio * \
                                                     n_samples)
            batch_idxs = np.random.choice(n_samples,
                                          batch_size,
                                          replace=False)

            states_batch = states[batch_idxs]
            actions_batch = actions[batch_idxs]
            gaes_batch = gaes[batch_idxs]
            logpas_batch = logpas[batch_idxs]

            logpas_pred, entropies_pred = \
                           self.policy_model.get_predictions( \
                                   states_batch, actions_batch)

            ratios = (logpas_pred - logpas_batch).exp()
            pi_obj = gaes_batch * ratios

            pi_obj_clipped = gaes_batch * ratios.clamp( \
                                  1.0 - self.policy_clip_range,
                                  1.0 + self.policy_clip_range)

(1) Now, let's look at those 
two equations in code.

(2) First, extract the full batch of experiences from the buffer.

(3) Get the values before we start optimizing the models.

(4) Get the gaes and normalize the batch.

(5) Now, start optimizing the policy first for at most the preset epochs.

(6) We sub-sample from the full batch a mini-batch.

(7) Extract the mini-batch using the randomly sample indices.

(8) We use the online model to get the predictions.

(9) Here we calculate the ratios. Log probabilities to ratio of probabilities.

(10) Then, calculate the objective and the clipped objective.
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            pi_obj_clipped = gaes_batch * ratios.clamp( \
                                  1.0 - self.policy_clip_range,
                                  1.0 + self.policy_clip_range)

            policy_loss = -torch.min(pi_obj,
                                     pi_obj_clipped).mean()

            entropy_loss = -entropies_pred.mean() * \
                                       self.entropy_loss_weight

            self.policy_optimizer.zero_grad()
            (policy_loss + entropy_loss).backward()
            torch.nn.utils.clip_grad_norm_( \
                               self.policy_model.parameters(),
                               self.policy_model_max_grad_norm)
            self.policy_optimizer.step()

            with torch.no_grad():
                logpas_pred_all, _ = \
                     self.policy_model.get_predictions(states,
                                                       actions)

                kl = (logpas - logpas_pred_all).mean()

                if kl.item() > self.policy_stopping_kl:
                    break

        for i in range(self.value_optimization_epochs):
            batch_size = int(self.value_sample_ratio * \
                                                     n_samples)

            batch_idxs = np.random.choice(n_samples,
                                          batch_size,
                                          replace=False)
            states_batch = states[batch_idxs]

(11) We calculate the loss using the negative of the minimum of the objectives.

(12) Also, we calculate the entropy loss, and weight it accordingly.

(13) Zero the optimizing, and start training.

(14) After stepping the optimizer, we do this nice trick of ensuring we only 
optimize again if the new policy is within some bounds of the original policy.

(15) Here we calculate the KL-divergence of the two policies.

(16) And break out of the training loop if it is greater than a stopping condition.

(17) Here, we start doing a very similar updates steps to the value function.

(18) We grab the mini-batch from the full batch, just as with the policy.
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            states_batch = states[batch_idxs]
            returns_batch = returns[batch_idxs]
            values_batch = values[batch_idxs]

            values_pred = self.value_model(states_batch)
            v_loss = (values_pred - returns_batch).pow(2)

            values_pred_clipped = values_batch + \
                          (values_pred - values_batch).clamp( \
                                        -self.value_clip_range,
                                        self.value_clip_range)

            v_loss_clipped = (values_pred_clipped - \
                                          returns_batch).pow(2)

            value_loss = torch.max(\
                        v_loss, v_loss_clipped).mul(0.5).mean()

            self.value_optimizer.zero_grad()
            value_loss.backward()
            torch.nn.utils.clip_grad_norm_( \
                                self.value_model.parameters(),
                                self.value_model_max_grad_norm)
            self.value_optimizer.step()

            with torch.no_grad():
                values_pred_all = self.value_model(states)

                mse = (values - values_pred_all).pow(2)
                mse = mse.mul(0.5).mean()
                if mse.item() > self.value_stopping_mse:
                    break

(19) Get the predicted values according to the model, and calculate the standard loss.

(20) Here we calculate the clipped predicted values.

(21) Then, calculate the clipped loss.

(22) We use the MSE of the maximum between the standard and clipped loss.

(23) Finally, we zero the optimizer, back-propagate the loss, clip the gradient and step.

(24) We can do something similar to early stopping, but with the value function.

(25) Basically we check for the MSE of the predicted values of the new and old policies.
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ConCrete exaMple

The Lunar Lander environment

Unlike all the other environments we have explored in 
this chapter, the Lunar Lander environment features a 
discrete action space. Algorithms, such as DDPG and 
TD3, only work with continuous-action environments. 
Whether single-variable, such as Pendulum, or a vector, 
such as in Hopper and Cheetah. Agents such as DQN 
only work in discrete action-space environments, such 
as the Cart Pole. Actor-critic methods such as A2C 
and PPO have a big plus, which is that you can use 
stochastic policy models that are compatible with virtually any action space.

So, in this environment, the agent needs to select one out of four possible actions on every 
step. That is 0 for do nothing, or 1 for fire the left engine, or 2 for fire the main engine, or 3 
for fire the right engine. The observation space is a vector with 8 elements, representing the 
coordinates, angles, velocities, and whether its legs touch the ground. The reward function 
is based on distance from the landing pad and fuel consumption. The reward threshold for 
solving the environment is 200, and the time step limit is 1,000.

tally It Up

PPO in the Lander environment

(1) The 
Lunar Lander 
environment is 
not a difficult 
environment, and 
PPO, being a great 
algorithm, solves 
it in 10 minutes or 
so. You may notice 
the curves are not 
continuous. This 
is because in this 
algorithm, we only 
run an evaluation 
step after each 
episode batch 
collection.
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Summary
In this chapter, we survey the state-of-the-art of actor-critic methods and even of deep 
reinforcement learning methods in general. You first learned about deep deterministic 
policy gradient methods, in which a deterministic policy is learned. Because these methods 
learn deterministic policies, they use off-policy exploration strategies and update equations. 
For instance, with DDPG and TD3, we inject Gaussian noise into the action-selection 
process, allowing deterministic policies to become exploratory.

In addition, you learned that TD3 improves DDPG with three key adjustments. First, TD3 
uses a double learning technique similar to that of DDQN, in which we "cross-validate" the 
estimates coming out of the value function by using a twin Q-network. Second, TD3, in 
addition to adding Gaussian noise to the action passed into the environment, it also adds 
Gaussian noise to target actions, to ensure the policy does not learn actions based on bogus 
Q-value estimates. Third, TD3 delays the updates to the policy network, so that the value 
networks get better estimates before we use them to change the policy.

We then explored an entropy-maximization method called SAC, which consists of 
maximizing a joint objective of the value function and policy entropy, which intuitively 
translates into getting the most reward with the most diverse policy. The SAC agent, just 
like DDPG and TD3, learns in an off-policy way, which means these agents can reuse 
experiences to improve policies. However, unlike DDPG and TD3, SAC learns a stochastic 
policy, which implies exploration can be on-policy, embedded in the learned policy.

Finally, we explored an algorithm called PPO, which is a more direct descendant of A2C, 
being an on-policy learning method that also uses an on-policy exploration strategy. 
However, because of a clipped objective that makes PPO improve the learned policy more 
conservatively, PPO is able to reuse past experiences for its policy improvement steps.

In the next, we review some of the research areas surrounding DRL that are pushing the 
edge of a field that many call artificial general intelligence AGI. AGI is an opportunity to 
understand human intelligence by recreating it. Physicist Richard Feynman said, "What I 
cannot create, I do not understand." Wouldn't it be nice to understand intelligence?

By now you:

• Understand more advanced actor-critic algorithms and relevant tricks.
• Can implement state-of-the-art deep reinforcement learning methods and perhaps 

device improvements to these algorithms that you can share with others.
• Can apply state-of-the-art deep reinforcement learning algorithms to a variety of envi-

ronments, hopefully even environments of your own.
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