

©Manning Publications Co. To comment go to liveBook

MEAP Edition
Manning Early Access Program

Grokking Deep Reinforcement Learning
Version 11

Copyright 2020 Manning Publications

For more information on this and other Manning titles go to

manning.com

https://forums.manning.com/forums/grokking-deep-reinforcement-learning
https://www.manning.com/

©Manning Publications Co. To comment go to liveBook

welcome
Thanks for purchasing the MEAP for Grokking Deep Reinforcement Learning. My vision is that
by buying this book, you will not only learn deep reinforcement learning but also become
an active contributor to the field. Deep reinforcement learning has the potential to
revolutionize the world as we know it. By removing humans from decision-making
processes, we set ourselves up to succeed. Humans can't match the stamina and work ethic
of a computer; we also have biases that make us less than perfect. Imagine how many
decision-making applications could be improved with the objectivity and optimal decision
making of a machine—healthcare, education, finance, defense, robotics, etc. Think of any
process in which a human repeatedly makes decisions; deep reinforcement learning can
help in most of them. Deep reinforcement learning can do great things as it is today, but the
field is still not perfect. That should excite you, because it means we need people with the
interest and skills to push the boundaries of this field forward. We are lucky to be part of this
world at this point, and we should take advantage of it and make history. Are you up for the
challenge?

I've been involved in Reinforcement Learning for a few years now. I first studied the topic
in a course at Georgia Tech: Reinforcement Learning and Decision Making, which was co-
taught by Drs. Charles Isbell and Michael Littman. It was inspiring to hear from top
researchers in the field, interact with them daily, and listen to their perspectives. The
following semester, I became a Teaching Assistant for the course and never looked back.
Today, I'm an Instructional Associate at Georgia Tech and continue to help with the class
daily. I've been privileged to interact with top researchers in the field and with hundreds of
students, and I've become a bridge between the experts and the students for almost two
years now. I understand the gaps in knowledge, the topics that are often the source of
confusion, the students' interests, the foundational knowledge that is classic yet necessary,
the classical papers that can be skipped, and many other things that put me in a position to
write this book. In addition to teaching at Georgia Tech, I work full-time for Lockheed Martin,
Missile and Fire Control - Autonomous Systems. We do top autonomy work, part of which
involves the use of autonomous decision-making such as in deep reinforcement learning. I
felt inspired to take my passion for both teaching and deep reinforcement learning to the
next level by making this field available to anyone who is willing to put in the work.

I partnered with Manning to deliver a great book to you. Our goal is to help readers
understand how deep learning makes reinforcement learning a more effective approach. In
the first part of the book, we will dive into the foundational knowledge specific to
reinforcement learning. Here you'll gain the necessary expertise to solve more complex
decision-making problems. In the second part, I'll teach you to use deep learning
techniques to solve massive, complex reinforcement learning problems. We will dive into
the top deep reinforcement learning algorithms and dissect them one at a time. Finally, in

WOW! eBook
www.wowebook.org

https://forums.manning.com/forums/grokking-deep-reinforcement-learning

©Manning Publications Co. To comment go to liveBook

the third part, we will look at advanced applications of these techniques. We will put
everything together then and help you see the potential of this technology.

Again, it is an honor to have you with me; I hope that I can inspire you to give your best
and apply the knowledge you will obtain in this book to solve complex decision-making
problems and make this a better place. Humans may be sub-optimal decision makers, but
buying this book was without a doubt the right thing to do. Let's get working.

—Miguel Morales

https://forums.manning.com/forums/grokking-deep-reinforcement-learning

©Manning Publications Co. To comment go to liveBook

brief contents

 1 Introduction to deep reinforcement learning

 2 Mathematical foundations of reinforcement learning

 3 Balancing immediate and long-term goals

 4 Balancing the gathering and utilization of information

 5 Estimating the value of agents' behaviors

 6 Improving agents’ behaviors

 7 Achieving goals more effectively and efficiently

 8 Introduction to value-based deep reinforcement learning

 9 More stable value-based methods

10 Sample-efficient value-based methods

11 Policy-gradient and actor-critic methods

12 Advanced actor-critic methods

13 Towards artificial general intelligence

https://forums.manning.com/forums/grokking-deep-reinforcement-learning

introduction to
deep reinforcement learning 1

In this chapter

• You learn what deep reinforcement learning is and how
it is different from other machine learning approaches.

• You learn about the recent progress in deep
reinforcement learning and what it can do for a variety
of problems.

• You know what to expect from this book, and how to
get the most out of it.

I visualize a time when we will be to robots what
dogs are to humans, and I'm rooting for the
machines.

— Claude Shannon
Father of the Information Age

and contributor to the field of Artificial Intelligence

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

1

2 Chapter 1 I introduction to deep reinforcement learning

Humans naturally pursue feelings of happiness. From picking out our meals to advancing
our careers, every action we choose is derived from our drive to experience rewarding
moments in life. Whether these moments are self-centered pleasures or the more generous
of goals, whether they bring us immediate gratification or long-term success, they are still
our perception of how important and valuable they are. And to some extent, these moments
are the reason for our existence.

Our ability to achieve these precious moments seems to be correlated with intelligence;
"Intelligence" is defined as the ability to acquire and apply knowledge and skills. People
that are deemed by society as intelligent are not only capable of trading-off immediate
satisfaction for long-term goals, but also a good, certain future for a possibly better, yet
uncertain one. Goals that take longer to materialize and that have unknown long-term value
are usually the hardest to achieve, and it is those who can withstand the challenges along the
way that are the exception, the leaders, the intellectuals of society.

In this book, you learn about an approach, known as deep reinforcement learning, involved
with creating computer programs that can achieve goals that require intelligence. In this
chapter, you are introduced to deep reinforcement learning and learn how to get the most
out of this book.

What is deep reinforcement learning?
Deep reinforcement learning (DRL) is a machine learning approach to artificial
intelligence concerned with creating computer programs that can solve problems requiring
intelligence. The distinct property of DRL programs is the learning through trial and error
from feedback that is simultaneously sequential, evaluative, and sampled by leveraging
powerful non-linear function approximation.

I want to unpack this definition for you one bit at a time. But, don't get too caught up with
the details as it'll take me the whole book to get you grokking deep reinforcement learning.
The following is just the introduction of what you learn about in this book. As such, it's
repeated and explained in detail in the chapters ahead.

If I succeed with my goal for this book, after you complete it, you should be able to come
back to this definition and understand it precisely. You should be able to tell why I used the
words that I used, why I didn't use more or fewer words. But, for this chapter, simply sit
back and plow through it.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

2

3What is deep reinforcement learning?

Deep reinforcement learning is a machine learning approach
to artificial intelligence
Artificial intelligence (AI) is a branch of computer science involved in the creation of
computer programs capable of demonstrating intelligence. Traditionally, any piece of
software that displays cognitive abilities such as perception, search, planning, and learning is
considered part of AI. Some examples of functionality produced by AI software are:

• The pages returned by a search engine.
• The route produced by a GPS app.
• The voice recognition and the synthetic voice of a smart-assistant software.
• The recommended products shown on e-commerce sites.
• The follow-me feature in drones.

All computer programs that display intelligence are considered AI, but not all examples of
AI can learn. Machine learning (ML) is the area of AI concerned with creating computer
programs that can solve problems requiring intelligence by learning from data. There are
three main branches of ML: supervised, unsupervised, and reinforcement learning.

Subfields of Artificial Intelligence

(1) Some of the most important
areas of study under the field of
Artificial Intelligence.

Artificial Intelligence

Perception

Expert Systems

Machine Learning

Planning

Natural Language Processing

Computer Vision
Robotics

Logic

Search

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

3

4 Chapter 1 I introduction to deep reinforcement learning

Supervised learning (SL) is the task of learning from labeled data. In SL, a human decides
which data to collect and how to label it. The goal in SL is to generalize. A classic example of
SL is a handwritten-digit recognition application; a human gathers images with handwritten
digits, labels those images, and trains a model to recognize and classify digits in images
correctly. The trained model is expected to generalize and correctly classify handwritten
digits in new images.

Unsupervised learning (UL) is the task of learning from unlabeled data. Even though data
no longer needs labeling, the methods used by the computer to gather data still need to be
designed by a human. The goal in UL is to compress. A classic example of UL is a customer
segmentation application; a human collects customer data and trains a model to group
customers into clusters. These clusters compress the information uncovering underlying
relationships in customers.

Reinforcement learning (RL) is the task of learning through trial and error. In this type
of task, no human labels data, and no human collects or explicitly designs the collection
of data. The goal in RL is to act. A classic example of RL is a Pong-playing agent; the agent
repeatedly interacts with a Pong emulator and learns by taking actions and observing its
effects. The trained agent is expected to act in such a way that it successfully plays Pong.

Main branches of Machine Learning

(1) These types of
Machine Learning tasks
are all important, and they
are not mutually exclusive.

Artificial Intelligence

Machine Learning

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

(2) In fact, the best
examples of Artificial
Intelligence combine many
different techniques.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

4

5What is deep reinforcement learning?

A powerful recent approach to ML, called deep learning (DL), involves using multi-
layered non-linear function approximation, typically neural networks. DL is not a separate
branch of ML, so it's not a different task than those described above. DL is a collection of
techniques and methods for using neural networks to solve ML tasks, whether SL, UL, or
RL. DRL is simply the use of DL to solve RL tasks.

The bottom line is that DRL is an approach to a problem. The field of AI defines the
problem: Creating intelligent machines. One of the approaches to solving that problem is
DRL. Throughout the book, you'll find comparisons between RL and other ML approaches,
but only in this chapter, you'll find definitions and a historical overview of AI in general. It's
important to note that the field of RL includes the field of DRL, so while I'll try to make the
distinction when necessary when I refer to RL, DRL is included.

(1) The important thing here is Deep Learning is a
toolbox, and any advancement in the field of Deep
Learning is felt in all of Machine Learning.

(2) Deep Reinforcement Learning is the intersection
of Reinforcement Learning and Deep Learning.

Deep Learning is a powerful toolbox

Artificial Intelligence

Machine Learning

Deep
Learning

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

5

6 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning is concerned
with creating computer programs
At its core, DRL is about complex sequential decision-making problems under uncertainty.
But, this is a topic of interest to many fields; for instance, control theory (CT) studies ways
to control complex known dynamical systems. In CT, the dynamics of the systems we try
to control are usually known in advance. Operations research (OR), another instance,
also studies decision-making under uncertainty, but problems in this field often have
much larger action spaces than those commonly seen in DRL. Psychology studies human
behavior, which is partly the same "complex sequential decision-making under uncertainty"
problem.

The bottom line is that you have come to a field that is influenced by a variety of others.
Although this is a good thing, it also brings some inconsistencies in terminologies, notations
and so on. My take is the computer science approach to this problem, so this book is
about building computer programs that solve complex decision-making problems under
uncertainty, and as such, you can find code examples throughout the book.

In DRL, these computer programs are called agents. An agent is a decision-maker only and
nothing else. That means if you are training a robot to pick up objects, the robot arm is not
part of the agent. Only the code that makes decisions is referred to as the agent.

(1) All of these fields (and
many more) study complex
sequential decision-making
under uncertainty.

(2) As a result, there is a
synergy between these fields.
For instance, Reinforcement
Learning and Optimal Control
both contribute to the research
of model-based methods.
(3) Or Reinforcement Learning and
Operations Research both contribute
to the study of problems with large
action spaces.
(4) The downside is an inconsistency in
notation, definitions, etc. that make it hard
for newcomers to find their way around.

The synergy between similar fields

Operations
Research

Reinforcement
Learning

Model-
based
methods

Large
action-
space
methods

Optimal
Control

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

6

7What is deep reinforcement learning?

Deep reinforcement learning agents
can solve problems that require intelligence
On the other side of the agent is the environment. The environment is everything outside
the agent; everything the agent has no total control over. Again, imagine you are training
a robot to pick up objects. The objects to be picked up, the tray where the objects lay, the
wind, and everything outside the decision-maker are part of the environment. That means
the robot arm is also part of the environment because it is not part of the agent. And even
though the agent can decide to move the arm, the actual arm movement is noisy, and thus
the arm is part of the environment.

This strict boundary between the agent and the environment is counterintuitive at first, but
the decision-maker, the agent, can only have a single role: making decisions. Everything that
comes after the decision gets bundled into the environment.

Chapter 2 provides an in-depth survey of all the components of DRL. The following is just a
preview of what you'll learn in chapter 2:

Boundary between agent and environment

EnvironmentAgent

Code

(1) An agent is the
decision-making
portion of the code.

(2) The environment is everything outside the
agent. In this case that includes network latencies,
the motors noise, the camera noise, and so on. This
may seem counter-intuitive at first, but it actually
helps understanding the algorithms.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

7

8 Chapter 1 I introduction to deep reinforcement learning

The environment is represented by a set of variables related to the problem. For instance, in
the manipulator example, the location and velocities of the arm would be the variables that
make up the environment. This set of variables and all the possible values that they can take
are referred to as the state space. A state is an instantiation of the state space, a set of values
the variables take.

Interestingly, often, agents don't have access to the actual full state of the environment. The
part of the state that the agent can observe is called an observation. Observations depend
on states but are what the agent can see. For instance, in the manipulator example, the agent
may only have access to camera images. So, while there is an exact location of each object,
the agent doesn't have access to this specific state. Instead, an observation derived from the
state. You'll often see in the literature observations and states being used interchangeably.
But know that the observations may or may not be equal to the states.

0.2 5.1

2.8

2.7
3.52 5.2

States vs. observations

State:
true locations

Observation:
just an image

(1) States are the perfect and complete
information related to the task at hand.

(2) While observations are the information
the agent receives. This could be noisy or
incomplete information.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

8

WOW! eBook
www.wowebook.org

9What is deep reinforcement learning?

At each state, the environment makes available a set of actions the agent can choose from.
The agent influences the environment through these actions. The environment may change
states as a response to the agent's action. The function that is responsible for this mapping
is called the transition function. The environment may also provide a reward signal as
a response. The function responsible for this mapping is called the reward function or
reward signal. The set of transition and reward functions is referred to as the model of the
environment.

The environment commonly has a well-defined task. The goal of this task is defined
through the reward function. The reward-function signals can be simultaneously sequential,
evaluative, and sampled. So, to achieve the goal, the agent needs to demonstrate intelligence,
or at least cognitive abilities commonly associated with intelligence, such as long-term
thinking, information gathering, and generalization.

The agent has a three-step process: the agent interacts with the environment, the agent
evaluates its behavior, and the agent improves its responses. The agent may be designed to
learn mappings from observations to actions called policies. The agent may be designed to
learn the model of the environment on mappings called models. The agent may be designed
to learn to estimate the reward to go on mappings called value functions.

The reinforcement learning cycle

Improve

AgentEnvironment

Observation
and Reward

State

Transition

Action

(1) The cycle begins with
the agent observing the
environment.

(2) The agent uses this
observation and reward to
attempt improve at the task.

(3) It then sends an
action to the environment
in an attempt to control
it in a favorable way.

(4) Finally, the
environment transitions
and its internal state
[likely] changes as a
consequence of the
previous state and the
agent's action. Then,
the cycle repeats.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

9

WOW! eBook
www.wowebook.org

10 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning agents
improve their behavior through trial-and-error learning

The interactions between the agent and the environment go on for several cycles. Each cycle
is called a time step. At each time step, the agent observes the environment, takes action,
and receives a new observation and reward. The set of the state, the action, the reward, and
the new state is called an experience. Every experience has an opportunity for learning and
improving performance.

The task the agent is trying to solve may or may not have a natural ending. Tasks that have
a natural ending, such as a game, are called episodic tasks. Conversely, tasks that do not are
called continuing tasks, such as learning forward motion. The sequence of time steps from
the beginning to the end of an episodic task is called an episode. Agents may take several
time steps and episodes to learn to solve a task. Agents learn through trial and error: they
try something, observe, learn, try something else, and so on.

You'll start learning more about this cycle in chapter 4, which contains a type of
environment with a single step per episode. Starting with chapter 5, you'll learn to deal with
environments that require more than a single interaction cycle per episode.

Experience tuples

Agent Environment Time step

Action a

Action a'

Action a''

Experiences:
t, (s, a, r', s')
t+1, (s', a', r'', s'')
t+2, (s'', a'', r''', s''')
...

State s
Reward r

t+3

t+2

t+1

t

State s'
Reward r'

State s''
Reward r''

State s'''...
...

...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

10

WOW! eBook
www.wowebook.org

11What is deep reinforcement learning?

Deep reinforcement learning agents
learn from sequential feedback
The action taken by the agent may have delayed consequences. The reward may be sparse
and only manifest after several time steps. Thus the agent must be able to learn from
sequential feedback. Sequential feedback gives rise to a problem referred to as the temporal
credit assignment problem. The temporal credit assignment problem is the challenge of
determining which state and/or action is responsible for a reward. When there is a temporal
component to a problem, and actions have delayed consequences, it becomes challenging to
assign credit for rewards.

In chapter 3, we'll study the ins and outs of sequential feedback in isolation. That is, your
programs learn from simultaneously sequential, supervised (as opposed to evaluative) and
exhaustive (as opposed to sampled) feedback.

The difficulty of the temporal credit assignment problem

(1) You are in state 0.

(2) OK. I'll take action A.

(3) You got +23.
(4) You are in state 3.

Agent Environment

(5) Nice! Action A again, please.

(6) No problem, -100.
(7) You are in state 3.

(8) Ouch! Get me out of here!
(9) Action B?!

(10) Sure, -100.
(11) You are in state 3.

(12) Was it taking action A in state 0 to be blamed for the -100?
Sure, choosing action A in state0 gave me a good immediate reward,
but maybe that is what sent me to state 3, which is terrible.
Should I have chosen action B in state 0?
Oh, man... Temporal credit assignment is hard...

Time

Agent

Agent

Agent

Environment

Environment

...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

11

12 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning agents
learn from evaluative feedback
The reward received by the agent may be weak, in the sense that it may provide no
supervision. The reward may indicate goodness and not correctness, meaning it may
contain no information about other potential rewards. Thus the agent must be able to learn
from evaluative feedback. Evaluative feedback gives rise to the need for exploration. The
agent must be able to balance the gathering of information with the exploitation of current
information. This is also referred to as the exploration vs. exploitation tradeoff.

In chapter 4, we'll study the ins and outs of evaluative feedback in isolation. That is,
your programs will learn from feedback that is simultaneously one-shot (as opposed to
sequential,) evaluative, and exhaustive (as opposed to sampled).

The difficulty of the exploration vs. exploitation tradeoff

(1) You are in state 0.

(2) OK. I'll take action A.

(3) You got +50.
(4) You are in state 0.

Agent Environment

(5) Sweet! Action A again, please.

(6) No problem, +20.
(7) You are in state 0.

(8) I've received lots of rewards.
(9) Now, let me try action B!

(10) Sure, +1,000.
(11) You are in state 0.

(12) Well, action A doesn't seem
that rewarding after all... I regret
choosing action A all this time!

Time

Agent

Agent

Agent

Environment

Environment

...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

12

13What is deep reinforcement learning?

Deep reinforcement learning agents
learn from sampled feedback
The reward received by the agent is merely a sample, and the agent does not have access to
the reward function. Also, the state and action spaces are commonly large, even infinite, so
trying to learn from sparse and weak feedback becomes a harder challenge with samples.
Therefore, the agent must be able to learn from sampled feedback, it must be able to
generalize.

Agents that are designed to approximate policies are called policy-based, agents that are
designed to approximate value functions are called value-based, agents that are designed to
approximate models are called model-based, and agents that are designed to approximate
both policies and value functions are called actor-critic. Agents can be designed to
approximate one or more of these components.

The difficulty of learning from sampled feedback
(1) You are in state (0.1, 1.3, -1.2, 7.3).

(2) What? What is that?
(3) OK. I'll take action A.
(4) You got +1.
(5) You are in (1.5, 1.3, -4.4, 5.1).

Agent Environment

(6) No idea. Action B?
(7) You got +1.
(8) You are in (1.5, 1.7, -5.4, 1.1).

(9) Still no clue...
(10) Action A?! I guess!?
(11) You got +1.
(12) You are in (1.2, 1.1, 1.4, 1.4).

(13) I have no idea what's going on.
I need function approximation... Perhaps,
I can get a fancy deep neural network!

Time

Agent

Agent

Agent

Environment

Environment

...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

13

14 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning agents
utilize powerful non-linear function approximation
The agent can approximate functions using a variety of ML methods and techniques, from
decision trees to SVMs, to neural networks. However, in this book, we only use neural
networks; this is what the "deep" part of DRL refers to after all. Neural networks are not
necessarily the best solution to every problem; neural networks are very data-hungry and
challenging to interpret, and you must have these facts in mind. However, neural networks
are also one of the most potent function approximation available, and their performance is
often the best.

Artificial neural networks (ANN) are multi-layered non-linear function approximators
loosely inspired by the biological neural networks in animal brains. An ANN is not an
algorithm, but a structure composed of multiple layers of mathematical transformations
applied to input values.

From chapter 3 to chapter 7, we will only deal with problems in which agents learn from
exhaustive (as opposed to sampled) feedback. Starting with chapter 8, we study the full DRL
problem; that is using deep neural networks so that agents can learn from sampled feedback.
Remember, DRL agents learn from feedback that is simultaneously sequential, evaluative,
and sampled.

A simple feed-forward neural network

Input Layer

(1) You are likely familiar with these!
Well, you better be!

Hidden Layers Output Layer

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

14

WOW! eBook
www.wowebook.org

15The past, present, and future of deep reinforcement learning

The past, present, and future
of deep reinforcement learning
History is not necessary to gain skills, but it can allow you to understand the context around
a topic, which in turn can help you gain motivation, and therefore skills. The history of AI
and DRL should help you set expectations about the future of this powerful technology. At
times I feel the hype surrounding AI is actually productive; people get interested. But right
after that, when it's time to put in work, hype no longer helps, and it is actually a problem.
So, while I'd like to be excited about AI, I also need to set some realistic expectations.

Recent history of artificial intelligence
and deep reinforcement learning
The beginnings of DRL could be traced many years back as humans have been intrigued
by the possibility of intelligent creatures other than ourselves since antiquity. But a good
beginning could be Alan Turing's work in the 1930s, 1940s, and 1950s which paved the way
for modern computer science and AI by laying down critical theoretical foundations that
later scientists leveraged.

The most well-known of these is the Turing Test, which proposes a standard for measuring
machine intelligence: if a human interrogator is unable to distinguish a machine from
another human on a chat Q&A session, then the computer is said to count as intelligent.
Though rudimentary, the Turing Test allowed generations to wonder about the possibilities
of creating smart machines by setting a goal that researchers could pursue.

The formal beginnings of AI as an academic discipline can be attributed to John McCarthy,
an influential AI researcher who made several notable contributions to the field. To name a
few, McCarthy is credited with coining the term "artificial intelligence" in 1955, leading the
first AI conference in 1956, inventing the Lisp programming language in 1958, co-founding
the MIT AI Lab in 1959, and contributing important papers to the development AI as a field
over several decades.

Artificial intelligence winters
All the work and progress of AI early on created a great deal of excitement, but there were
also significant setbacks. Prominent AI researchers suggested we would be able to create
human-like machine intelligence within years, but this never came. Things got worse when
a well-known researcher named James Lighthill compiled a report criticizing the state of
academic research in AI. All of these developments contributed to a long period of reduced
funding and interest in AI research known as the first AI winter.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

15

16 Chapter 1 I introduction to deep reinforcement learning

The field continued this pattern throughout the years: Researchers making progress, people
getting overly optimistic, then overestimating, and this leading to reduced fundings by
government and industry partners.

The current state of artificial intelligence
We are likely in another highly-optimistic time in AI history, and thus we must be careful.
Practitioners understand that AI is just a powerful tool, but some people think of AI as this
magic black box that can take any problem in and out comes the best solution ever. Nothing
can be further from the truth. Some people even worry about AI gaining consciousness, like
if that was relevant, as Edsger Dijkstra famously said: "The question of whether a computer
can think is no more interesting than the question of whether a submarine can swim."

But, if we set aside this Hollywood-instilled vision of AI, we can allow ourselves to get
excited about the recent progress in this field. Today, the most influential companies in the
world make the most substantial investments to AI research. Companies such as Google,
Facebook, Microsoft, Amazon, and Apple have invested in AI research and have become
highly profitable thanks, in part, to AI systems. Their significant and steady investments
have created the perfect environment for the current pace of AI research. Contemporary
researchers have the best computing power available and tremendous amounts of data for
their research, and teams of top researchers are working together, on the same problems, in
the same location, at the same time. Current AI research has become more stable and more
productive. We have been witnessing one AI success after another, and it doesn't seem likely
to stop anytime soon.

Al funding pattern through the years

(1) Beyond actual numbers,
AI has followed a pattern of
hype and disillusion for years.
What does the future hold?

AI
Winter

Hype

Disillusion Is it hype, again?

1955-1975
Time

1975-1980
1980-1987

1987-1993
2000- Present

AI
funding

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

16

17The past, present, and future of deep reinforcement learning

Progress in deep reinforcement learning
The use of artificial neural networks for RL problems started around the 1990s. One of
the classics is Gerald Tesauro et al.'s backgammon-playing computer program, called
TD-Gammon. TD-Gammon learned to play backgammon by learning to evaluate table
positions on its own through RL. Even though the techniques implemented are not precisely
considered DRL, TD-Gammon was one of the first widely-reported success stories using
ANNs to solve complex RL problems.

In 2004, Andrew Ng et al. developed an autonomous helicopter that taught itself to fly stunts
by observing hours of human-experts flights. They used a technique known as inverse
reinforcement learning, in which an agent learns from expert demonstrations. The same
year, Kohl and Stone used a class of DRL methods known as policy-gradient methods to
develop a soccer playing robot for the RoboCup tournament. They used RL to teach the
agent forward motion. After only three hours of training, the robot achieved the fastest
forward moving speed of any other robot of the same hardware.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

21
16

17
18

19
20

21
22

23
24

...
...

TD-Gammon architecture

(1) Handcrafted features,
not Deep Learning. (2) Not a "deep"

network, but arguably
the beginnings of DRL.

(3) The output of
the network was the
predicted probability
of winning given the
current game state.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

17

18 Chapter 1 I introduction to deep reinforcement learning

There were other successes in the 2000s, but the field of DRL really only started growing
after the DL field took off around 2010. In 2013 and 2015, Mnih et al. published a couple of
papers presenting the DQN algorithm. DQN learned to play ATARI games from raw pixels.
Using a convolutional neural network (CNN) and a single set of hyperparameters, DQN
performed better than a professional human player in 22 out of almost 50 of the games.

This accomplishment started a revolution in the DRL community: In 2014, Silver et al.
released the DPG algorithm and just a year later Lillicrap et al. improved it with DDPG. In
2016, Schulman et al. released TRPO and GAE methods, Sergey Levine et al. published GPS,
and Silver et al. demoed AlphaGo. The following year, Silver et al. demonstrated AlphaZero.
Many other algorithms were released during these years: DDQN, PER, PPO, ACER, A3C,
A2C, ACKTR, Rainbow, Unicorn (these are actual names, BTW), and so on. In 2019, Oriol
Vinyals et al. showed the AlphaStar agent beat professional players at the game of StarCraft
II. And a few months later, Jakub Pachocki et al. saw their team of Dota-2-playing bots,
called Five, become the first AI to beat the world champions in an e-sports game.

ATARI DQN network architecture

(1) Last 4 frames
needed to infer
velocities of the
ball, paddles, etc.

(2) Learned
features through
Deep Learning.

(3) The feed-forward
ANN used the learned
features as inputs.

(4) The output
layer return the
estimated expected
value for each action.

Last 4 frames
as input

Convolutions Feed-forward layers Output

UP

DOWN

FIRE

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

18

19The past, present, and future of deep reinforcement learning

Thanks to the progress in DRL, we've gone in just two decades from solving backgammon,
with its 1020 perfect-information states, to solving the game of Go, with its 10170 perfect-
information states, or better yet, to solving StarCraft II, with its 10270 imperfect-information
states. It's hard to try to conceive a better time to enter the field. Can you imagine what the
next two decades will bring us? Will you be part of it? DRL is a booming field, and I expect
its rate of progress to continue.

Game of Go enormous branching factor

(1) From an empty
board, there are many
possible initial positions.

(2) Out of each initial
position, there are also many
possible additional moves.

(3) The branching continues until we have a total
of 10127 states! That's more than the number of
atoms in the observable universe.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

19

20 Chapter 1 I introduction to deep reinforcement learning

Opportunities ahead
I believe AI is a field with unlimited potential for positive change regardless of what fear-
mongers say. Back in the 1750s, there was chaos due to the start of the industrial revolution.
Powerful machines were replacing repetitive manual labor and mercilessly displacing
humans. Everybody was concerned; Machines that can work faster, more effectively, and
cheaply than humans? These machines will take all our jobs! What are we going to do for
a living now? And it actually happened. But the fact is many of these jobs were not only
unfulfilling, but many of them were also dangerous.

One hundred years after the industrial revolution, the long-term effects of these changes
were benefiting communities. People that usually owned only a couple of shirts and a pair
of pants were now able to get much more for a fraction of the cost. Indeed, change was
difficult, but the long-term effects benefited the entire world.

The digital revolution started in the 1970s with the introduction of personal computers.
Then, the Internet changed the way we do things. Because of the Internet, we got big data
and cloud computing. ML used this fertile ground for sprouting into what it is today. In the
next couple of decades, the changes and impact of AI to society may be difficult to accept at
first, but the long-lasting effects will be far superior to any setback along the way. I expect
in a few decades humans will not even need to work for food, clothing, or shelter as these
things will be automatically produced by AI. We will thrive with abundance.

Workforce revolutions

(1) Revolutions have proven to disrupt industries and societies.
But in the long term, they bring abundance and progress.

Mechanical
Engine

Electricity

1750 1800 1850 1900 1950 2000 2050

Personal
Computer

Artificial
Intelligence?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

20

21The past, present, and future of deep reinforcement learning

As we continue to push the intelligence of machines to higher levels, some AI researchers
think we might find an AI with superior intelligence to that of ours. At this point, we unlock
a phenomenon known as the singularity; an AI more intelligent than humans allows for the
improvement of AI at a much faster pace, given that the self-improvement cycle no longer
has the bottleneck, namely, humans. But we must be prudent, this is more of an ideal than a
practical aspect to worry about.

While one must be always aware of the implications of AI and strive for AI safety, the
singularity is not an issue today. On the other hand, there are a lot of issues with the current
state of DRL as you'll see in this book. These issues make a better use of our time.

Singularity could be just a few decades away
Brace yourself,
It could be bumpy ride

Singularity

Fun Included

You are here

Human Intelligence

Self-
improving AI

Human-
produced AIArtificial Intelligence

Compute
power

0 1950
Time

(1) More than me saying that singularity will
happen, this graph is meant to explain what
people refer to when they say "singularity."

(2) One of the most scientific graphs you'll ever see. What? Sources? What?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

21

22 Chapter 1 I introduction to deep reinforcement learning

The suitability of deep reinforcement learning
You could formulate any ML problem as a DRL problem, but this is not always a good idea
for multiple reasons. You should know the pros and cons of using DRL in general, and you
should be able to identify what kind of problems and settings DRL is good and not so good
for.

What are the pros and cons?
Beyond a technological comparison, I would like you to think about the inherent advantages
and disadvantages of using DRL for your next project. You will see that each of the points
highlighted can be either a pro or a con depending on what kind of problem you are trying
to solve. For instance, this field is about letting the machine take control. Is this good or
bad? Are you OK with letting the computer make the decisions for you? There is a reason
why DRL research environments of choice are games: it could be very costly and dangerous
to have agents training directly in the real world. Can you imagine a self-driving car agent
learning not to crash by crashing? In DRL, the agents will have to make mistakes. Are you
able to afford that? Are you willing to risk the negative consequences—actual harm—to
humans? Considered these questions before starting your next DRL project.

Deep reinforcement learning agents will explore!
Can you afford mistakes?

(1) Oh look! Stocks are
the lowest they have
been in years!

(2) I wonder what
would happen if I sell
all my positions now?

(3) Yep, give it a try.
Sell all!!!

Agent

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

22

23The suitability of deep reinforcement learning

You will also need to consider how your agent will explore its environment. For instance,
most value-based methods explore by randomly selecting an action. But other methods can
have more strategic exploration strategies. Now, there are pros and cons to each, and this is a
tradeoff you will have to become familiar with.

Finally, training from scratch every time can be daunting, time-consuming and resource
intensive. However, there are a couple of areas that study how to bootstrap previously
acquired knowledge. First, there is transfer learning which is about transferring knowledge
gained in tasks to new ones. For example, if you want to teach a robot to use a hammer and
a screwdriver, you could reuse low-level actions learned on the "pick up the hammer" task
and apply this knowledge to start learning the "pick up the screwdriver" task. This should
make intuitive sense to you as humans don't have to relearn low-level motions each time
they learn a new task. Humans seem to form hierarchies of actions as we learn. The field of
hierarchical reinforcement learning tries to replicate this in DRL agents.

Deep reinforcement learning's strengths
DRL is about mastering specific tasks. Unlike SL, in which generalization is the goal, RL is
good at concrete, well-specified tasks. For instance, each ATARI game has a particular task.
DRL agents are not good generalizing behavior across different tasks; not because you train
an agent to play Pong, can this agent play Breakout. And if you naively try to teach your
agent Pong and Breakout simultaneously, you will likely end up with an agent that is not
good at either. SL, on the other hand, is pretty good a classifying multiple objects at once.
The point is the strength of DRL is well-defined single tasks.

In DRL, we use generalization techniques to learn simple skills directly from raw sensory
input. The performance of generalization techniques, new tips, and tricks on training deeper
networks, etc., are some of the main improvements we've seen in recent years. Lucky for us,
most DL advancements directly enable new research paths in DRL.

Deep reinforcement learning's weaknesses
Of course, DRL is not perfect. One of the most significant issues you will find is that in
most problems agents need millions of samples to learn good-performing policies. Humans,
on the other hand, can learn from very few interactions. Sample efficiency is probably one
of the top areas of DRL that could use some improvements. We will touch on this topic in
several chapters as it is a crucial one.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

23

24 Chapter 1 I introduction to deep reinforcement learning

Another issue with DRL is with reward functions and understanding the meaning of
rewards. If a human expert will be defining the rewards the agent is trying to maximize,
does that mean that we are somewhat "supervising" this agent? And is this something good?
Should the reward be as dense as possible, which makes learning faster, or as sparse as
possible, which makes the solutions more exciting and unique?

We, as humans, don't seem to have explicitly defined rewards. Often, the same person can
see an event as positive or negative with only changing their perspective. Additionally, a
reward function for a task such as walking is not very straightforward to design. Is it the
forward motion that we should target, or is it not falling? What is the "perfect" reward
function for a human walk?!

There is ongoing interesting research on reward signals. One I'm particularly interested in
is called intrinsic motivation. Intrinsic motivation allows the agent to explore new actions
just for the sake of it, out of curiosity. Agents that use intrinsic motivation show improved
learning performance in environments with sparse rewards, which mean we get to keep
exciting and unique solutions. The point is if you are trying to solve a task that hasn't been
modeled or doesn't have a distinct reward function, you will face challenges.

Deep reinforcement learning agents need
lots of interaction samples!

Episode 2,324,532

I almost drove inside the lanes that last time, boss.
Let me drive just one more car!Agent

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

24

25Setting clear two-way expectations

Setting clear two-way expectations
Let's now touch on another important point going forward. What to expect? Honestly, to
me, this is very important. First, I want you to know what to expect from the book so that
there are no surprises later on. I don't want people to think that from this book, they will be
able to come up with a trading agent that will make them rich. Sorry, I wouldn't be writing
this book if it was that simple. Also, I also expect that people who are looking to learn put
in the work. The fact is, learning will come from the combination of me putting the effort to
make concepts understandable and you putting the effort to understand them. I did put in
the effort. But, if you decide to skip a box you didn't think was necessary, we both lose.

What to expect from the book?
My goal for this book is to take you, an ML enthusiast, from no prior DRL experience to
capable of developing state-of-the-art DRL algorithms. For this, the book is organized into
roughly two parts. In chapters 3 to 7, you learn about agents that can learn from sequential
and evaluative feedback, first in isolation, and then in interplay. In chapters 8 to 14, you
dive into core DRL algorithms, methods, and techniques. Chapters 1 and 2 are about
introductory concepts applicable to DRL in general, and chapter 15 has concluding remarks.

My goal for the first part (chapters 3 to 7) is for you to understand 'tabular' RL. That is, RL
problems that can be exhaustively sampled, problems in which there is no need for neural
networks or function approximation of any kind. Chapter 3 is about the sequential aspect
of RL and the temporal credit assignment problem. Then, we'll study, also in isolation, the
challenge of learning from evaluative feedback and the exploration vs. exploitation tradeoff
in chapter 4. Lastly, you learn about methods that can deal with these two challenges
simultaneously. In chapter 5, you study agents that learn to estimate the results of fixed
behavior. Chapter 6 deals with learning to improve behavior, and chapter 7 shows you
techniques that make RL more effective and efficient.

My goal for the second part (chapters 8 to 14) is for you to grasp the details of core DRL
algorithms. We dive deep into the details; you can be sure of that. You learn about the many
different types of agents from value- and policy-based to actor-critic methods. In chapters 8
through 10, we go deep into value-based DRL. In chapter 11, you learn about policy-based
DRL. Chapter 12 is about actor-critic, and 13 is about Deterministic Policy Gradient (DPG)
methods. Finally, and 14 is about Natural Policy Gradient (NPG) methods.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

25

26 Chapter 1 I introduction to deep reinforcement learning

The examples in these chapters are repeated throughout agents of the same type to make
comparing and contrasting agents more accessible. You still explore fundamentally different
kinds of problems, from small continuous to image-based state spaces, and from discrete to
continuous action spaces. But, this book focus is not about modeling problems, which is a
skill of its own; instead, the focus is about solving already modeled environments.

Comparison of different algorithmic
approaches to deep reinforcement learning

Policy-basedDerivative-free Actor-critic Value-based Model-based

Less sample efficiency More sample efficiency

Less computationally expensive More computationally expensive

Less direct learning More direct learning

More direct use of learned function Less direct use of learned function

(1) In this book you learn about all these algorithmic approaches to deep
reinforcement learning. In fact, to me, the algorithms are the focus and not so
much the problems. Why? Because in DRL, once you know the algorithm, you
can apply that same algorithm to similar problems with only hyperparameter
tuning. Learning the algorithm is where you make the most out of your time.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

26

27Setting clear two-way expectations

How to get the most out of the book?
There are a few things you need to bring to the table to come out grokking deep
reinforcement learning. You need to bring some prior basic knowledge of ML and DL. You
need to be comfortable with Python code and simple math. And most importantly, you
must be willing to put in the work.

I assume that the reader has a solid basic understanding of ML. You should know what ML
is beyond what is covered in this chapter, you should know how to train simple SL models,
perhaps the Iris or Titanic datasets, you should be familiar with DL concepts such as tensors
and matrices, and you should have trained at least one DL model, say a convolutional neural
network (CNN) on the MNIST dataset.

This book is focused on DRL topics, and there is no DL in isolation. There are many useful
resources out there that you can leverage. But, again, you just need a basic understanding;
If you have trained a CNN before, then you are fine. Otherwise, I highly recommend you
follow a couple of DL tutorials before starting the second part of the book.

Another assumption I'm making is that the reader is comfortable with Python code. Python
is a somewhat clear programming language that is so easy to understand that even people
not familiar with it will get something out of reading it. Now, my point is you should be
comfortable with it, willing and looking forward to reading the code. If you just don't, then
you will miss out on a lot.

Likewise, there are lots of math equations in this book, and that is a good thing. Math is the
perfect language, and there is nothing that can replace it. However, I'm just asking for people
to be comfortable with math, willing to read, and nothing else. The equations I show are
heavily annotated so that people "not into math" can still take advantage of the resources.

Finally, I'm assuming you are willing to put in the work. By that I mean you really want to
learn DRL. If you decide to skip the math boxes, or the Python snippets, or a section, or one
page, or chapter, or whatever, you will miss out on a lot of relevant information. To get the
most out of this book, I recommend you read the entire book front to back. Because of the
different style, figures and "side" boxes are actually part of the main narrative in this book.

Also, make sure you run the book source code (next section provides more details on how
to do this), and play around and extend the ones you find most interesting.

Sometimes I'll repeat myself, or leave out details, or be confusing and intriguing, or make
an unrelated point, just stay with me. I do these things for a reason. Sometimes you need to
be primed and reminded of some concepts, sometimes you need a high-level overview and
nothing else, sometimes you need to get motivated, sometimes you need a break. I do these
things, albeit not perfect, for a reason.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

27

28 Chapter 1 I introduction to deep reinforcement learning

Deep reinforcement learning development environment
Along with this book, you are provided with a fully-tested environment and code to
reproduce my results. I created a Docker image and several Jupyter Notebooks so that you
don't have to mess around with installing packages and configuring software, or copying
and pasting code. The only prerequisite is Docker. Please, go ahead and follow the directions
at https://github.com/mimoralea/gdrl on running the code. It's pretty straightforward.

The code is written in Python, and I make heavy use of Numpy and PyTorch. I chose
PyTorch, instead of Keras, or TensorFlow, because I found PyTorch to be a very "pythonic"
library. Using PyTorch feels very natural if you have used Numpy. Unlike TensorFlow, for
instance, which feels like a whole new programming paradigm. Now, my intention is not to
start a "PyTorch vs. TensorFlow" debate. But, in my experience from using both libraries,
PyTorch is a library much better suited for research and teaching.

DRL is about algorithms, methods, techniques, tricks, and so on, so there is no point for
us to re-write a "Numpy" or a "PyTorch" library. But, also, in this book, we write DRL
algorithms from scratch; I'm not teaching you how to use a DRL library, such as Keras-RL,
or Baselines, or RLlib. I want you to learn DRL, and therefore we write DRL code. In the
years that I've been teaching RL, I've noticed those who write RL code are more likely to
understand RL. Now, this is not a book on PyTorch either; there is no separate PyTorch
review or anything like that, just PyTorch code that I explain as we move along. If you are
somewhat familiar with DL concepts, you'll be able to follow along with the PyTorch code I
use in this book. So, don't worry, you don't need a separate PyTorch resource before you get
to this book. I explain everything in detail as we move along.

As for the environments we use for training the agents, we use the popular OpenAI Gym
package and a few other libraries that I developed for this book. But we're also not going
into the ins and outs of Gym. Just know that Gym is a library that provides environments
for training RL agents. Beyond that, remember our focus is the RL algorithms, the solutions,
not the environments, or modeling problems. Which needless to say, it is also a critical skill.

Since you should be familiar with DL, I presume you know what a GPU is. DRL
architectures do not need the level of computation commonly seen on DL models. For
this reason, the use of a GPU, while a good thing, is not required. Conversely, unlike DL
models, some DRL agents make heavy use of CPU and thread count. So, if you are planning
on investing in a machine, make sure to account for CPU power (well, technically number
of cores, not speed) as well. As you'll see later, some algorithms massively parallelize
processing, and in those cases, it is the CPU that becomes the bottleneck, not the GPU.
However, the code runs fine in the container regardless of your CPU or GPU. But, if your
hardware is severely limited, I recommend checking out cloud platforms. I've seen services,
such as Google Colab, that offer DL hardware for free.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

28

https://github.com/mimoralea/gdrl/blob/master/notebooks/
https://github.com/mimoralea/gdrl

29Summary

Summary
Deep reinforcement learning is challenging because agents must learn from feedback that
is simultaneously sequential, evaluative, and sampled. Learning from sequential feedback
forces the agent to learn how to balance immediate and long-term goals. Learning from
evaluative feedback makes the agent learn to balance the gathering and utilization of
information. Learning from sampled feedback forces the agent to generalize from old to new
experiences.

Artificial intelligence, the main field of computer science in which reinforcement learning
falls into, is a discipline concerned with creating computer programs that display human-
like intelligence. This goal is shared across many other disciplines, such as control theory,
operations research, to name a few. Machine learning is one of the most popular and
successful approaches to artificial intelligence. Reinforcement learning is one of the three
branches of machine learning, along with supervised learning, and unsupervised learning.
Deep learning, an approach to machine learning, is not tied to any specific branch, but its
power instead helps advance the entire machine learning community.

Deep reinforcement learning is simply the use of multiple layers of powerful function
approximators known as neural networks (deep learning) to solve complex sequential
decision-making problems under uncertainty. Deep reinforcement learning has performed
well in many control problems, but nevertheless, it's essential to have in mind that releasing
human control for critical decision making should not be taken lightly. Some of the core
needs in deep reinforcement learning are algorithms with better sample complexity, better-
performance exploration strategies, and safe algorithms.

Still, the future of deep reinforcement learning is bright, there are perhaps dangers ahead
as the technology matures, but more importantly, there is potential in this field, and you
should feel excited and compelled to bring your best and embark in this journey. The
opportunity to be part of a potential change this big happens only every few generations.
You should be glad you're living these times. Now, let's be part of it.

By now you:

• Understand what deep reinforcement learning is and how it began.
• Know how a larger field of related approaches share interests and concepts with deep

reinforcement learning and how these relationships influence the field.
• Recognize why deep reinforcement learning is important and how it is different than

other approaches to machine learning.
• Can identify what deep reinforcement learning can do for different kinds of problems.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

29

mathematical foundations of
reinforcement learning 2

In this chapter

• You learn about the core components of reinforcement
learning.

• You learn to represent sequential decision-making
problems as reinforcement learning environments
using a mathematical framework known as Markov
Decision Processes.

• You build from scratch environments that
reinforcement learning agents learn to solve in later
chapters.

Mankind's history has been a struggle against a hostile
environment. We finally have reached a point where we can begin
to dominate our environment [...]. As soon as we understand
this fact, our mathematical interests necessarily shift in many
areas from descriptive analysis to control theory.

— Richard Bellman
American applied mathematician
an IEEE medal of honor recipient

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

30

2 Chapter 2 I mathematical foundations of reinforcement learning

You pick up this book and decide to read one more chapter despite having limited free
time, a coach benches their best player for tonight's match ignoring the press criticism, a
parent invests long hours of hard work and unlimited patience in teaching their child good
manners. These are all examples of complex sequential decision-making under uncertainty.

I want to bring to your attention three of the words in play in this sentence: complex
sequential decision-making under uncertainty. The first word, "complex," refers to the fact
that agents may be learning in environments with vast state and action spaces. So, in the
coaching example, even if you discover that your best player needs to rest every so often,
perhaps resting in a match with a specific opponent is different. Learning to generalize
accurately is challenging because we learn from sampled feedback.

The second word I used is "sequential," and this one refers to the fact that in many problems
there are delayed consequences. In the coaching example, let's say the coach benched their
best player for a seemingly unimportant match midway through the season. But, what if
resting players lowers their morale and performance that only manifest in finals? Assigning
credit to your past decisions is challenging because we learn from sequential feedback.

Finally, the word "uncertainty" refers to the fact that we don't know the actual inner
workings of the world; we are left to interpret it. Let's say the coach did bench their best
player, but they got injured in the next match. Was the benching decision bad? What if the
injury motivates the rest of the team and they end up winning the final? So, was benching
the right decision? This uncertainty gives rise to the need for exploration. Finding the
appropriate balance between exploration and exploitation is challenging because we learn
from evaluative feedback.

In this chapter, you'll learn to represent these kinds of problems using a mathematical
framework known as Markov Decision Processes (MDPs). The general framework of
MDPs allows us to model virtually any complex sequential decision-making problem under
uncertainty in a way that RL agents can interact with and learn to solve solely through
experience.

We'll dive deep into the challenges of learning from sequential feedback in chapter 3,
then into the challenges of learning from evaluative feedback in chapter 4, then into the
challenges of learning from feedback that is simultaneously sequential and evaluative in
chapters 5 through 7, and then chapters 8 through 14 will add "complex" into the mix.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

31

3Components of reinforcement learning

Components of reinforcement learning
The two core components in RL are the agent and the environment. The agent is the
decision maker, a solution, the environment is the representation of a problem. One of the
fundamental distinctions between RL from other ML approaches is that the agent and the
environment interact; the agent attempts to influence the environment through actions, and
the environment reacts to the agent's actions.

The reinforcement learning
interaction cycle

(1) Agent perceives the environment.

(4) The environment reacts
with new observation.

(3) The environment goes through internal state
change as a consequence of the agent's action.

Observation Action

Agent

Environment

(2) Agent takes an action.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

32

4 Chapter 2 I mathematical foundations of reinforcement learning

! Miguel's AnAlogy

The parable of a Chinese farmer

There is an excellent parable that shows how difficult it is to interpret feedback that is
simultaneously sequential, evaluative, and sampled. The parable goes like this:

A Chinese farmer gets a horse, which soon runs away. A neighbor says, "So, sad. That's bad
news." The farmer replies, "Good news, bad news, who can say?"

The horse comes back and brings another horse with him. The neighbor says. "How lucky.
That's good news." The farmer replies, "Good news, bad news, who can say?"

The farmer gives the second horse to his son, who rides it, then is thrown and badly breaks
his leg. The neighbor says, "So sorry for your son. This is definitely bad news." The farmer
replies, "Good news, bad news, who can say?"

In a week or so, the emperor's men come and take every healthy young man to fight in a
war. The farmer's son is spared.

So, good news or bad news? Who can say?

Interesting story, right? In life, it is challenging to know with certainty what are the long-
term consequences of events and our actions. Often, we find misfortune responsible for our
later good fortune, or our good fortune responsible for our later misfortune.

Even though this story could be interpreted as a lesson that beauty is in the eye of the
beholder, in reinforcement learning, we assume there is a correlation, just that it is so
complicated that it is difficult for humans to connect the dots with certainty. But, perhaps
this is something that computers can help us figure out. Exciting, right?

Have in mind that when feedback is simultaneously evaluative, sequential, and sampled,
learning is a hard problem. And, deep reinforcement learning is a computational approach
to learning in these kinds of problems.

Welcome to the world of deep reinforcement learning!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

33

5Components of reinforcement learning

Examples of problems, agents, and environments
The following are abbreviated examples of RL problems, agents, environments, possible
actions and reactions:

• Problem: you are training your dog to sit. Agent: the part of your brain that makes
decisions. Environment: your dog, the treats, your dog's paws, the loud neighbor, etc.
Actions: Talk to your dog. Wait for dog's reaction. Move your hand. Show treat. Give
treat. Pet. Reactions: Your dog is paying attention to you. Your dog is getting tired.
Your dog sat on command.

• Problem: your dog wants the treats you have. Agent: the part of your dog's brain that
makes decisions. Environment: you, the treats, your dog's paws, the loud neighbor,
etc. Actions: Stare at owner. Bark. Jump at owner. Try to steal the treat. Run. Sit. Reac-
tions: Owner keeps talking loud at me. Owner is showing the treat. Owner is hiding
the treat. Owner gave me the treat.

• Problem: a trading agent investing in the stock market. Agent: the executing DRL
code in memory and in the CPU. Environment: your Internet connection, the ma-
chine the code is running on, the stock prices, the geopolitical uncertainty, other
investors, day-traders, etc. Actions: Sell n stocks of y company. Buy n stocks of y com-
pany. Hold. Reactions: Market is going up. Market is going down. There are economic
tensions between two powerful nations. There is danger of war in the continent.

• Problem: you are driving your car. Agent: the part of your brain that makes decisions.
Environment: the make and model of your car, other cars, other drivers, the weather,
the roads, the tires, etc. Actions: Steer by x, Accelerate by y. Break by z. Turn the head-
lights on. Defog windows. Play music. Reactions: You are approaching your destina-
tion. There is a traffic jam on Main Street. The car next to you is driving recklessly. It's
starting to rain. There is a cop driving in front of you.

As you can see, problems can take many forms: from high-level decision-making problems
that require long-term thinking and broad general knowledge, such as investing in the stock
market, to low-level control problems, in which geopolitical tensions don't seem to play a
direct role, such as driving a car.

Also, you can represent a problem from multiple agents' perspective. In the dog training
example, in reality, there are two agents each interested in a different goal and trying to solve
a different problem.

Let's dig in some more. Let's zoom into each of these components independently.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

34

6 Chapter 2 I mathematical foundations of reinforcement learning

The agent: The decision-maker
As I mentioned in chapter 1, this whole book is about agents, except for this chapter, though.
Starting with chapter 3, you'll dig deep into the inner workings of agents, their components,
their processes, and techniques to create agents that are effective and efficient.

For now, the only important thing for you to know about agents is that there are agents and
that they are the decision-makers in the RL big picture. They have internal components and
processes of their own, and that is what makes each of them unique and good at solving
specific problems.

If we were to zoom in, we would see that most agents have a three-step process: all agents
have an interaction component, a way to gather data for learning, all agents evaluate their
current behavior, and all agents improve something in their inner components that allows
them to improve their overall performance (or at least attempt to improve).

But, before we get too far into the agents, let's spend some time thinking about the
environments. That's the goal of this chapter.

Observation Action

The three internal steps that every
reinforcement learning agent goes through

Agent

Interact

Ev
al

ua
te

Im
prove

(1) All agents evaluate
their behavior.

(3) One of the
coolest things
of reinforcement
learning is
agents interact
with the problem.

(2) Reinforcement learning
means, well, agents have
to learn something.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

35

7Components of reinforcement learning

The environment: Everything else
Most real-world problems can be expressed as RL environments. The way to represent
decision-making processes in RL is by modeling the problem using the framework of MDPs.
In RL, we assume all environments have an MDP working under the hood. Whether an
ATARI game, the stock market, a self-driving car, your significant other, you name it, every
problem has an MDP running under the hood (at least in the RL world, whether right or
wrong).

The environment is represented by a set of variables related to the problem. The
combination of all the possible values this set of variables can take is referred to as the state
space. A state is a specific set of values the variables take at any given time.

Agents may or may not have access to the environment's state; however, one way or another,
agents can observe something from the environment. The set of variables the agent sees at
any given time is called an observation.

The combination of all possible values these variables can take is the observation space.
Know that "state" and "observation" are terms used interchangeably in the RL community.
This is because very often agents are allowed to see the internal state of the environment, but
this is not always the case.

At every state, the environment makes available a set of actions the agent can choose from.
Often the set of actions is the same for all states, but this is not required. The set of all
actions in all states is referred to as the action space.

The agent attempts to influence the environment through these actions. The environment
may change states as a response to the agent's action. The function that is responsible for
this transition is called the transition function.

After a transition, the environment emits a new observation. The environment may also
provide a reward signal as a response. The function responsible for this mapping is called
the reward function. The set of transition and reward function is referred to as the model
of the environment.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

36

8 Chapter 2 I mathematical foundations of reinforcement learning

A ConCrete exAMple

The Bandit Walk environment

Let's make these concepts concrete with our first RL environment: I created this very simple
environment for this book; I call it the Bandit Walk (BW).

BW is a very simple grid-world (GW) environment. GWs are a common type of environments
for studying RL algorithms that are grids of any size. GWs can have any model (transition
and reward functions) you can think of, and can make any kind of actions available.

But, they all commonly make move actions available to the agent: LEFT, DOWN, RIGHT, UP
(or WEST, SOUTH, EAST, NORTH, which is more precise because the agent has no heading
and usually has no visibility of the full grid, but cardinal directions can also be more
confusing). And, of course, each action with the logical transitions; E.g. a left moves the
agent left most of the time, etc. Also, they all tend to have a fully-observable discrete state
and observation spaces (that is state == observation) with integers representing the cell
id location of the agent. A "Walk" is a special case of grid-world environments with a single
row.

BW is a walk with 3 states, but only 1 non-terminal state. Environments that have a single
non-terminal state are called "bandit" environments. "Bandit" here is an analogy to slot
machines, which are also known as "one-armed bandits"; they have one arm and, if you like
gambling, can empty your pockets, just like a bandit would.

BW has just 2 actions available: a left (action 0) and an right (action 1) action. BW has a
deterministic transition function: a left actions moves the agent to the left, and a right
action moves the agent to the right. The reward signal is a +1 when landing on the right-
most cell, 0 otherwise. The agent starts in the middle cell.

The bandit walk (BW) environment

(2) The leftmost
state is a hole.

(3) The rightmost
state is the goal, and
provides a +1 reward.

(1) The agent starts in the middle of the walk.

H S G
0 21

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

37

9Components of reinforcement learning

A graphical representation of the BW environment would look like this:

I hope this raises some questions, but you will find the answers throughout this chapter.
For instance, why do the terminal states have actions that transition to themselves, seem
wasteful, doesn't? Any other questions? Like, what if the environment is stochastic? Keep
reading...

We can also represent this environment in a table form:

State Action Next state Transition probability Reward signal

0 (Hole) 0 (Left) 0 (Hole) 1.0 0

0 (Hole) 1 (Right) 0 (Hole) 1.0 0

1 (Start) 0 (Left) 0 (Hole) 1.0 0

1 (Start) 1 (Right) 2 (Goal) 1.0 +1

2 (Goal) 0 (Left) 2 (Goal) 1.0 0

2 (Goal) 1 (Right) 2 (Goal) 1.0 0

Interesting, right? Let's look at another simple example.

0 1 2
10 1.0

+1
1.0

Bandit Walk graph

(8) "H" is a hole, a bad
terminal state.

(7) Transition
of the left
action is
deterministic.

(4) Transition of
the right action
is deterministic.

(3) "G" is a goal
terminal state.

(1) Starting state.
(2) Reward
signal.

(6) Action 0,
"Left".

(5) Action 1,
"Right".

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

38

10 Chapter 2 I mathematical foundations of reinforcement learning

A ConCrete exAMple

The Bandit Slippery Walk environment

OK, so how about we make this environment stochastic?

Let's say the surface of the walk is slippery and each action has 20% chance of sending the
agent backwards. I call this environment the Bandit Slippery Walk (BSW).

BSW is a one-row grid world, a walk, with only left and right actions available. So, again 3
states and 2 actions. The reward is the same as before, +1 when landing at the right-most
state (except when coming from the right-most state -- itself), 0 otherwise.

However, the transition function is different: 80% of the time the agent moves to the
intended cell, 20% of time in the opposite direction.

A depiction of this environment would look as follows:

Identical to the BW! Interesting...

So, how do we know it the action effects are stochastic? How do we represent the "slippery"
part?

The graphical and table representations can help with that.

H S G
0 21

The Bandit Slippery Walk (BSW) environment

(3) The leftmost
state is a hole.

(2) The rightmost state is the
goal, and provides a +1 reward.

(1) The agent starts in
the middle of the walk.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

39

11Components of reinforcement learning

A graphical representation of the BSW environment would look like this:

See how the transition function is different now? But, we can still represent this
environment in a table form:

State Action Next state Transition probability Reward signal

0 (Hole) 0 (Left) 0 (Hole) 1.0 0

0 (Hole) 1 (Right) 0 (Hole) 1.0 0

1 (Start) 0 (Left) 0 (Hole) 0.8 0

1 (Start) 0 (Left) 2 (Goal) 0.2 +1

1 (Start) 1 (Right) 2 (Goal) 0.8 +1

1 (Start) 1 (Right) 0 (Hole) 0.2 0

2 (Goal) 0 (Left) 2 (Goal) 1.0 0

2 (Goal) 1 (Right) 2 (Goal) 1.0 0

And of course, don't limit yourself to thinking about environments with discrete state
and action spaces, or even just walks, bandits, and grid worlds. This way of representing
environments is surprisingly powerful and simple.

Let's look at a few examples of different kinds of environments to make these definitions
more concrete:

10.8

0.2

0.8
+1

+10.2

0 1
0 2

Bandit Slippery Walk graph
(1) Same as before: a hole, starting, and goal states.

(2) But the transition function is different! With an 80%
chance, we move forward, and 20% chance, we more backward!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

40

12 Chapter 2 I mathematical foundations of reinforcement learning

Description Observation space
Sample

observation
Action space

Sample
action

Reward
function

Hotter
Colder:
Guess a

randomly
selected
number

using hints.

Int range 0-3.

0 means no guess yet
submitted, 1 means
guess is lower than
the target, 2 means

guess is equal to the
target and 3 means
guess is higher than

the target.

2

Float from
-2000.0-
2000.0.

The float
number

the agent is
guessing.

-909.37

The reward
is the

squared
percentage
of the way
the agent

has guessed
toward the

target.

Cart Pole:
Balance a
pole in a

cart.

A 4-element vector
with ranges: from

[-4.8, -Inf, -4.2, -Inf] to
[4.8, Inf, 4.2, Inf].

First element is the
cart position, second

is the cart velocity,
third is pole angle in
radians, fourth is the
pole velocity at tip.

[-0.16, -1.61,
0.17, 2.44]

Int range 0-1.

0 means push
cart left, 1

means push
cart right.

0

The reward
is 1 for every
step taken,
including

the
termination

step.

Lunar
Lander:

Navigate a
lander to

its landing
pad.

An 8-element vector
with ranges: from

[-Inf, -Inf, -Inf, -Inf, -Inf,
-Inf, 0, 0] to [Inf, Inf,
Inf, Inf, Inf, Inf, 1, 1].

First element is the x
position, the second

the y position, the
third is the x velocity,

the fourth is the
y velocity, fifth is

the vehicle's angle,
sixth is the angular

velocity, last two
values are booleans

indicating legs
contact with the

ground.

[0.36 , 0.23,
-0.63, -0.10,
-0.97, -1.73 ,

1.0, 0.0]

Int range 0-3.

No-op (do
nothing), fire
left engine,

fire main
engine, fire

right engine.

2

Reward for
landing is
200. There
is reward
shaping

for moving
from the

top to the
landing pad,
for crashing
or coming to
rest, for each
leg touching
the ground,

and for
firing the
engines.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

41

13Components of reinforcement learning

Pong:
Bounce the
ball past the
opponent,
and avoid
letting the
ball pass

you.

A tensor of shape
210, 160, 3.

Values ranging 0-255.

Represents a game
screen image.

[[[246, 217,
64], [55,

184, 230],
[46, 231,

179], ..., [28,
104, 249],
[25, 5, 22],
[173, 186,

1]],...]]

Int range 0-5.

Action 0 is
No-op, 1 is
Fire, 2 is up,
3 is right, 4
is left, 5 is

down.

Notice how
some actions
don't affect
the game in
any way. In
reality the

paddle can
only move

up, down or
not move.

3

The reward
is a 1 when

the ball goes
beyond the
opponent,

and a -1
when your

agent's
paddle

misses the
ball.

Humanoid:
Make robot
run as fast
as possible
and not fall.

A 44-element (or
more, depending on
the implementation)

vector.

Values ranging from
-Inf to Inf.

Represents the
positions and

velocities of the
robot's joints.

[0.6, 0.08,
0.9, 0. , 0., 0.,
0., 0., 0.045,
0., 0.47, ...,

0.32, 0.,
-0.22,..., 0.]

A 17-element
vector.

Values
ranging from

-Inf to Inf.

Represents
the forces to
apply to the

robot's joints.

 [-0.9,
-0.06,
0.6,

0.6, 0.6,
-0.06,

-0.4, -0.9,
0.5, -0.2,
0.7, -0.9,
0.4, -0.8,
-0.1, 0.8,

-0.03]

The reward
is calculated

based on
forward
motion

with a small
penalty to
shape the
gait of the

robot.

Notice I didn't add the transition function to this table. That is because, while you can look
at the code implementing the dynamics for some environments, other implementations are
not easily accessible. For instance, the transition function of the Cart Pole environment is a
small Python file defining the mass of the cart and the pole and implementing basic physics
equations, while the dynamics of ATARI games, such as Pong, are hidden inside an ATARI
emulator and the corresponding game-specific ROM file.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

42

14 Chapter 2 I mathematical foundations of reinforcement learning

What we are trying to represent here is the fact that the environment "reacts" to the agent's
actions in some way, perhaps even by ignoring the agent's actions. But at the end of the day,
there is an internal process that is uncertain (except in this and next chapter). To represent
the ability to interact with an environment we need states, observations, actions, a transition
function and a reward signal.

Agent-environment interaction cycle

The environment commonly has a well-defined task. The goal of this task is defined
through the reward signal. The reward signal can be dense, sparse, or anything in between.
The more dense, the more supervision the agent will have, and the faster the agent will
learn, but the more of your bias you will inject into your agent, and the less likely the
agent will come up with unexpected behaviors. The more sparse, the less supervision, and
therefore, the higher the chance of new emerging behaviors, but the longer it'll take the
agent to learn.

The interactions between the agent and the environment go on for several cycles. Each cycle
is called a time step. A time step is a unit of time which can be a millisecond, a second,
1.2563 seconds, a minute, a day, or any other period of time.

At each time step, the agent observes the environment, takes action, and receives a new
observation and reward. Notice that, even though rewards can be negative values, they are
still called rewards in the RL world. The set of the observation (or state), the action, the
reward, and the new observation (or new state) is called an experience tuple.

Process the environment goes through
as a consequence of agent's actions

(5) Finally, the
reaction is passed
back to be agent.

(3) ...the environment
will transition to a new
internal state.

(2) ...and depending on the
current environment state,
and the agent's chosen action...

(1) Environment
receives the last
action taken by
the agent.

Next
state

Action

Environment Observation
Reward

(4) The new state and
reward are passed
through a filter: some
problems don't let
the true state of the
environment be seen
by the agent!

Transition

Reward State

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

43

15MDPs: The engine of the environment

The task the agent is trying to solve may or may not have a natural ending. Tasks that have a
natural ending, such as a game, are called episodic tasks. Tasks that do not, such as learning
forward motion, are called continuing tasks. The sequence of time steps from the beginning
to the end of an episodic task is called an episode. Agents may take several time steps and
episodes to learn to solve a task. The sum of rewards collected in a single episode is called a
return. Agents are often designed to maximize the return. Continuing tasks are often added
a time step limit, so they become episodic tasks, and agents can maximize the return.

Every experience has an opportunity for learning and improving performance. The agent
may have one or more components to aid learning. The agent may be designed to learn
mappings from observations to actions called policies. The agent may be designed to learn
mappings from observations to new observations and/or rewards called models. The agent
may be designed to learn mappings from observations (and possibly actions) to reward-to-
go estimates (a slice of the return) called value functions.

For the rest of this chapter, we'll put aside the agent and the interactions, and we'll examine
the environment and inner MDP in depth. In chapter 3, we'll pick back up the agent, but
there will be no interactions because the agent won't need them as it'll have access to the
MDPs. In chapter 4, we'll remove the agent's access to MDPs and add interactions back into
the equation, but it'll be in single-state environments (bandits). Chapter 5 is about learning
to estimate returns in multi-state environments when agents have no access to MDPs.
Chapter 6 and 7 are about optimizing behavior, which is the full reinforcement learning
problem. Chapters 5, 6 and 7 are about agents learning in environments where there is no
need for function approximation, however. After, the rest of the book is all about agents that
use neural networks for learning.

MDPs: The engine of the environment
Let's build MDPs for a few environments as we learn about the components that make them
up. We'll create Python dictionaries representing MDPs from descriptions of the problems.
In the next chapter, we'll study algorithms for planning on MDPs. These methods can devise
solutions to MDP and will allow us to find optimal solutions to all problems in this chapter.

The ability to build environments yourself is an important skill to have. However, often
you will find environments for which somebody else has already created the MDP. Also,
often, the dynamics of the environments are hidden behind a simulation engine and are too
complex to explore in the detail we will in this chapter, some dynamics are even inaccessible
and hidden behind the real world. In reality, RL agents do not need to know the precise
MDP of a problem to learn robust behaviors, but knowing about MDPs is important for you
as agents are commonly designed with the assumption that an MDP, even if inaccessible, is
running under the hood.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

44

16 Chapter 2 I mathematical foundations of reinforcement learning

A ConCrete exAMple

The Frozen Lake environment

This is another, more-challenging problem we will build an MDP for. This environment is
called the Frozen Lake (FL).

FL is a simple grid-world (GW) environment. It also has discrete state and action spaces.
However, this time, the full 4 actions are available, move LEFT, DOWN, RIGHT, or UP.

In FL, the goal of the agent is very similar to the BW and BSW environments: to go from a
start location to a goal location while avoiding falling into holes. The challenge is, though,
similarly to the BSW, the surface of the lake is frozen, and therefore slippery.

The FL is a 4x4 grid (has 16 cells, 0-15). The agent will show up in the START cell and
reaching the GOAL gives a +1 reward, anything else is 0. But because the surface is very
slippery, the agent moves only a third of the time as intended. The other two-thirds is split
evenly in orthogonal directions. For example, if the agent chooses to move DOWN, there is
a 33.3% chance it will, 33.3% chance it will move LEFT and 33.3% chance it will move RIGHT.

There is a fence around the lake, so if the agent tries to move out of the grid world, it will
just bounce back to the cell from which it tried to move. There are four holes in the lake.
If the agent falls into one of these holes, it's game over. Are you ready to start building a
representation of these dynamics? We need a Python dictionary representing the MDP
described here.

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) Agent
starts each
trial here.

(2) Slippery frozen
surface may send
the agent to
unintended places.

(3) Agents gets a +1
when he arrives here.

(4) These are holes
that will end the trial
if the agent falls into
any of them.

The Frozen Lake (FL) environment

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

45

17MDPs: The engine of the environment

States: Specific configurations of the environment
A state is a unique and self-contained configuration of the problem. The set of all possible
states, the state space, is defined as the set S. The state space can be finite or infinite. But,
notice that the state space is different than the set of variables that compose a single state.
This other set must always be finite and of constant size from state to state. In the end, the
state space is a set of sets. The inner sets must be of equal size and finite, as it contains the
number of variables representing the states, but the outer set can be infinite depending on
the types of elements of the inner sets.

For the BW, BSW and FL environments, the state is composed of a single variable containing
the id of the cell the agent is at any given time. The agent's location cell id is a discrete
variable. But state variables can be of any kind, and the set of variables can be larger than
one. We could have the euclidean distance, that would be a continuous variable and an
infinite state space. E.g.: 2.124, 2.12456, 5.1, 5.1239458, and so on. We could also have
multiple variables defining the state, like the number of cell away from the goal in the x
and y axis. That would be two variables representing a single state. Both variables would be
discrete, therefore the state space finite. But, we could also have variables of mixed types like
one could be discrete, the other continuous, another one boolean, and so on.

With this state representation for the BW, BSW, and FL environments, the size of the state
space is 3, 3, and 16 respectively. Given we have 3, 3, or 16 cells the agent can be at any given
time, we have 3, 3, and 16 states. We can simply set the ids of each cell starting from zero
going left to right, top to bottom.

(1) The inner set (the number of variables that compose the states) must be finite.
The size of the inner set must be a positive integer.

[[0], [1], [2], [3],
 [4], [5], [6], [7],
 [8], [9], [10], [11],
 [12],[13],[14], [15]]

[[0.12, -1.24, 0, -1, 1.44],
 [0.121, -1.24, 0, -1, 1.44],
 [0.1211, -1.24, 0, -1, 1.44],
 ...]

(2) But the outer set may be infinite.
If any of the inner sets elements is
continuous, for instance.

State space: A set of sets

FL state space Some other state space

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

46

18 Chapter 2 I mathematical foundations of reinforcement learning

In the FL, for instance, we set the ids from zero to fifteen, left to right, top to bottom.
You could set the ids in any other way: in a random order, or group cells by proximity, or
whatever. It's up to you, as long as you keep them constant throughout training, it would
work. However, this representation is good enough, and it works well, so it is what we'll use.

In the case of MDPs, the states are fully-observable: We can see the internal state of
the environment at each time step, that is, the observations and the states are the same.
Partially-Observable Markov Decision Processes (POMDPs), is a more general framework
for modeling environments in which observations, which still depend on the internal state
of the environment, are the only thing the agent can see instead of the state. Notice that for
the BW, BSW and FL environments, we are creating an MDP, so the agent will be able to
observe the internal state of the environment.

States must contain of all necessary variables needed to make them independent of all other
states. In the FL environment, you only need to know the current state of the agent to tell
its next possible states. That is, you don't need the history of states visited by the agent for
anything. You know that from state 2 the agent can only transition to state 1, 3, 6, or 2 and
this is true regardless of whether the agent's previous state was 1, 3, 6, or 2.

1 2 3

4 5

0

7

8 9 10 11

6

12 13 14 15

States in the Frozen Lake environment are
just the i, j coordinates of the Grid World

(1) It's just a 4x4 grid!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

47

19MDPs: The engine of the environment

The probability of the next state, given the current state and action, is independent of
the history of interactions. This memoryless property of MDPs is known as the Markov
property: the probability of moving from one state s to another state s' on two separate
occasions, given the same action a, is the same regardless of all previous states or actions
encountered before that point.

But why do you care about this? Well, in the environments we've explored so far is not that
obvious and not that important. But because most RL (and DRL) agents are designed to take
advantage of the Markov assumption, you must make sure you feed your agent the necessary
variables to make it hold as tightly as possible (completely keeping the Markov assumption
is impractical, perhaps impossible).

For example, if you are designing an agent to learn to land a spacecraft, the agent must
be fed variables that indicate velocities along with its locations. Locations along are not
sufficient to land a spacecraft safely, and because you must assume the agent is memoryless,
you need to feed the agent more information than just its x, y, z coordinates away from the
landing pad.

But, you probably know that acceleration is to velocity what velocity is to position:
the derivative. You probably also know that you can keep taking derivatives beyond
acceleration. So, to make the MDP completely Markovian, how deep do you have to go?
This more an art than a science, the more variables you add, the longer it takes to train an
agent, but the fewer variables, the higher the chance the information fed to the agent is not
sufficient and the harder it is to learn anything useful. For the spacecraft example, often
locations and velocities are adequate, and for grid-world environments, only the state id
location of the agent is sufficient.

show Me the MAth

The Markov property
(1) The probability
of the next state.

(2) Given the
current state
and current
action.

(3) Will be
the same.

(4) As if you give it
the entire history of
interactions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

48

20 Chapter 2 I mathematical foundations of reinforcement learning

The set of all states in the MDP is denoted S+. There is a subset of S+ called the set of
starting or initial states, denoted Si. To begin interacting with an MDP, we draw a state
from Si from a probability distribution. This distribution can be anything, but it must be
fixed throughout training, that is the probabilities must be the same from the first to the last
episode of training and for agent evaluation.

There is a unique state called the absorbing or terminal state, and the set of all non-
terminal states is denoted S. Now, while it's common practice to create a single terminal
state (a sink state) to which all terminal transitions go to, this is not always implemented this
way. What you'll see more often is multiple terminal states, and that is OK. It doesn't really
matter under the hood if you make all terminal states behave as expected.

As expected? Yes. A terminal state is a special state: it must have all available actions
transitioning, with probability 1, to itself, and these transitions must provide no reward.
Note that I'm referring to the transitions from the terminal state, not to the terminal state.

It is very common the case that the end of an episode provides a non-zero reward. For
instance, in a chess game you win, you lose or you draw, a logical reward signal would be
+1, -1, and 0 respectively. But it is a compatibility convention which allows for all algorithms
to converge to the same solution to make all actions available in a terminal state transition
from that terminal state to itself with probability 1 and reward 0. Otherwise, you run the risk
of infinite sums and algorithms may not work altogether. Remember how the BW and BSW
environments had these terminal states?

In the FL environment, for instance, there is only one starting state (which is state 0) and
five terminal states (or five states that transition to a single terminal state, whichever you
prefer). For clarity, I use the convention of multiple terminal states (5, 7, 11, 12 and 15) for
the illustrations and code; again, each terminal state is a separate terminal state.

4 5 6

8 9 10

13 14

0 1 2 3

7

11

1512

States in the frozen lake environment

(1) There is one initial state

(2) And five
terminal states.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

49

21MDPs: The engine of the environment

Action: A mechanism to influence the environment
MDPs make available a set of actions A that depends on the state. That is, there might be
some actions that are simply not allowed in a state—in fact, A is a function that takes a state
as an argument, that is A(s). This function returns the set of available actions for state s. If
needed, you can define this set to be constant across the state space, that is all actions are
available at every state. You can also set all transitions from a state-action pair to zero if you
want to deny an action in a given state. You could also set all transitions from state s and
action a to the same state s to denote action a as a no-intervene or no-op action.

Just as with the state, the action space may be finite or infinite, and the set of variables of
a single action may contain more than one element and must be finite. However, unlike
the number of state variables, the number of variables that compose an action may not be
constant. The actions available in a state may change depending on that state. For simplicity,
most environments are designed with the same number of actions in all states.

The environment makes the set of all available actions known in advance. Agents can
select actions either deterministically or stochastically. And, this is different than saying
the environment reacts deterministically or stochastically to agent's actions. Both are true
statements, but I'm referring here to the fact that agents can either select actions from a look-
up table or from a per-state probability distributions.

In the BW, BSW and FL environments, actions are singletons representing the direction the
agent will attempt to move. In FL, there are four available actions in all states: UP, DOWN,
RIGHT, or LEFT. There is only one variable per action and the size of the state space is four.

4 6

8 9 10

1312 14

0 1 2 3
0

1
2

3

5 7

11

15

The Frozen Lake environment has four simple move actions

Left
Up

Down Right

(2) From now
on, I'm drawing
terminal states
without the
actions for
simplicity.

(1) Actions

(3) But have in mind
that terminal states
are defined as states
with all actions
with deterministic
transitions to itself.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

50

22 Chapter 2 I mathematical foundations of reinforcement learning

Transition function: Consequences of agent actions

The way the environment changes as a response to actions is referred to as the state-
transition probabilities or more simply the transition function and is denoted by T(s, a,
s'). The transition function T maps a transition tuple s, a, s' to a probability; that is you pass
in a state s an action a and a next state s', and it'll return the corresponding probability of
transition from state s to state s' when taking action a. You could also represent it as T(s, a)
and return a dictionary with the next states for its keys and probabilities for its values.

Notice that T also describes a probability distribution p(.|s,a) determining how the system
will evolve in an interaction cycle from selecting action a in state s. So, when integrating
over the next states s', as any probability distribution, the sum of these probabilities must
equal one.

The BW environment was deterministic, that is, the probability of the next state s' given the
current state s and action a was always 1. There was always a single possible next state s'. The
BSW and FL environments are stochastic, that is, the probability of the next state s' given the
current state s and action a is less than 1. There are more than one possible next state s'.

show Me the MAth

The transition function

(1) The transition
function is defined.

(2) As the probability of
transitioning to state
s' at time step t.

(3) Given action a was
selected on state s in the
previous time step t-1.

(4) Given these are probabilities, we
expect the sum of the probabilities across
all possible next states to sum to 1.

(5) That's true for all states s in the set
of states S, and all actions a in the set of
actions available in state s.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

51

23MDPs: The engine of the environment

One key assumption of many RL (and DRL) algorithms is that this distribution is
stationary. That is, while there may be highly-stochastic transitions, the probability
distribution may not change during training or evaluation. Just as with the Markov
assumption, the stationarity assumption is often relaxed to some extent. However, it is
important for most agents to interact with environments that at least appear to be stationary.
In the FL environment, we know that there is a 33.3% chance we will transition to the
intended cell (state) and a 66.6% chance we will transition to orthogonal directions. There is
also a chance we will bounce back to the state we are coming from if next to the wall.

For simplicity and clarity, I have added to the image below only the transition function for
all actions of states 0, 2, 5, 7, 11, 12, 13, and 15 of the FL environment. This subset of states
allows for the illustration of all possible transition without too much clutter.

It might still be a bit confusing, but look at it this way: for consistency each action in
non-terminal states has three separate transitions (some actions in corner states could be
represented with only two, but again, let me be consistent): one to the intended cell and two
to the cells in orthogonal directions.

4 6

8 9 10

13 14

1 2 30

1

3
0 2

0.33
0.33

0.33
0.33

0.33

0.33

0.33
0.33

0.33

0.33

1

3
0

2

0.33

0.33

5 7

11

1512

The transition function of the Frozen Lake environment

(2) Notice that the
corner states are special.
You bounce back from
the horizontal and the
vertical walls.

(5) This environment
is highly stochastic!

(1) Without probabilities for clarity.

(3) Remember that terminal
states have all transitions
from all actions looping back
to itself with probability 1.

(4) I'm not drawing all the
transitions, of course. This
state, for instance, is not
complete.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

52

24 Chapter 2 I mathematical foundations of reinforcement learning

Reward signal: Carrots and sticks
The reward function R maps a transition tuple s, a, s' to a scalar. The reward function gives
a numeric signal of goodness to transitions. When the signal is positive, we can think of the
reward as an income or a reward. Most problems have at least one positive signal—winning
a chess match or reaching the desired destination, for example. But, rewards can also be
negative, and we can see these as cost, punishment or penalty. In robotics, adding a time
step cost is a common practice because we usually want to reach a goal, but within a number
of time steps. One thing to clarify is that whether positive of negative the scalar coming out
of the reward function is always referred to as the reward. RL folks are happy folks.

It is also important to highlight that while the reward function can be represented as
R(s,a,s'), which is very explicit, we could also use R(s,a), or even R(s), depending on our
needs. Sometimes rewarding the agent based on state is what we need, sometimes it makes
more sense to use the action and the state. However, the most explicit way to represent
the reward function is to use a state, action and next state triplet. With that, we can
simply compute the marginalization over next states in R(s,a,s') to obtain R(s,a), and the
marginalization over actions in R(s,a) to get R(s). But, once we are in R(s) we can't recover
R(s,a) or R(s,a,s'), and once we are on R(s,a) we can't recover R(s,a,s').

In the FL environment, the reward function is simply +1 for landing in state 15, 0 otherwise.
Again, for clarity, I've only added to the following image the reward signal to transitions that
give a non-zero reward; landing on the final state (state 15.)

show Me the MAth

The reward function

(2) It can be
defined as a
function that
takes in a state-
action pair.

(1) The reward function can be
defined as follows.

(3) And, it is the expectation of reward at
time step t, given the state-action pair in the
previous time step.

(4) But, it can also be defined as a function
that takes a full transition tuple s, a, s'.

(5) And it is also defined as
the expectation, but now
given that transition tuple.

(6) The reward at time step t comes from a set of
all rewards R, which is a subset of all real numbers.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

53

25MDPs: The engine of the environment

There are only three ways to land on 15. (1) Selecting the RIGHT action in state 14 will
transition the agent with 33.3% chance there (33.3% to state 10 and 33.3% back to 14).
But, (2) selecting the UP and (3) the DOWN action from state 14 will unintentionally also
transition the agent there with 33.3% probability for each action. See the difference between
actions and transitions? It's interesting to see how stochasticity complicates things, right?

Expanding the transition and reward functions into a table form is also very useful. The
following is the format I recommend for most problems. Notice that I've only added a subset
of the transitions (rows) to the table to illustrate the exercise. Also notice that I'm being
explicit and some of these transitions could be grouped and refactored (E.g. corner cells).

State Action Next state Transition probability Reward signal

0 LEFT 0 0.33 0

0 LEFT 0 0.33 0

0 LEFT 4 0.33 0

0 DOWN 0 0.33 0

0 DOWN 4 0.33 0

0 DOWN 1 0.33 0

0 RIGHT 4 0.33 0

0 RIGHT 1 0.33 0

0 RIGHT 0 0.33 0

4 6

8 9 10

13 14

1 2 30

0.33

0.33
0.33

0.33
0.33

+1

+1

+1

0.33

0.33

0.33

0.33

1

3

0 2

0.33
0.33

0.33

7

11

15

5

12

Reward signal for states with non-zero reward transitions

(3) Notice how I'm using the most
explicit form, the full transition
R(s,a,s').

(1) State 14's actions transitions
function, and reward signal.

(2) Every other reward in this
environment is zero, so I'm omitting
all except state 14's.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

54

26 Chapter 2 I mathematical foundations of reinforcement learning

0 UP 1 0.33 0

0 UP 0 0.33 0

0 UP 0 0.33 0

1 LEFT 1 0.33 0

1 LEFT 0 0.33 0

1 LEFT 5 0.33 0

1 DOWN 0 0.33 0

1 DOWN 5 0.33 0

1 DOWN 2 0.33 0

1 RIGHT 5 0.33 0

1 RIGHT 2 0.33 0

1 RIGHT 1 0.33 0

2 LEFT 1 0.33 0

2 LEFT 2 0.33 0

2 LEFT 6 0.33 0

2 DOWN 1 0.33 0

...

14 DOWN 14 0.33 0

14 DOWN 15 0.33 1

14 RIGHT 14 0.33 0

14 RIGHT 15 0.33 1

14 RIGHT 10 0.33 0

14 UP 15 0.33 1

14 UP 10 0.33 0

...

15 LEFT 15 1.0 0

15 DOWN 15 1.0 0

15 RIGHT 15 1.0 0

15 UP 15 1.0 0

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

55

27MDPs: The engine of the environment

Horizon: Time changes what's optimal
We can represent time in MDPs as well. A time step, also referred to as epoch, cycle,
iteration, or even interaction, is a global clock syncing all parties and discretizing time.
Having a clock gives rise to a couple of possible types of tasks. An episodic task is a task in
which there is a finite number of time steps, either because the clock stops or because the
agent reaches a terminal state. There are also continuing tasks, which are tasks that go on
forever; there are no terminal states, so there is an infinite number of time steps. In this type
of task, the agent must be stopped manually.

Episodic and continuing tasks can also be defined from the agent's perspective. We call it
the planning horizon. On the one hand, a finite horizon is a planning horizon in which
the agent knows the task will terminate in a finite number of time steps: if we forced the
agent to complete the Frozen Lake environment in fifteen steps, for example. A special case
of this kind of planning horizon is called a greedy horizon, in which the planning horizon
is one. The BW and BSW have both a greedy planning horizon, the episode terminates
immediately after one interaction. In fact, all bandit environments have greedy horizons.

On the other hand, an infinite horizon is when the agent doesn't have a predetermined
time step limit, so agents plan for an infinite number of time steps. Such task may still be
episodic and therefore terminate, but from the perspective of the agent, its planning horizon
is infinite. We refer to this type of infinite planning horizon tasks as an indefinite horizon
task. The agent plans for infinite, but interactions may stop at any time by the environment.

For tasks in which there is a high chance the agent gets stuck in a loop and never terminate,
it's common practice to add an artificial terminal state based on the time step; a hard time
step limit using the transition function. These cases require special handling of time step
limit terminal state. The environment for chapters 8, 9 and 10, the Cart Pole environment,
has this kind of artificial terminal step, and you'll learn to handle these special cases there.

The BW, BSW and FL environment are episodic tasks, because there are terminal states;
there is a clear goal and failure states. FL is an indefinite planning horizon; the agent plans
for infinite number of steps, but interactions may stop at any time. We won't add a time
step limit to the FL environment because there is a high chance the agent will terminate
naturally; the environment is highly stochastic. This kind of task is the most common in RL.

We refer to the sequence of consecutive time steps from the beginning to the end of an
episodic task as an episode, trial, period or stage. In indefinite planning horizons, an
episode is a collection containing all interactions between an initial and a terminal state.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

56

28 Chapter 2 I mathematical foundations of reinforcement learning

Discount: The future is uncertain, value it less
Because of the possibility of infinite sequences of time steps in infinite horizon tasks, we
need a way to discount the value of rewards over time; that is, we need a way for telling the
agent that getting +1's is better sooner than later. So, we commonly use a positive real value
less than one to exponentially discount the value of future rewards. The further into the
future we receive the reward, the less valuable in the present.

This number is called the discount factor, or gamma. The discount factor adjusts the
importance of rewards over time. The later we receive rewards, the less attractive they are to
present calculations. Another important reason why the discount factor is commonly used
is to reduce the variance of return estimates. Given that the future is uncertain, and that the
later into the future we look at, the more stochasticity we accumulate and the more variance
our value estimates will have, the discount factor helps reducing the degree to which future
reward affect our value function estimates which stabilizes learning for most agents.

Interestingly, gamma is actually part of the MDP definition, the problem, and not the agent.
However, very often you'll find no guidance for the proper value of gamma to use for a given
environment. Again, this is also because gamma is used as a hyperparameter for reducing
variance, and therefore left for the agent to tune.

You can also use gamma as a way to give a sense of "urgency" to the agent. For instance, in
the FL environment, if the agent would always select the UP action in every state, it would
get stuck in the top row of the grid world. We can make the agent sacrifice safety for reward
by setting gamma to a number less than one. But, notice the behavior of the agent will
depend on this number!

For the BW and BSW environments a gamma of 1 is appropriate, for the FL environment,
however, we will use a gamma of 0.99, a commonly used value.

1

0
Time step

Value of a
+1 reward

10000

(1) The discount factor will
exponentially decay the value
of later rewards.

(2) The value of a +1 reward
at time step 0 is not the
same value as a +1 reward at
time step 1000.

Effect of discount factor and time on the value of rewards

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

57

29MDPs: The engine of the environment

Extensions to MDPs
There are many extensions to the MDP framework we just discussed. They allow us to target
slightly different types of RL problems. The following list is not comprehensive, but it should
give you an idea of how large the field is. Know that the acronym "MDPs" is often used to
refer to all types of MDPs. We are currently looking only at the tip of the iceberg.

• Partially-Observable Markov Decision Process (POMDP): When the agent cannot
fully observe the environment state.

• Factored Markov Decision Process (FMDP): Allows the representation of the transi-
tion and reward function more compactly so that we can represent very large MDPs.

• Continuous [Time|Action|State] Markov Decision Process: When either time, action,
state or any combination of them are continuous.

• Relational Markov Decision Process (RMDP): Allows the combination of probabilistic
and relational knowledge.

• Semi-Markov Decision Process (SMDP): Allows the inclusion of abstract actions that
can take multiple time steps to complete.

• Multi-Agent Markov Decision Process (MMDP): Allows the inclusion of multiple
agents in the same environment.

• Decentralized Markov Decision Process (Dec-MDP): Allows for multiple agents to
collaborate and maximize a common reward.

show Me the MAth

The discount factor (gamma)

(1) The sum of all rewards obtained during the course of an episode is referred to as the return.

(2) But we can also use the discount factor this way and obtain the discounted return. The
discounted return will down weight rewards that occur later during the episode.

(3) We can simplify the equation and have a more general
equation, such as this one.

(4) Finally, take a look a this interesting recursive
definition. In the next chapter, we spend some time
exploiting this form.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

58

30 Chapter 2 I mathematical foundations of reinforcement learning

i speAk python

The Bandit Walk MDP

P = {
 0: {
 0: [(1.0, 0, 0.0, True)],
 1: [(1.0, 0, 0.0, True)]
 },
 1: {
 0: [(1.0, 0, 0.0, True)],
 1: [(1.0, 2, 1.0, True)]
 },
 2: {
 0: [(1.0, 2, 0.0, True)],
 1: [(1.0, 2, 0.0, True)]
 }
}

import gym, gym_walk
P = gym.make('BanditWalk-v0').env.P

(1) The outer dictionary keys are the states.
(2) The inner dictionary keys are the actions.

(3) The value of the inner dictionary
are the possible transitions for the
state-action pair.

(4) The transition tuples have four values:
the probability of that transition,
the next state,
the reward,
and a flag indicating whether the next
state is terminal.

(5) You can also load
the MDP this way.

i speAk python

The Bandit Slippery Walk MDP

P = {
 0: {
 0: [(1.0, 0, 0.0, True)],
 1: [(1.0, 0, 0.0, True)]
 },
 1: {
 0: [(0.8, 0, 0.0, True), (0.2, 2, 1.0, True)],
 1: [(0.8, 2, 1.0, True), (0.2, 0, 0.0, True)]
 },
 2: {
 0: [(1.0, 2, 0.0, True)],
 1: [(1.0, 2, 0.0, True)]
 }
}
import gym, gym_walk
P = gym.make('BanditSlipperyWalk-v0').env.P

(1) Look at the terminal state. States 0 and 2 are terminal.

(4) This is how you can load
the Bandit Slippery Walk in
the Notebook. Make sure
to check them out!

(2) This is how you build stochastic transitions. This is state 1, action 0.

(3) These are the transitions after taking action 1 in state 1.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

59

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_02/chapter-02.ipynb

31MDPs: The engine of the environment

i speAk python

The Frozen Lake MDP

P = {
 0: {
 0: [(0.6666666666666666, 0, 0.0, False),

 (0.3333333333333333, 4, 0.0, False)
],
 <...>
 3: [(0.3333333333333333, 1, 0.0, False),
 (0.3333333333333333, 0, 0.0, False),
 (0.3333333333333333, 0, 0.0, False)
]
 },
 <...>
 14: {
 <...>
 1: [(0.3333333333333333, 13, 0.0, False),
 (0.3333333333333333, 14, 0.0, False),
 (0.3333333333333333, 15, 1.0, True)
],
 2: [(0.3333333333333333, 14, 0.0, False),
 (0.3333333333333333, 15, 1.0, True),
 (0.3333333333333333, 10, 0.0, False)
],
 3: [(0.3333333333333333, 15, 1.0, True),
 (0.3333333333333333, 10, 0.0, False),
 (0.3333333333333333, 13, 0.0, False)
]
 },
 15: {
 0: [(1.0, 15, 0, True)],
 1: [(1.0, 15, 0, True)],
 2: [(1.0, 15, 0, True)],
 3: [(1.0, 15, 0, True)]
 }
}

import gym
P = gym.make('FrozenLake-v0').env.P

(1) Probability of landing in state 0 when selecting action 0 in state 0.

(3) You can group the probabilities such as in this line.

(4) Or be explicit, such as in these two lines.
It works fine either way.

(5) Lots removed from this example for clarity.
(6) Go to the Notebook for the complete FL MDP.

(7) State 14 is
the only state
that provides a
non-zero reward.
Three out of four
actions have a
single transition
that leads
to state 15.
Landing on state
15 provides a
+1 reward.

(8) State 15 is a terminal state.

(9) Again, you can load the MDP like so.

(2) Probability of landing in state 4 when selecting action 0 in state 0.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

60

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_02/chapter-02.ipynb

32 Chapter 2 I mathematical foundations of reinforcement learning

Putting it all together
Unfortunately, when you go out to the real world, you'll find many different ways that MDPs
are defined. Moreover, some sources describe POMDPs and refer to them as MDPs without
the full disclosure. All of this creates confusion to the newcomer, so I have a few points to
clarify for you going forward. First, what you see above as Python code is not a complete
MDP, but instead only the transition functions and reward signals. From these, we can easily
infer the state and action spaces. These code snippets come from a few packages containing
several environments I developed for the OpenAI Gym framework, and the FL environment
is part of the OpenAI Gym core. Some of the additional components of an MDP that are
missing from the dictionaries above, such as the initial state distribution Sθ that comes from
the set of initial state Si, are handled internally by the Gym framework and not shown here.
Further, other components, such as the discount factor γ and the horizon H, are not shown
in the dictionary above, and the OpenAI Gym framework doesn't provide them to you.
Like I said before, discount factors are commonly considered hyperparameters, for better or
worse. And the horizon is very often assumed to be infinity.

But do not worry about this. First, to calculate optimal policies for the MDPs presented
in this chapter, which we'll do in the next chapter, we will only need the dictionary shown
above containing the transition function and reward signal; from these, we can infer the
state and action spaces, and I will provide you with the discount factors. We will assume
horizons of infinity, and won't need the initial state distribution. Additionally, the most
crucial part of this chapter is to give you an awareness of the components of MDPs and
POMDPs. Remember, you won't have to do much more building MDPs than what you've
done in this chapter. Nevertheless, let me define MDPs and POMDPs the way I prefer.

show Me the MAth

MDPs vs. POMDPs

(1) MDPs have state space S, action space A, transition function T, reward signal R.
It also has a set of initial states distribution Sθ, the discount factor γ, and the horizon H.

(2) To define a POMDP you just add the observation space O and a emission probability
E that defines the probability of showing an observation ot given a state st. Very simple.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

61

33Summary

Summary
OK. I know this chapter is heavy on new terms, but that's its intent. The best summary
for this chapter is on the previous page, more specifically, the definition of an MDP. Take
another look at the last two equations and try to remember what each letter means. Once
you do so, you know you got out of this chapter what you need to proceed.

At the highest level, a reinforcement learning problem is about the interactions between
an agent and the environment in which the agent exists. A large variety of issues can be
modeled under this setting. Markov decision process is a mathematical framework for
representing complex decision-making problems under uncertainty.

Markov decision processes (MDPs) are composed of a set of systems states, a set of per-state
actions, a transition function, a reward signal, a horizon, a discount factor, and an initial state
distribution. States describe the configuration of the environment. Actions allow agents to
interact with the environment. The transition function tells how the environment evolves
and reacts to the agents' actions. The reward signal encodes the goal to be achieved by the
agent. The horizon and discount factor add a notion to time to the interactions.

The state space, the set of all possible states, can be infinite or finite. The number of
variables that make up a single state, however, must be finite. States can be fully observable,
but in a more general case of MDPs, a POMDP, the states are partially observable. This
means the agent is not able to observe the full state of the system, but a noisy state instead,
called an observation.

The action space is a set of actions which can vary from state to state. However, the
convention is to use the same set for all states. Actions can be composed with more than one
variable, just like the states. Action variables may be discrete or continuous.

The transition function links a state (a next state) to a state-action pair, and it defines the
probability of reaching that future state given the state-action pair. The reward signal, in
its more general form, maps a transition tuple s, a, s' to scalar and it indicates the goodness
of the transition. Both, the transition function and reward signal, define the model of the
environment and assume to be stationary, meaning probabilities stay the same throughout.

By now you:

• Understand the components of a reinforcement learning problem and how they inter-
act with each other.

• Recognize Markov Decision Processes and know what are they composed from and
how they work.

• Can represent sequential decision-making problems as MDPs.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

62

balancing immediate
and long-term goals 3

In this chapter

• You learn about the challenges of learning from
sequential feedback and how to properly balance
immediate and long-term goals.

• You develop algorithms that can find the best policies
of behavior in sequential decision-making problems
modeled with MDPs.

• You find the optimal policies for all environments you
built MDPs for in the previous chapter.

In preparing for battle I have always found that
plans are useless, but planning is indispensable.

— Dwight D. Eisenhower
United States Army five-star general and

34th President of the United States

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

63

2 Chapter 3 I balancing immediate and long-term goals

In the last chapter, you built an MDP for the BW, BSW, and FL environments. MDPs are the
motors moving RL environments. They define the problem: they describe how the agent
interacts with the environment through state and action spaces, what is the agent's goal
through the reward function, how the environment reacts from the agent's actions through
the transition function, and how time should impact behavior through the discount factor.

In this chapter, you'll learn about algorithms for solving MDPs. We first discuss the objective
of an agent and why simple plans are not sufficient to solve MDPs. We then talk about
the two fundamental algorithms for solving MDPs under a technique called Dynamic
Programming: Value Iteration (VI) and Policy Iteration (PI).

You'll soon notice that these methods in a way "cheat": they require full access to the MDP,
they depend on knowing the dynamics of the environment, which is something we can't
always obtain. However, the fundamentals you'll learn are still useful for learning about
more advanced algorithms. In the end, VI and PI are the foundations from which virtually
every other RL (and DRL) algorithm originates.

You'll also notice that when an agent has full access to an MDP, there is no uncertainty as
you can look at the dynamics and rewards and calculate expectations directly. Being able to
calculate expectations directly means that there is no need for exploration; that is, there is
no need to balance exploration and exploitation. There is no need for interaction, so there
is no need for trial-and-error learning. All of this is because the feedback we are using for
learning in this chapter is not evaluative but supervised instead.

Remember, in DRL, agents learn from feedback that is simultaneously sequential (as
opposed to one shot), evaluative (as opposed to supervised) and sampled (as opposed
to exhaustive). What I'm doing in this chapter is eliminating the complexity that comes
along when learning from evaluative and sampled feedback and study sequential feedback
in isolation: In this chapter, we learn from feedback that is sequential, supervised and
exhaustive.

The objective of a decision-making agent
At first, it seems the agent's goal is to find a sequence of actions that will maximize the
return: the sum of rewards (discounted or undiscounted—depending on the value of
gamma) during an episode or the entire life of the agent, depending on the task.

Let me introduce a new environment to explain these concepts more concretely.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

64

3The objective of a decision-making agent

ConCrete example

The Slippery Walk Five (SWF) environment

The Slippery Walk Five (SWF) is a one-row grid-world environment (a walk), that is
stochastic, similar to the Frozen Lake, and it has only five non-terminal states (seven total if
we count the two terminal).

The agent starts in S, H is a hole, G is the goal and provides a +1 reward.

(2) 50% action success.
(3) 33.33% Stays in place.

(4) 16.66% goes backwards.

H S
0 1 2 4 5

G
6

+1

3

The slippery walk five environment
(1) This environment is stochastic
and even if the agent selects the right
action, there is a chance it goes left!

Show me the math

The return G

(1) The return is the sum of rewards encounter from step t, until the final step T.

(2) As I mentioned in the previous chapter, we can combine the return and time using the
discount factor, gamma. This is then the discounted return, which prioritizes early rewards.

(3) We can simplify the equation and have a
more general equation, such as this one.

(4) And stare at this recursive definition of G for a while.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

65

4 Chapter 3 I balancing immediate and long-term goals

You can think of returns as backward looking: "how much you got" from a past time step,
but another way to look at it is as a "reward to go." Basically, forward looking. For example,
imagine an episode in the SWF environment went this way:

State 3 (0 reward), state 4 (0 reward), state 5 (0 reward), state 4 (0 reward), state 5 (0 reward),
state 6 (+1 reward). We can shorten it: 3/0, 4/0, 5/0, 4/0, 5/0, 6/1. So, what is the return of
this trajectory/episode?

Well, if we use discounting the math would work out this way:

If we don't use discounting, well, the return would just be 1 for this trajectory and all
trajectories that end in the right-most cell, state 6, and 0 for all trajectories that terminate in
the left-most cell, state 0.

In the SWF environment, it is evident that going RIGHT is the best thing to do. It may
seem, therefore, that all the agent must find is something called a plan—that is a sequence
of actions from the START state to the GOAL state. But this not always works.

H
0 1 2 S 4 5

G
63

A solid plan in the SWF environment

(1) This is a solid plan, but is a plan enough?

(1) Calculating the return at time step t=0
(2) This is the reward obtained at time step t+1 (0) discounted by gamma (0.990).

(3) Reward at t+2, discounted by gamma raise to the power 1.
(4) Discounted reward at t+3.

(5) and soon...

(6) This is the
discounted
reward at
time step T
 (final step).

Discounted return in the slippery walk five environment

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

66

5The objective of a decision-making agent

In the FL environment a plan would look like this:

But this is not enough! The problem with plans is they do not account for stochasticity in
environments, and both the SWF and FL are stochastic; actions taken will not always work
the way we intend. What would happen if, due to the environment's stochasticity, our agent
lands on a cell not covered by our plan?

Same happens in the FL environment:

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) This is a solid plan. But, in a
stochastic environment, even the best of
plans fail.
Remember that in the FL environment,
unintended actions affects have even
higher probability: 66.66% vs. 33.33%!
You need to plan for the unexpected.

A solid plan in the FL environment

H
0 1 2 S 4 5

G
63

A possible "hole" in our plan

(1) Say the agent followed the plan, but on the first environment
transition the agent was sent backward to state 2!

(2) Now, what? You didn't plan an action for
state 2. Maybe you need a plan B? C? D?

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) Here I'm showing the action and the possible action
effects. Notice that there is a 66.66% chance that an
unintended consequence actually happens!

Plans are not enough in stochastic environments

(2) Imagine that the agent is following the plan, but in
state10, the agent is sent to state 9, even if it selected
the down action, as it apparently is the right thing to do.
(3) What we need is a plan for every possible state, a
Universal Plan, a Policy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

67

6 Chapter 3 I balancing immediate and long-term goals

What the agent needs to come up with is called a policy. Policies are universal plans; policies
cover all possible states. We need to plan for every possible state. Policies can be stochastic
or deterministic: the policy can return action-probability distributions or single actions for
a given state (or observation). For now, we are working with deterministic policies, which is
simply a lookup table that maps actions to states.

In the SWF environment, the optimal policy is always going RIGHT, not just going RIGHT,
but going RIGHT for every single state.

Great, but there are still many unanswered questions. For instance, how much reward
should I expect from this policy? Because, even though we know how to act optimally,
the environment might send our agent backward to the hole even if we always select to
go towards the goal. This is why returns are not enough. The agent is really looking to
maximize the expected return; that means the return taking into account the environment's
stochasticity.

Also, we need a method to automatically find optimal policies, because in the FL example,
for instance, it is not at all obvious what the optimal policy looks like!

There are a few components that are kept internal to the agent and can help it find optimal
behavior: there are policies, there can be multiple policies for a given environment, and in
fact, in some environments, there may be multiple optimal policies. Also, there are value
functions to help us keep track of return estimates. There is a single optimal value function
for a given MDP, but there may be multiple value functions in general.

Let's look at all the components internal to a reinforcement learning agent that allows them
to learn and find optimal policies with some examples to make all of this more concrete.

H
0 1 2

START

4 5
G

63

Optimal policy in the SWF environment

(1) It's kind of obvious that going always RIGHT
is the best we can do in this environment.

(2) And notice that it doesn't really matter what we do in terminal states.
Policies prescribe action only for non-terminal states. For terminal states,
any action is the same as all transitions from all actions in terminal states
just loop back to the same terminal state.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

68

7The objective of a decision-making agent

Policies: Per-state action prescriptions
Given the stochasticity in the Frozen Lake environment (and most reinforcement
learning problems,) the agent needs to find a policy, denoted as π. A policy is a function
that prescribes actions to take for a given nonterminal state (remember, policies can be
stochastic. So, either directly an action, or probability distribution over actions. We will
expand on stochastic policies in later chapters.)

Here is a sample policy:

One immediate question that arises when looking at a policy is: How good is this policy? If
we find a way to put a number to policies, we could also ask the question: How much better
is this policy compared to this other policy?

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

A randomly generated policy

(1) A policy generated
uniformly at random.
Nothing special so far...

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

(1) Policy:
"Go get it"

(3) Pick your favorite! Seriously, do it now...

(2) Policy:
"Careful"

How can we compare policies?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

69

8 Chapter 3 I balancing immediate and long-term goals

State-value function: What to expect from here?
Something that'd help us compare policies is to put numbers to states for a given policy.
That is, if we are given a policy and the MDP, we should be able to calculate the expected
return starting from every single state (we care mostly about the START state). So, how can
we calculate how valuable being in a state is? For instance, if our agent is in state 14 (to the
left of the GOAL,) how is that better than being in state 13 (to the left of 14)? And precisely
how much better is it? More importantly, under which policy we'd have better results, the
"Go get it" or the "Careful" policy?

Let's give it a quick try with the "Go get it" policy. What is the value of being in state 14
under the "Go get it" policy?

Okay, so it is not that straightforward to calculate the value of state 14 when following the
"Go get it" policy because of the dependence on the values of other states (10 and 14 in this
case), which we don't have either. It's like the chicken or the egg problem. Let's keep going.

We defined the return as the sum of rewards the agent obtains from a trajectory. Now, this
return can be calculated without paying attention to the policy the agent is following, you
just sum all of the rewards obtained, and you are good to go. The number we are looking
now is the expectation of returns (from state 14) if we follow a given policy π. Remember,
we are under stochastic environments, so we must account for all the possible ways the
environment can react to our policy! That's what an expectation gives us.

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

What's the value of being in state 14
when running the "Go get it" policy?

(4) It'll take me this chapter to explain how to obtain the
right answer. But, look at this! A third of the time, we get
a +1 and end the episode, another third we land in state
10, and the last third, back in state 14. The 0.33 is only
part of the answer, but we need to take into account the
other two thirds were the agents doesn't get the +1.

Left Down Right Up

0 0 000 0 000 +1 +1+1

(2) According to the policy, the agent
selects action RIGHT in state 14. 14

10 13 13 10 1014 14 14 1315 15 15

(1) Recall the
"Go get it" policy.

(3) So, what's the
value of RIGHT on 14?
Is it 1? 0.33? Sure?

1/31/31/3

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

70

9The objective of a decision-making agent

We now define the value of a state s when following a policy π: the value of a state s under
policy π is the expectation of returns if the agent follows policy π starting from state s.
Calculate this for every state and you get the state-value function, or V-function or value
function. It represents the expected return when following policy π from state s.

This is interesting... A bit of a mess, given the recursive dependencies, but still very
interesting. Notice how the value of a state depends recursively on the value of possibly
many other states, which values may also depend on others, including the original state!

The recursive relationship between states and successive states will come back in the next
section when we look at algorithms that can iteratively solve these equations and obtain the
state-value function of any policy in the FL environment (or any other environment, really).

For now, let's continue exploring some of the other components commonly found in RL
agents. We'll learn how to calculate these values later in this chapter. Note that the state-
value function is often referred to as the "value function," or even the V-function, or more
simply Vπ(s). It may be confusing, but you'll get used to it.

Show me the math

The state-value function V

(1) The value of a state s.

(2) Under policy π.

(3) Is the expectation over π.

(4) Of returns at time step t.

(5) Given you select
state s at time step t.

(6) Remember that returns are sum of discounted rewards.

(7) And that we can defined
them recursively like so.

(8) This equation is called the Bellman equation and it tells us how to find the value of states.

(9) We get the action
(or actions,if the policy
stochastic) prescribed
for state s. And do a
weighted sum...

(10) We also weight
the sum over the
probability of next
states and rewards.

(11) We add the reward
and the discounted value of
the landing states, weight
that by the probabilities.

(12) Do this
for all states
in the state
space.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

71

10 Chapter 3 I balancing immediate and long-term goals

Action-value function: What to expect from here if I do this?
Another important question that we often need to ask, is not simply about the value of a
state, but the value of taking action a in a state s. Answers to this kind of question would
help us decide between actions.

For instance, notice that the "Go get it" policy goes RIGHT when in state 14, but the
"Careful" policy goes DOWN. But which action is better? More specifically, which action is
better under each policy? That is, what is the value of going DOWN, instead of RIGHT, and
then follow the "Go get it" policy and what is the value of going RIGHT, instead of DOWN,
and then follow the "Careful" policy?

By being able to compare between different actions under the same policy, we can select
better actions, and therefore improve our policies. The action-value function, also known
as Q-function or Qπ(s,a), captures precisely this: the expected return if the agent follows
policy π after taking action a in state s.

In fact, when we care about improving policies, which is often referred to as the "control
problem," we need action-value functions. Think about it, if you don't have an MDP, how
can you decide what action to take merely by knowing the values of all states? V-functions
don't capture the dynamics of the environment. The Q-function, on the other hand, does
somewhat capture the dynamics of the environment and allows you to improve policies
without the need for MDPs. We expand on this fact in later chapters.

Show me the math

The action-value function Q

(1) The value of action a
in state s under policy π.

(2) Is the expectation of returns given we select
action a in state s and follow policy π thereafter.

(3) And just as before we can define this equation recursively like so.

(4) The Bellman equation for action values is defined as follows.

(5) Notice we don't weigh
over actions because we
are interested only in a
specific action.

(6) We do weigh,
however, by the
probabilities of next
states and rewards.

(7) What do we weigh?
The sum of the reward
and the discounted
value of the next state.

(8) We do
that for
all state-
action pairs.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

72

11The objective of a decision-making agent

Action-advantage function: How much better if I do that?
There is another type of value function that is derived from the previous two. The action-
advantage function, also known as advantage function, A-function or Aπ(s, a), is the
difference between the action-value function of action a in state s and the state-value
function of state s under policy π.

The advantage function describes how much better it is to take action a instead of following
policy π. Basically, what is the advantage of choosing action a over the default action.

Take a look at the different value functions for a (dumb) policy in the SWF environment.
Remember, these values depend on the policy. In other words, the Qπ(s, a) assumes you will
follow policy π (always LEFT in the example below) right after taking action a in state s.

Show me the math

The action-advantage function A

(1) The advantage
of action a in state
s under policy π.

(2) Is the difference
between the value of that
action, and the value of the
state s, both under policy π.

6

6

0

1

0

1

0 1 2 4 53
H G

START

0.002 0.011 0.036 0.11 0.332
0 1 2 4 53

0.002 0.011 0.036 0.11 0.332
0 0 0 0 00

0.006 0.022 0.069 0.209 0.629
1 1 1 1 11

0 0 0 0 00

0.004 0.011 0.033 0.099 0.297
1 1 1 1 11

0.0 0.00.0 0.0 0.0 0.00.0

0.0 0.0

0.00.0

0.0 0.0

0.00.0

60 1 2 4 53

60 1 2 4 53

State-value, action-value, and action-advantage functions
(1) Notice how
Qπ(s,a) allows
us to improve
policy π, by
showing the
highest valued
action under
the policy.

(2) Also
notice there is
no advantage
for taking the
same action
as policy π
recommends.

π

Vπ(s)

Qπ(s, a)

Aπ(s, a)

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

73

12 Chapter 3 I balancing immediate and long-term goals

Optimality
Policies, state-value functions, action-value functions, and action-advantage functions are
the components we use to describe, evaluate, and improve behaviors. We call it optimality
when these components are the best they can be.

An optimal policy is a policy that for every state can obtain expected returns greater than or
equal to any other policy. An optimal state-value function is a state-value function with the
maximum value across all policies for all states. Likewise, an optimal action-value function
is an action-value function with the maximum value across all policies for all state-action
pairs. The optimal action-advantage function follows a similar pattern, but notice an
optimal advantage function would be equal or less than zero for all state-action pairs since
no action could have any advantage from the optimal state-value function.

Also, notice that although there could be more than one optimal policy for a given MDP,
there can only be one optimal state-value function, optimal action-value function, and
optimal action-advantage function.

You may also notice that if you had the optimal V-function, you could simply use the MDP
to do a one-step search for the optimal Q-function and then use this to build the optimal
policy. On the other hand, if you had the optimal Q-function you don't need the MDP at
all. You could use the optimal Q-function to find the optimal V-function by merely taking
the maximum over the actions. And you could obtain the optimal policy using the optimal
Q-function by taking the argmax over the actions.

Show me the math

The Bellman optimality equations

(1) The optimal
state-value function.

(2) Is the state-value
function with the highest
value across all policies.(3) Likewise, the optimal action-

value function is the action-value
function with the highest values.

(4) The optimal state-value
function can be obtained this way.

(5) We take the max action. (6) Of the weighted sum of the reward and
discounted optimal value of the next state.

(7) Similarly, the
optimal action-value
function can be
obtained this way.

(8) Notice how the max is now on the inside.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

74

13Planning optimal sequences of actions

Planning optimal sequences of actions
So far, we have state-value functions to keep track of the values of states; action-value
functions to keep track of the values of state-action pairs; and action-advantage functions,
which are the difference between the action-value and state-value functions and therefore
show the "advantage" of taking actions. We have equations for all of these to evaluate current
policies, that is, to go from policies to value functions, but we also have equations to calculate
and find optimal value functions and therefore optimal policies, which is excellent.

Now that we have discussed the reinforcement learning problem formulation, and we have
defined the objective we are after, we can start exploring methods for finding this objective.
Iteratively computing the equations presented in the previous section is one of the most
common ways to solve a reinforcement learning problem and obtain optimal policies when
the dynamics of the environment, the MDPs, are known. Let's take a look at the methods.

Policy Evaluation: Rating policies
We talked about comparing policies in the previous section. We establish that policy π is
better than or equal to policy π' if the expected return is better than or equal to π' for all
states. Before we can use this definition, however, we must devise an algorithm for actually
evaluating an arbitrary policy. Such an algorithm is known as iterative policy evaluation or
just policy evaluation.

The policy evaluation algorithm consists of calculating the V-function for a given policy by
sweeping through the state space and iteratively improving estimates. We refer to the type of
algorithm that takes in a policy and outputs a value function as an algorithm that solves the
prediction problem; calculating the values of a pre-determined policies.

Show me the math

The policy-evaluation equation

(1) The policy evaluation algorithm consist on the iterative approximation of the state-value
function of the policy under evaluation. The algorithm converges as k approaches infinity.

(2) Initialize v0(s) for all s in S arbitrarily, and to 0 if s is terminal. Then, increase
k and iteratively improve the estimates simply by following the equation below.

(3) Calculate the value of a state s as the weighted sum of the
reward and the discounted estimated value of the next state s'.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

75

14 Chapter 3 I balancing immediate and long-term goals

Using this equation, we can iteratively approximate the true V-function of an arbitrary
policy. The iterative policy evaluation algorithm is guaranteed to converge to the value
function of the policy if given enough iterations, more concretely as we approach infinity. In
practice, however, we use a small threshold to check for changes in the value function we are
approximating. Once the changes in the value function are less than this threshold, we stop.

Let's see how this algorithm works in the SWF environment, for the "always LEFT" policy.

You then calculate the values for all states 0-6, and when done, move to the next iteration.
Notice that to calculate V2

π(s) you would have to use the estimates obtained in the previous
iteration, V1

π(s). This technique of calculating an estimate from an estimate is referred to as
bootstrapping, and it is a widely used technique in RL (including DRL).

Also, very important to notice that the k's here are iterations across estimates, but they are
not interactions with the environment. These are not episodes that the agent is out and
about selecting actions and observing the environment. These are not time steps either.
Instead, these are simply the iterations of the iterative policy evaluation algorithm. Do a
couple more of these estimates. The following table shows you the results you should get.

H
0 1 2

START

4 5
G

63

Initial calculations of policy evaluation

vπ
1
(5)= p(s' = 4 | s = 5, a = LEFT) * [R(5, LEFT, 4) + vπ

0
(4)] +

(4) Yep, this is the
value of state 5 after
1 iteration of policy
evaluation (v

π
1

(5)).

p(s' = 5 | s = 5, a = LEFT) * [R(5, LEFT, 5) + vπ
0
(5)] +

p(s' = 6 | s = 5, a = LEFT) * [R(5, LEFT, 6) + vπ
0
(6)]

vπ
1
(5)= 0.50 * (0+0) + 0.33 * (0+0) + 0.166 * (1+0) = 0.166

(1) We have a deterministic
policy, so this part here is 1.

(3) An "Always
LEFT" policy. π

State 5, Iteration 1 (initialized to 0 in iteration 0):

(2) Let's use gamma of 1.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

76

15Planning optimal sequences of actions

k Vπ(0) Vπ(1) Vπ(2) Vπ(3) Vπ(4) Vπ(5) Vπ(6)

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0.1667 0

2 0 0 0 0 0.0278 0.2222 0

3 0 0 0 0.0046 0.0463 0.2546 0

4 0 0 0.0008 0.0093 0.0602 0.2747 0

5 0 0.0001 0.0018 0.0135 0.0705 0.2883 0

6 0 0.0003 0.0029 0.0171 0.0783 0.2980 0

7 0 0.0006 0.0040 0.0202 0.0843 0.3052 0

8 0 0.0009 0.0050 0.0228 0.0891 0.3106 0

9 0 0.0011 0.0059 0.0249 0.0929 0.3147 0

10 0 0.0014 0.0067 0.0267 0.0959 0.318 0

...

104 0 0.0027 0.011 0.0357 0.1099 0.3324 0

What are some of the things the resulting state-value function tells us?

Well, to begin with, we can say we get a return of 0.0357 in expectation when starting an
episode in this environment and following the "always LEFT" policy. Pretty low.

We can also say, that even when we find ourselves in state 1 (the leftmost non-terminal
state), we still have a chance, albeit less than one percent, to end up in the GOAL cell (state
6). To be exact, we have a 0.27% chance of ending up in the GOAL state when we are in state
1. And we select LEFT all the time! Pretty interesting.

Interestingly also, due to the stochasticity of this environment, we have a 3.57% chance of
reaching the GOAL cell (remember this environment has 50% action success, 33.33% no
effects, and 16.66% backward). Again, this is when under an "always LEFT" policy. Still,
the LEFT action could send us RIGHT, then RIGHT and RIGHT again, or LEFT, RIGHT,
RIGHT, RIGHT, RIGHT, and so on.

Think about how the probabilities of trajectories combine. Also, pay attention to the
iterations and how the values propagate backward from the reward (transition from state
5 to state 6) one step at a time. This backward propagation of the values is a common
characteristic among RL algorithms and comes up again several times.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

77

16 Chapter 3 I balancing immediate and long-term goals

I Speak python

The policy-evaluation algorithm

def policy_evaluation(pi, P, gamma=1.0, theta=1e-10):

 prev_V = np.zeros(len(P))

 while True:

 V = np.zeros(len(P))

 for s in range(len(P)):

 for prob, next_state, reward, done in P[s][pi(s)]:

 V[s] += prob * (reward + gamma * \
 prev_V[next_state] * (not done))

 if np.max(np.abs(prev_V - V)) < theta:
 break

 prev_V = V.copy()
 return V

(1) This is a full implementation of the policy-evaluation algorithm.
All we need is the policy we are trying to evaluate and the MDP the
policy runs on. The discount factor, gamma, defaults to 1, and theta
is a very small number that we use to check for convergence.

(2) Here we initialize the first-iteration estimates of the state-value function to zero.

(3) We begin by looping "forever"...

(4) We initialize the current-iteration estimates to zero as well.

(5) And then loop through all states to estimate the state-value function.

(6) See here how we use the policy pi to get the possible transitions.

(7) Each transition tuple has a probability, next state, reward and a
done flag indicating whether the `next_state` is terminal or not.

(8) We calculate the value of that state by summing
up the weighted value of that transition.

(9) Notice how we use the 'done' flag to ensure the value of the next state
when landing on a terminal state is zero. We don't want infinite sums.

(10) At the end of each iteration (a state sweep),
we make sure that the state-value functions are
changing, otherwise, we call it converged.
(11) Finally, 'copy' to get ready for the next
iteration or return the latest state-value function.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

78

17Planning optimal sequences of actions

Let's now run policy evaluation in the randomly generated policy presented earlier for the
FL environment.

This is the progress policy evaluation makes on accurately estimating the state-value
function of the randomly generated policy after only 8 iterations:

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

Recall the randomly generated policy

(1) A policy generated randomly

(2) Is the same as before.
No need to flip pages!

G 0.440.110.33 G 0.520.18

0.04

G 0.560.24

0.060.01 0.01

G

0.600.29

0.02 0.09 0.02

G 0.630.32

0.04 0.11 0.03

0.01 0.01

G 0.650.35

0.130.05

0.010.02

G 0.660.37

0.140.06

0.02

0.01

0.05

0.01

G

0.04

(1) Values start propagating with every iteration.
k=1

k=5

k=2

k=6 k=7

k=4

k=8
(2) The values continue to propagate and become more and more accurate.

Policy evaluation on the randomly
generated policy for the FL environment

k=3

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

79

18 Chapter 3 I balancing immediate and long-term goals

This final state-value function is the state-value function for this policy. Note that even
though this is still an estimate, because we are in a discrete state and action spaces, we can
assume this to be the actual value function when using gamma of 0.99.

In case you are wondering the state-value functions of the two policies presented earlier,
here are the results:

It seems being a "Go get it" doesn't pay well in the FL environment! Fascinating results,
right? But a question arises: Are there any better policies for this environment?

START

GOAL

0.0955 0.0471

0.2647

0.0470

0.1469 0.0498

0.2028 0.1038

0.4957 0.7417

0.0456

(1) After 218 interactions
policy evaluation converges to
these values (using a 1e-10
minimum change in values as
stopping condition).

State-value function of the randomly generated policy

START

0.0342

GOAL

START

GOAL

0.0231 0.0468

0.0940 0.2386 0.2901

0.4329 0.6404

0.0231 0.4079 0.3754 0.3543

0.4454 0.4840 0.4328

0.5884 0.7107

0.4263 0.1169

0.3438

0.0463 0.0957

(1) The state-value function of this policy
converges after 66 iterations. The policy
reaches the goal state a mere 3.4% of the time.

(2) For this policy, the state-value function
converges after 546 iterations. The policy
reaches the goal 53.70% of the time!

The "Careful" policy:

Results of policy evolution
The "Go get it" policy:

(3) By the way, I calculate these values empirically by running the policies
100 times. Therefore, these values are noisy, but you get the idea.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

80

19Planning optimal sequences of actions

Policy Improvement: Using ratings to get better
The motivation is clear now. You have a way of evaluating any policy... This already gives
you some freedom: you can evaluate many policies and rank them by the state-value
function of the START state. After all, that number tells you the expected cumulative reward
the policy in question will obtain if you run many episodes, cool right?

No! Makes no sense. Why would you randomly generate a bunch of policies and evaluate
them all? First, that is a total waste of computing resources, but more importantly, it gives
you no guarantee that you're finding better and better policies. There has to be a better way.

The key to unlocking this problem is the action-value function, the Q-function. Using the
V-function and the MDP, you get an estimate of the Q-function. The Q-function will give
you a glimpse of the values of all actions for all states, and these values, in turn, can hint how
to improve policies. Take a look at the Q-function of the "Careful" policy and ways we can
improve this policy:

Notice how if we act greedily with respect to the Q-function of the policy, we obtain a new
policy: "Careful+". Is this policy any better? Well, policy evaluation can tell us! Let's find out!

START

GOAL

0.40

0.39
0.38

0.41 0.40 0.26 0.24

0.25

0.29

0.34 0.34

0.48

0.27

0.42 0.28

0.29

0.45

0.29 0.30

0.31

0.35

0.28 0.27

0.28

0.12

0.26 0.26

0.14

0.2

0.43 0.27

0.39

0.39

0.35 0.59

0.43

0.67

0.57 0.71

0.76

0.34

0.23 0.23

0.23

G

START

G

START

How can the Q-function help us improve policies ?

(1) This is the
"Careful" policy.

(2) Action-value function
of the "Careful" policy. (3) The greedy policy over

the "Careful" Q-function.

(4) I'm calling this
new policy "Careful+"

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

81

20 Chapter 3 I balancing immediate and long-term goals

The new policy is better than the original policy. This is great! So, we used the state-value
function of the original policy and the MDP to calculate its action-value function. Then,
acting greedily with respect to the action-value function gave us an improved policy. This is
what the policy improvement algorithm does: it calculates an action-value function using
the state-value function and the MDP, and it returns a greedy policy with respect to the
action-value function of the original policy. Let that sink in, it's pretty important.

Show me the math

The policy-improvement equation

(1) To improve a policy, we use a state-value function and an MDP to get a one-step lookahead
and determine which of the actions lead to the highest value. This is policy improvement equation.

(2) We obtain a new policy π' by
taking the highest-valued action.

(3) How, do we get the highest-
valued action?

(4) By calculating, for each action, the weighted sum
of all rewards and values of all possible next states.

(5) Notice that this is simply using the action with the highest-valued Q-function.

START

0.5420 0.4988

0.6431

0.4707

0.5585 0.3583

0.5918 0.6152

0.7417 0.8628

0.4569

G

START

+0.1341 +0.1234

+0.1591

+0.1164

+0.1381 +0.2414

+0.1464 +0.1824

+0.1533 +0.1521

+0.1130

G

State-value function of the "careful" policy

(2) This is the
difference between
"Careful+" and
"Careful" V-functions.
What an improvement!

(1) After 574 iterations policy
evaluation converges to this state-
value function for the "Careful+" policy.

(3) This new policy, "Careful+" can
reach the goal state 73.20% of
the time. An improvement!(4) Also empirically.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

82

21Planning optimal sequences of actions

This is how the policy improvement algorithm looks like in Python:

The natural next question is:

Is there a better policy than this one? Like, can we do any better than "Careful+"?

Can we evaluate the "Careful+" policy, and then improve it again?

Maybe! But, there is only a way to find out... Let's give it a try!

I Speak python

The policy-improvement algorithm

def policy_improvement(V, P, gamma=1.0):

 Q = np.zeros((len(P), len(P[0])), dtype=np.float64)

 for s in range(len(P)):
 for a in range(len(P[s])):
 for prob, next_state, reward, done in P[s][a]:

 Q[s][a] += prob * (reward + gamma * \
 V[next_state] * (not done))

 new_pi = lambda s: {s:a for s, a in enumerate(
 np.argmax(Q, axis=1))}[s]

 return new_pi

(1) Very simple algorithm. It takes the state-value function of the policy
you would like to improve 'V', and the MDP 'P' (and gamma -- optionally.).

(2) Then, initialize the Q-function to zero (technically you
can initialize these randomly, but let's keep things simple.

(3) Then loop through the states,
actions and transitions.

(5) We use those values to calculate the Q-function.

(6) Finally, we obtain a new, greedy policy simply by taking the argmax of the
Q-function of the original policy. And there, you have a likely improved policy.

(4) Flag indicating whether
`next_state` is terminal or not.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

83

22 Chapter 3 I balancing immediate and long-term goals

I ran policy evaluation on the "Careful+" policy, and then policy improvement. The
Q-functions of the "Careful" and "Careful+" are different, but the greedy policies over the
Q-functions are identical... In other words, there is no improvement this time.

There is no improvement because the "Careful+" policy is an optimal policy of the FL
environment (with gamma 0.99). We only needed one improvement over the "Careful"
policy because this policy was good, to begin with.

Now, even if we start with an adversarial policy designed to perform poorly, alternating over
policy evaluation and improvement would still end up with an optimal policy. Want proof?
Let's do it! Let's make up an adversarial policy for FL environment and see what happens.

START

GOAL

Adversarial policy for the FL environment

(1) This Policy is so mean, that the
agent has 0% chance of reaching
the GOAL. Look at the top row!

(2) It has a state-value function
of 0 for all states!!! Mean!

START

GOAL

0.53

0.52
0.50

0.54 0.53 0.34 0.32

0.33

0.40

0.44 0.45

0.64

0.36

0.56 0.37

0.38

0.59

0.38 0.40

0.41

0.47

0.44 0.42

0.43

0.16

0.36 0.36

0.20

0.33

0.62 0.40

0.50

0.50

0.46 0.74

0.53

0.78

0.73 0.82

0.86

0.46

0.31 0.30

0.31

G

START

G

START

Can we improve over the "Careful+" policy ?

(1) This is the
"Careful+" policy.

(2) Action-value function
of the "Careful+" policy.

(3) Greedy policy over
the "Careful+" Q-function.

(4) Notice, the greedy policy is
the same as the original policy.
There is no improvement now.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

84

23Planning optimal sequences of actions

Policy Iteration: Improving upon improved behaviors
The plan with this adversarial policy is to alternate between policy evaluation and policy
improvement until the policy coming out of the policy improvement phase no longer yields
a different policy. The fact is, if instead of starting with an adversarial policy, we start with a
randomly generated policy, this is what an algorithm called policy iteration does.

Great! But, let's first try it starting with the adversarial policy and see what happens.

I Speak python

The policy-iteration algorithm

def policy_iteration(P, gamma=1.0, theta=1e-10):

 random_actions = np.random.choice(
 tuple(P[0].keys()), len(P))
 pi = lambda s: {s:a for s, a in enumerate(
 random_actions)}[s]

 while True:

 old_pi = {s:pi(s) for s in range(len(P))}

 V = policy_evaluation(pi, P, gamma, theta)

 pi = policy_improvement(V, P, gamma)

 if old_pi == {s:pi(s) for s in range(len(P))}:
 break

 return V, pi

(1) Policy iteration is very simple and it just needs the MDP (including gamma).

(2) The first step is to create a randomly generated policy... Anything here should do.
I create a list of random actions, and then map them to states.

(3) Here I'm keeping a copy of the policy before we modify it.

(4) Get the state-value function of the policy.

(5) Get an improved policy.

(6) The check if the new policy is any different.

(7) If it is different, we do it all over again.
(8) If it is not, we break out of the loop and return an optimal
policy and the optimal state-value function.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

85

24 Chapter 3 I balancing immediate and long-term goals

G

S

G

S

G

S

G

S
0.00

0.00

0.00 0.00

0.00

0.00 0.00 0.00

0.00 0.00

0.00

G

S
0.00

0.00

0.00 0.04

0.07

0.00 0.00 0.19

0.00 0.50

0.02

G

S
0.00

0.00

0.05 0.16

0.17

0.00 0.22 0.35

0.33 0.67

0.15

G

S

G

S
0.12

0.15

0.09 0.19

0.20

0.19 0.38 0.43

0.53 0.71

0.19

Improving upon the adversarial policy 1/2

Adversarial policy

Policy
evaluation

Policy improvement

0.00% success

13.60% success

Policy
evaluation

Policy improvement

Policy
evaluation

Policy improvement

0.00% success

0.00% success

Policy
evaluation

Policy improvement

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

86

25Planning optimal sequences of actions

G

S

G

S

G

S
0.52

0.54

0.38 0.26

0.28

0.57 0.62 0.58

0.72 0.85

0.25

G

S

G

S
0.53

0.55

0.45 0.38

0.32

0.58 0.63 0.60

0.73 0.86

0.37

G

S
0.54

0.56

0.50 0.47

0.36

0.59 0.64 0.62

0.74 0.86

0.46

G

S

Improving upon the adversarial policy 2/2

69.20% success

72.00% success

73.20% success

Optimal policy

Policy
evaluation

Policy improvement

Policy
evaluation

Policy improvement

Policy
evaluation

Policy improvement

73.20% success

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

87

26 Chapter 3 I balancing immediate and long-term goals

And as mentioned, alternating policy evaluating and policy improvement yields an optimal
policy and state-value function regardless of the policy you start with. Now a few points I'd
like to make about this sentence.

Notice how I use "an optimal policy," but also use "the optimal state-value function." This is
not a coincidence or a poor choice of words, this is, in fact, a property that I'd to highlight
again. An MDP can have more than one optimal policy, but it can only have a single optimal
state-value function. It's not too hard to wrap your head around that.

State-value functions are a collection of numbers. Numbers can have infinitesimal accuracy,
they are numbers. So, there will be only one optimal state-value function (the collection
with the highest numbers for all states). However, a state-value function may have actions
that are equally valued for a given state, this includes the optimal state-value function. In
this case, there could be multiple optimal policies, each optimal policy selecting a different,
but equally valued action. Take a look, the FL environment is a great example of this.

BTW, not shown here, but all actions in a terminal state have the same value, zero, and
therefore a similar issue that in state 6.

A final note, I want to highlight that policy iteration is guaranteed to converge to the exact
optimal policy, the mathematical proof shows it will not get stuck in local optima. However,
as a practical consideration, there is one thing to be careful about. If the action-value
function has a tie (for example RIGHT/LEFT in state 6), we must make sure not to break
ties randomly. Otherwise, policy improvement could keep returning different policies, even
without any real improvement. With that out of the way, let's now look at another essential
algorithm for finding optimal state-value functions and optimal policies.

START

GOAL

0.53

0.52
0.50

0.54 0.53 0.34 0.32

0.33

0.40

0.44 0.45

0.64

0.36

0.56 0.37

0.38

0.59

0.38 0.40

0.41

0.47

0.44 0.42

0.43

0.16

0.36 0.36

0.20

0.33

0.62 0.40

0.50

0.50

0.46 0.74

0.53

0.78

0.73 0.82

0.86

0.46

0.31 0.30

0.31

G

START

G

START

The FL environment has multiple optimal policies
(1) Optimal action-
value function.

(3) But, look at state 6.

(4) So, there is a policy that
goes RIGHT in state 6 and
it's as good, and also optimal!

(2) A policy going LEFT
in state 6 is optimal!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

88

27Planning optimal sequences of actions

Value Iteration: Improving behaviors early
You probably notice the way policy evaluation works: values propagate consistently on each
iteration, but slowly. Take a look.

The image shows a single state-space sweep of policy evaluation followed by an estimation
of the Q-function. We do this by using, on each iteration, the truncated estimate of the
V-function and the MDP. By doing so, we can more easily see that even after the first
iteration, a greedy policy over the early Q-function estimates would be an improvement:
Look at the Q-values for state 5 in the first iteration; changing the action to point towards
the GOAL state is obviously already better.

In other words, even if we truncated policy evaluation after a single iteration, we would still
be able to improve upon the initial policy by taking the greedy policy of the Q-function
estimation after a single state-space sweep of policy evaluation. This algorithm is another
fundamental algorithm in RL: it is called value iteration (VI).

0 1 2 4 5 63
H G

START

0.0 0.0 0.17 0.56
0 1 2 4 5 63

H G
START

0.0 0.01 0.18 0.58
0 1 2 4 5 63

H G
START

0.01 0.01 0.03 0.04 0.24 0.63
0 1 2 4 5 63

H G
START

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Policy evaluation on the "Always
LEFT" policy on the SWF environment

(1) Calculating the Q-function
after each state sweep.

(2) See how
even after
the first
iteration the
greedy policy
over the
Q-function
was already
a different
and better
policy!

104th Iteration

2nd Iteration

1st Iteration

...

(3) The fully-converged state-value
function for the "Always LEFT" policy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

89

28 Chapter 3 I balancing immediate and long-term goals

VI can be thought of "greedily greedifying policies," because we calculate the greedy policy
as soon as we can, greedily. VI doesn't wait until we have an accurate estimate of the policy
before it improves it, but instead, VI truncates the policy evaluation phase after a single state
sweep. Take a look at what I mean by "greedily greedifying policies."

H G
START

H G
START

H G
START

H G
START

H G
START

0.0 0.0 0.17 0.5H G
START

0.0 0.0 0.0 0.0 0.0 0.0

0.08 0.25 0.33 0.67H G
START

0.04 0.13 0.20 0.42 0.51 0.76H G
START

0.02 0.06 0.11 0.25 0.33 0.54 0.63 0.82H G
START

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0

0.37 0.67 0.79 0.89 0.93 0.96 0.98 0.99 0.99 1.00

Greedily greedifying the "Always
LEFT" policy of the SFW environment

Truncated
policy
evaluation

(1) This is the optimal action-value function and optimal policy

1st Iteration

2nd Iteration

3rd Iteration

4th Iteration

Policy
improvement

Truncated
policy
evaluation

Truncated
policy
evaluation

Truncated
policy
evaluation

Policy
improvement

Policy
improvement

122nd Iteration

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

90

29Planning optimal sequences of actions

If we start with a randomly generated policy, instead of this adversarial policy "Always
LEFT" for the SWF environment, VI would still converge to the optimal state-value
function. VI is a straightforward algorithm that can be expressed in a single equation.

Notice that in practice, in VI, we don't have to deal with policies at all. VI doesn't have any
separate evaluation phase that runs to convergence. While the goal of VI is the same as the
goal of PI: to find the optimal policy for a given MDP, VI happens to do this through the
value functions, thus the name value iteration.

So, again, we only have to keep track of a V-function and a Q-function (depending on
implementation). Remember that to get the greedy policy over a Q-function, we simply
take the arguments of the maxima (argmax) over the actions of that Q-function. So, instead
of improving the policy by taking the argmax to get a better policy and then evaluating this
improved policy to obtain a value function again, we directly calculate the maximum (max,
instead of argmax) value across the actions to be used for the next sweep over the states.

Only at the end of the VI algorithm, after the Q-function converges to the optimal values,
we extract the optimal policy by taking the argmax over the actions of the Q-function, just
as before. You'll see it more clearly in the code snippet on the next page.

One important thing to highlight is that while VI and PI are two different algorithms, in a
more general view, they are two instances of Generalized Policy Iteration (GPI). GPI is a
general idea in RL in which policies are improved using their value function estimates and
value function estimates are improved towards the actual value function for the current
policy. Whether you wait for the perfect estimates or not is just the details.

Show me the math

The value-iteration equation

(1) We can merge a truncated policy evaluation step
and a policy improvement into the same equation.

(2) We calculate
the value of each
action.

(7) Then, we take
the max over the
values of actions.

(5) Multiply by the
probability of each
possible transition.

(3) Using the
sum of the
weighted sum...

(6) And add for all
transitions in the action.

(4) Of the reward
and the discounted
estimated value of the
next state.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

91

30 Chapter 3 I balancing immediate and long-term goals

I Speak python

The value-iteration algorithm

def value_iteration(P, gamma=1.0, theta=1e-10):

 V = np.zeros(len(P), dtype=np.float64)

 while True:

 Q = np.zeros((len(P), len(P[0])), dtype=np.float64)

 for s in range(len(P)):
 for a in range(len(P[s])):
 for prob, next_state, reward, done in P[s][a]:

 Q[s][a] += prob * (reward + gamma * \
 V[next_state] * (not done))

 if np.max(np.abs(V - np.max(Q, axis=1))) < theta:
 break

 V = np.max(Q, axis=1)

 pi = lambda s: {s:a for s, a in enumerate(
 np.argmax(Q, axis=1))}[s]
 return V, pi

(1) So just like policy iteration, value iteration is a method for obtaining
optimal policies. For this, we just need an MDP (including gamma).
Theta is just the convergence criteria. 1e-10 is sufficiently accurate...

(2) First thing is to initialize a state-value function.
Know that a V-function with random numbers should work just fine.

(3) We get in this loop and initialize a Q-function to zero.
(4) Notice this one over here has to be zero. Otherwise the estimate would be incorrect.

(5) Then, the for every transition of every action in every state...

(6) We calculate the action-value function...

(7) Notice, using V, which is the old "truncated" estimate.

(8) After each sweep over the state space, we make sure the state-value function
keeps changing. Otherwise, we found the optimal V-function and should break out.

(9) Thanks to this short line, we don't need a separate policy improvement phase. It is
not a directly replacement, but instead a combination of improvement and evaluation.

(10) Only at the end, we extract the optimal policy and
return it along with the optimal state-value function.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

92

31Summary

Summary
The objective of a reinforcement learning agent is to maximize the expected return, which
is the total reward over multiple episodes. For this, agents must use policies, which can be
thought of as universal plans. Policies prescribe actions for states. They can be deterministic,
meaning they return single actions, or stochastic, they return probability distributions. To
obtain policies, agents usually keep track of several summary values. The main ones are
state-value, action-value, and action-advantage functions.

State-value functions summarize the expected return from a state. They indicate how much
reward the agent will obtain from a state until the end of an episode in expectation. Action-
value function summarize the expected return from a state-action pair. This type of value
function tells the expected reward to go after an agent selects a specific action in a given
state. Action-value functions allow the agent to compare across actions and therefore solve
the control problem. Action-advantage functions show the agent how much better than the
default it can do if it were to opt for a specific state-action pair. All of these value functions
are mapped to specific policies, perhaps an optimal policy. This means that they depend on
following what the policies prescribe until the end of the episode.

Policy evaluation is a method for estimating a value function from a policy and an MDP.
Policy improvement is a method for extracting a greedy policy from a value function and
an MDP. Policy iteration consists of alternating between policy evaluation and policy
improvement to obtain an optimal policy from an MDP. The policy evaluation phase may
run for several iterations before it accurately estimates the value function for the given
policy. In policy iteration, we wait until policy evaluation finds this accurate estimate. An
alternative method, called value iteration, truncates the policy evaluation phase and exits it
entering the policy improvement phase early.

The more general view of these methods is generalized policy iteration, which describes the
interaction of two processes to optimize policies: one moves value-function estimates closer
to the real value function of the current policy, another improves the current policy using
its value-function estimates, getting progressively better and better policies as this cycle
continues.

By now you:

• Know the objective of a reinforcement learning agent and the different statistics it may
hold at any given time.

• Understand methods for estimating value functions from policies, and methods for
improving policies from value functions.

• Can find optimal policies in sequential decision-making problems modeled by MDPs.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

93

balancing the gathering
and utilization of information 4

In this chapter

• You learn about the challenges of learning from
evaluative feedback and how to properly balance the
gathering and utilization of information.

• You develop exploration strategies that accumulate
low levels of regret in problems with unknown
transition function and reward signals.

• You write code with trial-and-error learning agents
that learn to optimize their behavior through their own
experiences in many-options one-choice environments
known as multi-armed bandits.

Our ultimate objective is to make programs that
learn from their experience as effectively as
humans do.

— John McCarthy
Founder of the field of Artificial Intelligence
Inventor of the Lisp programming Language

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

94

2 Chapter 4 I balancing the gathering and utilization of information

No matter how small and unimportant a decision may seem, every decision you make is a
tradeoff between information gathering and information exploitation. For example, when
you go to your favorite restaurant, should you order your favorite dish, yet again, or should
you request that dish you have been meaning to try? If a Silicon Valley startup offers you a
job, should you make a career move, or should you stay put in your current role?

These kinds of questions illustrate the exploration-exploitation dilemma and are at the core
of the reinforcement learning problem. It boils down to deciding when to acquire knowledge
and when to capitalize on knowledge previously learned. It is a challenge to know whether the
good we already have is good enough. When do we settle? When do we go for more? What
are your thoughts, is a bird in the hand worth two in the bush or not?

The main issue is that rewarding moments in life are relative; you need to be able to
compare events to see a clear picture of their value. For example, I bet you felt amazed when
you got offered your first job. You perhaps even thought that was the best thing that ever
happened to you. But, then life continues, and you experience things that appear even more
rewarding. Maybe, when you get a promotion, a raise, or get married, who knows!

And that's the core issue: even if you rank moments, you have experienced so far by
"how amazing" the felt. You won't be able to know what's the most amazing moment you
could experience in your life— life is uncertain; you don't have life's transition function
and reward signal, so you must keep on exploring. In this chapter, you learn about how
important it is for your agent to explore when interacting with uncertain environments,
problems in which the MDP is not available for planning.

In the previous chapter, you learned about the challenges of learning from sequential
feedback and how to properly balance immediate and long-term goals. In this chapter, we
examine the challenges of learning from evaluative feedback, and we do so in environments
that are not sequential, but one shot instead: Multi-Armed Bandits (MAB).

MABs isolate and expose the challenges of learning from evaluative feedback. We'll dive into
many different techniques for balancing exploration and exploitation in these particular
type of environments: single-state environments with multiple options, but a single choice.
Agents will operate under uncertainty, that is, they will not have access to the MDP.
However, they will do so in one-shot environments, without the sequential component.

Remember, in DRL, agents learn from feedback that is simultaneously sequential (as
opposed to one shot), evaluative (as opposed to supervised) and sampled (as opposed to
exhaustive). In this chapter, I'm eliminating the complexity that comes along when learning
from sequential and sampled feedback, and we'll study the intricacies of evaluative feedback
in isolation. Let's get to it.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

95

3The challenge of interpreting evaluative feedback

The challenge of interpreting evaluative feedback
In the last chapter when we solved the FL environment, we knew beforehand how the
environment would react to any of our actions. Knowing the exact transition function and
reward signal of an environment allows us to compute an optimal policy using planning
algorithms, such as PI and VI, without having to interact with the environment at all.

But, knowing an MDP in advance oversimplifies things, perhaps unrealistically. We cannot
always assume we will know with precision how an environment will react to our actions—
that's simply not how the world works. We could opt for learning such things, as you'll learn
in later chapters, but the bottom line is we need to let our agents interact and experience the
environment by themselves, learning this way to behave optimally, solely from their own
experience. This is what is called trial-and-error learning.

In RL, when the agent learns to behave from interaction with the environment, the
environment asks the agent the same question over and over: what do you want to do now?
This question presents a fundamental challenge to a decision-making agent. What action
should it do now? Should the agent exploit its current knowledge and select the action with
the highest current estimate? Or should it explore actions that it hasn't tried enough? But
many additional questions follow: When do you know your estimates are good enough?
How do you know you have tried an apparently bad action enough? And so on.

This is the key intuition: Exploration builds the knowledge that allows for effective
exploitation, and maximum exploitation is the ultimate goal of any decision maker.

Exploration Exploitation

You will learn more effective ways for dealing
with the exploration-exploitation tradeoff

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

96

4 Chapter 4 I balancing the gathering and utilization of information

Bandits: Single state decision problems
Multi-armed bandits (MAB) are a special case of a RL problem in which the size of the
state space and horizon equal one. MAB have multiple actions, a single state, and a greedy
horizon; you can also think of it as a "many-options single-choice" environment. The name
comes from slot machines (bandits) with multiple arms to choose from (more realistically:
multiple slot machines to choose from).

There are many commercial applications for
the methods coming out of MAB research:
Advertising companies need to find the right way
for balancing showing you an ad they predict
you are likely to click on and showing you a new
ad with the potential of being even a better fit
for you. Websites that are raising money, such as
charities or political campaigns, need to balance
between showing the layout that has led to most
contributions and new designs that haven't been
sufficiently utilized but still have potential for even better outcomes. Likewise, e-commerce
websites need to balance recommending you best-sellers products and promising new
products. In medical trials, there is a need to learn the effects of medicines in patients
as quickly as possible. Many other problems benefit from the study of the exploration-
exploitation tradeoff: oil drilling, game playing, search engines, just to name a few. Our
reason for studying MAB is not so much a direct application to the real world, but instead
how to integrate a suitable method for balancing exploration and exploitation in RL agents.

Multi-armed bandit problem

(1) A 2-armed bandit is a decision-making
problem with two choices. You need to try
them both sufficient to correctly asses
each option. So, how do you best hand the
exploration-exploitation tradeoff?

Show Me the Math

Multi-armed bandit

(1) MABs are MDPs with a single non-terminal state, and a single time step per episode.

(2) The Q-function of action a is
the expected reward
given a was sampled.

(3) The best we can do in a MAB is represented
by the optimal V-function, or selecting the
action that maximizes the Q-function.

(4) The optimal action, is the action
that maximizes the optimal Q-function,
and optimal V-function (only 1 state).

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

97

5The challenge of interpreting evaluative feedback

Regret: The cost of exploration
The goal in MAB is very similar to that of RL. In RL, the agent needs to maximize the
expected cumulative discounted reward (maximize the expected return). That is, to get as
much reward (maximize) through the course of an episode (cumulative) as soon as possible
(if discounted – later rewards are discounted more) despite the environment's stochasticity
(expected). This makes sense when the environment has multiple states and the agent
interacts with it for multiple time steps per episode. But in MAB, while there are multiple
episodes, we only have a single chance of selecting an action in each episode.

Therefore, we can exclude the words that do not apply to the MAB case from the RL
goal: we remove "cumulative" because there is only a single time step per episode, and
"discounted" because there are no next states to account for. This means, in MAB, the goal is
for the agent to simply maximize the expected reward. Notice that the word "expected" stays
there because there is stochasticity in the environment; in fact, that's what MAB agents need
to learn: the underlying probability distribution of the reward signal.

However, if we leave the goal to just that: "maximize the expected reward," it wouldn't be
straightforward to compare agents. For instance, let's say an agent learns to maximize the
expected reward by selecting random actions in all but the final episode. While a much
more sample-efficient agent uses some clever strategy to determine the optimal action
quickly. If we only compare the final-episode performance of these agents, which is not
uncommon to see in RL, these two agents would have equally good performance, which is
obviously not what we want.

A robust way to capture a more complete goal is for the agent to maximize the per-episode
expected reward still while minimizing the total expected reward loss of rewards across all
episodes. To calculate this value, called total regret, we simply add up all of the per-episode
difference of the true expected reward of the optimal action and the true expected reward
of the selected action. Obviously, the lower the total regret, the better. Notice I use the word
true here; to calculate the regret, you must have access to the MDP. That doesn't mean your
agent needs the MDP, only you need it to compare agents' exploration strategy efficiency.

Show Me the Math

Total regret equation

(2) The difference between
the optimal value of the
MAB, and the true value of
the action selected.

(1) To calculate the
total regret T, you
need to add up for all
episodes.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

98

6 Chapter 4 I balancing the gathering and utilization of information

Approaches to solving MAB environments
There are three major kinds of approaches to tackling MABs. The most popular and most
straightforward approach involves exploring by injecting randomness in our action selection
process; that is, our agent will exploit most of the time, and sometimes it'll explore using
randomness. This family of approaches is called random exploration strategies. A basic
example of this family would be a strategy that selects the greedy action most of the time,
and with an epsilon threshold, it chooses uniformly at random. Now, multiple questions
arise from this strategy; for instance, should we keep this epsilon value constant throughout
the episodes? Should we maximize exploration early on? Should we periodically increase the
epsilon value to ensure the agent always explores?

Another approach to dealing with the exploration-exploitation dilemma is to be optimistic.
Yep, your mom was right. The family of optimistic exploration strategies is a more
systematic approach that quantifies the uncertainty in the decision-making problem and
increases the preference for states with the highest uncertainty. The bottom line is that being
optimistic will naturally drive you toward uncertain states because you will assume that
states you haven't experienced yet are the best they can be. This assumption will help you
explore, and as you explore and come face to face with reality, your estimates will get lower
and lower as they approach their true values.

The third approach to dealing with the exploration-exploitation dilemma is the family
of information state-space exploration strategies. These strategies will model the
information state of the agent as part of the environment. Encoding the uncertainty as part
of the state space means that an environment state will be seen differently when unexplored
or explored. Encoding the uncertainty as part of the environment is a sound approach but
can also considerably increase the size of the state space and, therefore, its complexity.

In this chapter, we will explore a few instances of the first two approaches. We will do this in
a handful of different MAB environments with different properties, pros and cons, and this
will allow us to compare the strategies in depth.

It's important to notice that the estimation of the Q-function in MAB environments is
pretty straightforward and something all strategies will have in common. Because MABs are
one-step environments, to estimate the Q-function we just need to calculate the per-action
average reward. In other words, the estimate of an action a is equal to the total reward
obtained when selecting action a, divided by the number of times action a has been selected.

This is nothing special, but it is good to highlight that the differences between the strategies
we will evaluate in the next sections are only in how they use these estimates to select
actions, not on how they estimate the Q-function.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

99

7The challenge of interpreting evaluative feedback

ConCrete exaMple

The Slippery Bandit Walk (SBW) environment is back!

The first MAB environment that we will consider is one we have played with before: the
Bandit Slippery Walk (BSW).

Remember, BSW is a grid-world with a single row, thus, a walk. But a special feature of this
walk is that the agent starts at the middle and any action sends the agent to a terminal state
immediately. So, because it is a one-time-step, it is a Bandit environment.

BSW is a 2-armed bandit, and it can appear to the agent as a 2-armed Bernoulli bandit.
Bernoulli bandits pay a reward of +1 with some probability p and a reward of 0 with
probability q = 1 - p. In other words, the reward signal is a Bernoulli distribution.

In the BSW, the two terminal states pay either 0 or +1. If you do the math, you'll notice that
probability of a +1 reward when selecting action 0 is 0.2, and when selecting action 1 is 0.8.
But your agent does not know this and we won't share that info, the question we are trying
to ask is how quickly can your agent figure out the optimal action. How much total regret
will agents accumulate while learning to maximize expected rewards? Let's find out.

10.8
0.2

0.8 +1

0.2

0

1 +1
0 2

Bandit slippery walk graph
(1) Remember: a hole, starting, and goal state

H S G
0 21

The bandit slippery walk environment

(1) The leftmost
state is a hole, and
provides a 0 reward.

(2) The rightmost
state is the goal, and
provides a +1 reward.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

100

8 Chapter 4 I balancing the gathering and utilization of information

Greedy: Always exploit
The first strategy I want you to consider is not really a "strategy" but a baseline, instead. I
already mentioned we need to have some exploration in our algorithms—otherwise, we
risk convergence to a suboptimal action. But, for the sake of comparison, let's consider an
algorithm with no exploration at all.

This baseline is called greedy strategy, or pure exploitation strategy. The greedy action-
selection approach consists of always selecting the action with the highest estimated value.
While there is a chance for the very first action, we choose to be the best overall action, the
likelihood of this lucky coincidence decreases as the number of available actions increases.

As you might have expected, the greedy strategy gets stuck with the very first action
immediately. If the q-table is initialized to zero, and there are no negative rewards in the
environment, the greedy strategy will always get stuck with the first action.

a = 0 a = 1

0.5 0

a = 0 a = 1

1 0

a = 0 a = 1

0 0

10.8

0.2
0.8 +1

+10.2 1

0
0 2

10.8

0.2
0.8 +1

+10.2 1

0
0 2

Pure exploitation in the BSW

(1) The action is index of the
element with highest value (first
element when there are ties).

(2) Let's pretend the environment
goes through this transition and the
agent gets the +1.

(3) Agent selects
action 0 again.

(4) Environment goes through this
transition as gives a 0 reward.

(5) As you can see the
agent is already stuck
with action 0.

Q(a) argmax(Q)= 0

Environment

1st iteration

Agent

Reward = +1

Q(a) argmax(Q)= 0

Environment

2nd iteration

Agent

Reward = 0

Q(a) argmax(Q)= 0

3rd iteration

Agent

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

101

9The challenge of interpreting evaluative feedback

I want you to notice the relationship between a greedy strategy and time. If your agent only
has one episode left, the best thing is to act greedily. If you know you only have one day to
live, you will do things you enjoy the most. To some extent, this is what a greedy strategy
does: do the best you can do with your current view of life assuming limited time left.

And, this is a reasonable thing to do when you have limited time left, however, if you
don't, then you appear to be short-sighted because you are not able to tradeoff immediate
satisfaction or reward for gaining of information that'd allow you better long-term results.

I Speak python

Pure exploitation strategy

def pure_exploitation(env, n_episodes=5000):

 Q = np.zeros((env.action_space.n))
 N = np.zeros((env.action_space.n))

 Qe = np.empty((n_episodes, env.action_space.n))
 returns = np.empty(n_episodes)
 actions = np.empty(n_episodes, dtype=np.int)

 name = 'Pure exploitation'
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name, leave=False):
 action = np.argmax(Q)

 _, reward, _, _ = env.step(action)
 N[action] += 1
 Q[action] = Q[action] + (reward - Q[action])/N[action]

 Qe[e] = Q
 returns[e] = reward
 actions[e] = action
 return name, returns, Qe, actions

(1) Almost all strategies have the same bookkeeping code for estimating Q-values.
(2) We initialize the Q-function and the count array to all zeros.

(3) These other variables are for calculating statistics and not necessary.

(4) Here we enter the main loop and interact with the environment.

(5) Easy enough, we select the action that maximizes our estimated Q values.
(6) Then pass it to the environment and received a new reward.

(7) Finally, we update the counts and the Q table.
(8) Then we update the statistics and start a
new episode.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

102

10 Chapter 4 I balancing the gathering and utilization of information

Random: Always explore
Let's also consider the opposite side of the spectrum: a strategy with exploration but no
exploitation at all. This is another fundamental baseline which we can call a random
strategy or a pure exploration strategy. This is simply an approach to action selection with
no exploitation at all. The sole goal of the agent is to gain information.

Do you know people that when starting a new project, spend a lot of time "researching"
without jumping into the water? Me too! They can take weeks just reading papers.
Remember, while exploration is essential, it must be balanced well to get maximum gains.

A random strategy is obviously not a good strategy either and will also give you suboptimal
results. Like exploiting all the time, you do not want to explore all the time, either. We need
algorithms that can do both exploration and exploitation; gaining and using information.

a = 0 a = 1

0 0.5

a = 0 a = 1

0 0

a = 0 a = 1

0 0

10.8

0.2
0.8 +1

+10.2 1

0
0 2

10.8

0.2
0.8 +1

+10.2 1

0
0 2

Pure exploration in the BSW

(1) Agent selects action 1,
uniformly at random.

(2) Consider this transition.

(3) Agent selects action 1,
again.

(5) Now agent
select action 0.

Q(a) random_action = 1

Environment

1st iteration

Agent

Reward = 0

Q(a) random_action = 1

Environment

2nd iteration

Agent

Reward = +1

Q(a) random_action = 0

3rd iteration

Agent

(4) Consider this transition.

(7) BTW, the estimates will converge to
the optimal values with enough episodes.

(6) Agent will continue to
select actions randomly
with total disregard for
the estimates!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

103

11The challenge of interpreting evaluative feedback

I left a note in the code snippet, and I want to restate and expand on it. The pure exploration
strategy I presented is really just one way to explore, that is, random exploration. But you
can think of many other ways. Perhaps, based on counts, that is, how many times you try
one action versus the others, or maybe based on the variance of the reward obtained.

Let that sink for a second: while there is only a single way to exploit, there are multiple ways
to explore. Exploiting is nothing but doing what you think is best, it's pretty straightforward.
You think A is best, you do A. Exploring, on the other hand, is much more complex. It's
obvious you need to collect information, but how is a different question. You could try
gathering information to support your current beliefs. You could gather information to
attempt proving yourself wrong. You could explore based on confidence, or based on
uncertainty, the list just goes on.

The bottom line is very intuitive, exploitation is your goal, and exploration gives you
information about obtaining your goal. You must gather information to reach your goals,
that is clear. But, in addition to that, there are several ways to collect information, and that is
where the challenge lies.

I Speak python

Pure exploration strategy

def pure_exploration(env, n_episodes=5000):

 <...>

 name = 'Pure exploration'
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):

 action = np.random.randint(len(Q))

 <...>
 return name, returns, Qe, actions

(1) The pure exploration baseline boilerplate is the same as the before.
So I removed it for brevity.

(2) This is how our pure exploration baseline acts...
Basically, it always selects an action randomly.

(4) It's somewhat unfair to call this a "pure exploration," it should be called
something more along the lines of "random strategy" as there are other ways
to explore that are not necessarily acting randomly. Still, let's move along.

(3) I removed the estimation and
statistics bookkeeping portions for brevity.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

104

12 Chapter 4 I balancing the gathering and utilization of information

Epsilon-Greedy: Almost always greedy and sometimes random
Let's now combine the two baselines just introduced, pure exploitation and pure
exploration, so that the agent can exploit, but also collect information to make informed
decisions. The hybrid strategy consists of acting most of the time greedily and exploring
randomly every so often.

This strategy, referred to as the epsilon-greedy strategy, works surprisingly well. If you
select the action you think is best almost all the time, you will get solid results because you
are still selecting the action believed to be best, but you are also selecting actions you haven't
tried sufficiently yet. This way, your action-value function has an opportunity to converge to
its true value; this will, in turn, help you obtain more rewards in the long term.

a = 0 a = 1

1 1

a = 0 a = 1

1 0

a = 0 a = 1

0 0

10.8

0.2
0.8 +1

+10.2 1

0
0 2

10.8

0.2
0.8 +1

+10.2 1

0
0 2

Epsilon-greedy in the BSW

(1) The agent selects
action 0 greedily.

(2) The environment goes
through this transition
and gives a +1 reward.

(3) The agent selects action
1, this time randomly.

(5) The agent
receives a +1
reward.

Q(a) argmax(Q) = 0

Environment

1st iteration

Agent

Reward = +1

Q(a) random_action = 1

Environment

2nd iteration

Agent

Reward = +1

Q(a) argmax(Q) = 0

3rd iteration

Agent

(4) Consider
this transition.

(6) Suppose the
agent now selects
action 0, and likely
starts getting 0s.

(7) Combining exploration
and exploitation ensures
the agent doesn't get
stuck in bad estimates.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

105

13The challenge of interpreting evaluative feedback

The epsilon-greedy strategy is a random exploration strategy because we use randomness
to select the action. First, we use randomness to choose whether to exploit or explore, but
also we use randomness to select an exploratory action. There are other random-exploration
strategies, such as SoftMax (introduced later in this chapter), that do not have that first
random decision point.

I want to you to notice that if epsilon is 0.5 and you have two actions, you can't say your
agent will explore 50% of the time, if by "explore" you mean selecting the non-greedy action.
Notice that the "exploration step" in epsilon greedy includes the greedy action. So, in reality,
your agent will explore a bit less than the epsilon value depending on the number of actions.

I Speak python

Epsilon-greedy strategy

def epsilon_greedy(env, epsilon=0.01, n_episodes=5000):

 <...>
 name = 'E-greedy {}'.format(epsilon)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):

 if np.random.random() > epsilon:

 action = np.argmax(Q)

 else:
 action = np.random.randint(len(Q))

 <...>
 return name, returns, Qe, actions

(1) Same as before, removed the boilerplate.

(6) Removed the estimation and stats code.

(2) The epsilon-greedy strategy is surprisingly effective for its simplicity.
It consists of selecting an action randomly every so often.
First thing is to draw a random number and compare to a hyperparameter "epsilon".

(3) If the drawn number is greater than epsilon,
we select the greedy action, the action with the highest estimated value.

(4) Otherwise, we explore by selecting an action randomly.

(5) Realize that this may very well yield the greedy action as we are
selecting an action randomly from all available actions, including the
greedy action. So you are not really exploring with epsilon probability,
but a little less than that – depending on the number of actions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

106

14 Chapter 4 I balancing the gathering and utilization of information

Decaying Epsilon-Greedy: First maximize exploration,
then exploitation
Intuitively, early on when the agent hasn't experienced the environment enough is
when we'd like it to explore the most, while later, as it obtains better estimates of the
value functions, we would like the agent to exploit more and more. The mechanics are
straightforward: Start with a high epsilon less than or equal to one, and decay its value on
every step. This strategy, called decaying epsilon-greedy strategy, can take many forms
depending on how you change the value of epsilon. Here I'm showing you two ways.

I Speak python

Linearly decaying epsilon-greedy strategy

def lin_dec_epsilon_greedy(env,
 init_epsilon=1.0,
 min_epsilon=0.01,
 decay_ratio=0.05,
 n_episodes=5000):

 <...>
 name = 'Lin e-greedy {} {} {}'.format(
 init_epsilon, min_epsilon, decay_ratio)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):

 decay_episodes = n_episodes * decay_ratio

 epsilon = 1 - e / decay_episodes
 epsilon *= init_epsilon - min_epsilon
 epsilon += min_epsilon
 epsilon = np.clip(epsilon, min_epsilon, init_epsilon)

 if np.random.random() > epsilon:
 action = np.argmax(Q)
 else:
 action = np.random.randint(len(Q))
 <...>
 return name, returns, Qe, actions

(1) Again, boilerplate is gone!

(2) Linearly decaying epsilon greedy consist of making epsilon
decay linearly with the number of steps. We start by calculating the
number of episodes we'd like to decay epsilon to the minimum value.

(3) Then, calculate the value of epsilon for the current episode.

(4) After that, every thing is the same as the epsilon-greedy strategy.

(5) Stats removed here.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

107

15The challenge of interpreting evaluative feedback

There are many other ways you can handle the decaying of epsilon: from a simple 1/episode,
to dampened sine waves. There are even different implementations of the same linear and
exponential techniques I'm presented. The bottom line is the agent should explore with
higher chance early and exploit with higher chance later. Early on, there is a high likelihood
value estimates are wrong, but as time passes and you acquire knowledge, the likelihood that
your value estimates are close to the actual values increases. This is when you should explore
less frequently so that you can exploit the knowledge you have acquired.

I Speak python

Exponentially decaying epsilon-greedy strategy

def exp_dec_epsilon_greedy(env,
 init_epsilon=1.0,
 min_epsilon=0.01,
 decay_ratio=0.1,
 n_episodes=5000):

 <...>

 decay_episodes = int(n_episodes * decay_ratio)
 rem_episodes = n_episodes - decay_episodes
 epsilons = 0.01
 epsilons /= np.logspace(-2, 0, decay_episodes)
 epsilons *= init_epsilon - min_epsilon
 epsilons += min_epsilon
 epsilons = np.pad(epsilons, (0, rem_episodes), 'edge')

 name = 'Exp e-greedy {} {} {}'.format(
 init_epsilon, min_epsilon, decay_ratio)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):
 if np.random.random() > epsilons[e]:
 action = np.argmax(Q)
 else:
 action = np.random.randint(len(Q))
 <...>
 return name, returns, Qe, actions

(1) FYI, not complete code.

(2) Here we calculate the exponentially decaying epsilons. Now,
notice you can calculate all of these values at once, and only query
an array of pre-computed values as you go through the loop.

(3) Everything else the same as before.

(4) And stats removed again, of course.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

108

16 Chapter 4 I balancing the gathering and utilization of information

Optimistic Initialization: Start off believing it's a wonderful world
Another interesting approach to dealing with the exploration-exploitation dilemma is to
treat actions that you haven't sufficiently explored as if they were the best possible actions—
like you are indeed in paradise. This class of strategies is known as optimism in the face of
uncertainty. The optimistic initialization strategy is an instance of this class.

The mechanics of the optimistic initialization strategy are straightforward: we initialize
the Q-function to a high value and act greedily using these estimates. Two points to clarify,
first "a high value" is something we don't have access to in RL, we will address this later in
this chapter, but for now, pretend we have that number in advance. Second, in addition to
the Q-values, we need to initialize the counts to a value higher than one. If we don't, the
Q-function will change too quickly, and the effect of the strategy will be reduced.

a = 0 a = 1

0.91 0.91

a = 0 a = 1

0.91 1

a = 0 a = 1

1 1

10.8

0.2
0.8 +1

+10.2 1

0
0 2

10.8 0.8

0.2
+1

+10.2
0

0 2

Optimistic initialization in the BSW

(2) The agent selects
action 0 greedily.

(3) The environment goes
through this transition
and gives a 0 reward.

(5) The agent selects
action 1 greedily.

(4) This is just 10/11,
which is the total reward
divided by the counts.

Q(a) argmax(Q) = 0

Environment

1st iteration
Agent

Reward = 0

Q(a) argmax(Q) = 1

Environment

2nd iteration
Agent

Reward = 0

Q(a) argmax(Q) = 0

3rd iteration

Agent(8) Q-values continue
getting lower and
lower as they converge
to the optimal.

(7) Agent gets
a 0 reward.

Initial Q = 1, count = 10
(1) Initial values, optimistic!

(6) Consider this transition.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

109

17The challenge of interpreting evaluative feedback

Very interesting, right? Momma was right! Because the agent initially expects to obtain
more reward than it actually can, it goes around exploring until it indeed finds sources of
reward. As it gains experience, the "naiveness" of the agent goes away, that is the Q-values
get lower and lower until they converge to their actual values.

Again, by initializing the Q-function to a high value, we encourage the exploration of
unexplored actions. As the agent interacts with the environment, our estimates will start
converging to lower, but more accurate estimates allowing the agent to find and converge to
the action with the actual highest payoff.

Bottom line is if you are going to act greedily, at least be optimistic.

I Speak python

Optimistic initialization strategy

def optimistic_initialization(env,
 optimistic_estimate=1.0,
 initial_count=100,
 n_episodes=5000):
 Q = np.full((env.action_space.n),
 optimistic_estimate,
 dtype=np.float64)
 N = np.full((env.action_space.n),
 initial_count,
 dtype=np.float64)

 <...>
 name = 'Optimistic {} {}'.format(optimistic_estimate,
 initial_count)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):

 action = np.argmax(Q)

 <...>
 return name, returns, Qe, actions

(3) Removed some code here.

(1) In this strategy, we start
initializing the Q-values to an
optimistic value.
(2) We also initialize the
counts which will serve as an
uncertainty measure. The
higher the more certain.

(4) After that, we always select the action with the highest
estimated value, just like the 'pure exploitation' strategy.

(5) Removed some more.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

110

18 Chapter 4 I balancing the gathering and utilization of information

ConCrete exaMple

2-armed Bernoulli bandit environment

Let's compare some specific instantiations of the strategies we have presented so far on a
set of 2-armed Bernoulli bandit environments.

2-armed Bernoulli bandit environments have a single non-terminal state and two actions.
Action 0 has an α chance of paying a +1 reward, and with 1-α, it will pay 0 rewards. Action 1
has a β chance of paying a +1 reward, and with 1-β, it will pay 0 rewards.

This is similar to the BSW to some extent. BSW has complimentary probabilities, that is
action 0 pays +1 with α probability, and action 1 pays +1 with 1-α chance. In this kind of
bandit environment, these probabilities are independent, they can even be equal.

Take a look at my depiction of the 2-armed Bernoulli bandit MDP.

It's crucial you notice there are many different ways of representing this environment. And
in fact, this is not how I have it written in code, because there is a lot of redundant and
unnecessary information.

For instance, the two terminal states. One could more simply have the two actions
transitioning to the same terminal state. But, you know, drawing that would make the graph
too convoluted.

The important lesson here is you are free to build and represent environments your own
way, there is not a single correct answer. There are definitely multiple incorrect ways, but
there are also multiple correct. So, make sure to explore!

Yeah, I did that.

1α

1-β

 +1

1-α

0

1

+1 β0 2

2-armed Bernoulli bandit environments

(1) Here is a general MDP representation
for 2-armed Bernoulli bandit environments.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

111

19The challenge of interpreting evaluative feedback

tally It Up

Simple exploration strategies in 2-armed Bernoulli bandit environments

I ran two hyperparameter instantiations of all strategies presented so far: the e-greedy,
the two decaying, and the optimistic approach, along with the pure exploitation and
exploration baselines on five 2-armed Bernoulli bandit environments with probabilities α
and β initialized uniformly at random, and five seeds. Results are means across 25 runs.

The best performing strategy in this experiment is the Optimistic with 1.0 initial Q-values
and 10 initial counts. All strategies perform pretty well, and these weren't highly tuned, so it
is just for the fun of it and nothing else. Head to chapter 4's Notebook and play, have fun.

(1) This is the pure exploration strategy.
(2) This is the pure exploitation strategy.

(3) These are all other strategies.

(4) A close-up into early episodes.

(5) Highest Mean Episode Reward: Optimistic 1.0 10.

(7) See the linear total regret of the baselines.

(9) Optimistic 1.0 10 strategy with lowest total regret.

(8) Exp e-greedy 1.0 with low total regret. This is mean across 25 runs.

(6) Exp e-greedy 0.3 second highest.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

112

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_04/chapter-04.ipynb

20 Chapter 4 I balancing the gathering and utilization of information

It'S In the DetaIlS

Simple strategies in the 2-armed Bernoulli bandit environments

Let's talk about some of the details in this experiment.

First, I ran 5 different seeds (12, 34, 56, 78, 90) to generate 5 different 2-armed Bernoulli
bandit environment. Remember, all Bernoulli bandits pay a +1 reward with certain
probability for each arm.

The resulting environments and their probability of payoff look as follows:

2-armed bandit with seed 12:

• Probability of reward: [0.41630234, 0.5545003]

2-armed bandit with seed 34:

• Probability of reward: [0.88039337, 0.56881791]

2-armed bandit with seed 56

• Probability of reward: [0.44859284, 0.9499771]

2-armed bandit with seed 78

• Probability of reward: [0.53235706, 0.84511988]

2-armed bandit with seed 90

• Probability of reward: [0.56461729, 0.91744039]

The mean optimal value across all seeds is 0.83.

All of the strategies were run against each of the environments above with 5 different seeds
(12, 34, 56, 78, 90) to fix and factor out the randomness of the results. So, again, for instance,
I first use seed 12 to create a Bernoulli bandit, then I use seeds 12, 34, and so on, to get the
performance of each strategy under the environment created with seed 12.

Then, I use seed 34 to create another Bernoulli bandit and use 12, 34, and so on, to evaluate
each strategy under the environment created with seed 34. I did this for all strategies in all 5
environments.

Overall, the results are the means over the 5 environments and 5 seeds, so 25 different runs
per strategy.

I tuned each strategy independently but also manually. I used approximately 10
hyperparameter combinations and picked the top 2 from those.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

113

21Strategic exploration

Strategic exploration
Alright, imagine you are tasked with writing a reinforcement learning agent to learn driving
a car. You decide to implement an epsilon-greedy exploration strategy. You flash your agent
into the car's computer, you start the car, push that beautiful bright green button, and then
your car starts exploring; it will flip a coin and decide to explore with a random action, say
to drive on the other side of the road. Like it? Right, me neither. I hope this example helps to
illustrate the need for different exploration strategies.

Let me be clear that this example is, of course, an exaggeration. You wouldn't put an
untrained agent to learn straight in the real world. In reality, if you are trying to use RL
in a real car, drone, or just in the real world in general, you'd first pre-train your agent in
simulation, and/or use more sample-efficient methods.

But, my point holds. If you think about it, while humans explore, we don't explore randomly.
Maybe infants do. But not adults. Maybe imprecision is the source of our randomness, but
we don't randomly marry someone just because (unless you go to Vegas.) Instead, I would
argue that adults have a more strategic way of exploring. We know that we are sacrificing
short- for long-term satisfaction. We know we want to acquire information. We explore by
trying things we haven't sufficiently tried but have the potential to better our lives. Perhaps,
our exploration strategies are a combination of estimates and their uncertainty; for instance,
we might prefer a dish that we are likely to enjoy, and we haven't tried, over a dish that we
like OK, but we get every weekend. Perhaps we explore based on our "curiosity" or our
prediction error; for instance, we might be more inclined to try new dishes at a restaurant
that we thought would be OK-tasting food, but it resulted in the best food you ever had.
That "prediction error" that "surprise" could be our metric for exploration at times.

In the rest of this chapter, we will look at slightly more advanced exploration strategies.
Some are still random exploration strategies, but they apply this randomness in proportion
to the current estimates of the actions. Other exploration strategies take into account the
confidence and uncertainty levels of the estimates.

All this being said, I want to reiterate that the epsilon-greedy strategy (and its decaying
versions) is still the most popular exploration strategy in use today. Perhaps because
it performs well, perhaps because of its simplicity. Maybe because most reinforcement
learning environments today live inside a computer and there are very few safety concerns
with the virtual world. It's important for you to think hard about this problem. Balancing
the exploration vs. exploitation tradeoff, the gathering and utilization of information is
central to human intelligence, artificial intelligence, and reinforcement learning. I'm certain
the advancement in this area will have a big impact in the field of artificial intelligence,
reinforcement learning and all other fields interested in this fundamental tradeoff. Lots!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

114

22 Chapter 4 I balancing the gathering and utilization of information

SoftMax: Select actions randomly in proportion
to their estimates
Random exploration strategies would make more sense if they take into account Q-value
estimates. By doing so, if there is an action that has a really low estimate, we are less likely
to try it. There is a strategy, called SoftMax strategy, that basically does just this: it samples
an action from a probability distribution over the action-value function such that the
probability of selecting an action is proportional to its current action-value estimate. This
strategy, which is also part of the family of random exploration strategies, is related to the
epsilon-greedy strategy because of the injection of randomness in the exploration phase.
E-greedy samples uniformly at random from the full set of actions available at a given state,
while SoftMax samples based on preferences of higher valued actions.

By using the SoftMax strategy, we are effectively making the action-value estimates an
indicator of preference. So, it doesn't matter how high or low the values are; if you add a
constant to all of them, the probability distribution will stay the same. You put preferences
over the Q-function and sample an action from a probability distribution based on this
preference. The difference between Q-value estimates will create a tendency to select actions
with the highest estimates more often, and actions with the lowest estimates less frequently.

We can also add a hyperparameter to control the algorithm's sensitivity to the differences
in Q-value estimates. This hyperparameter, called the temperature (a reference to statistical
mechanics), works so as it approaches infinity the preferences over the Q-values are equal;
basically, we sample an action uniformly. But, as the temperature value approaches zero, the
action with the highest estimated value will be sampled with probability 1. And of course,
we can decay this hyperparameter either linearly, exponentially, or something else. But, in
practice, for numerical stability reasons, we can't use infinity or zero as the temperature;
instead, we use a very high, or very low positive real number, and normalize these values.

Show Me the Math

SoftMax exploration strategy

(1) To calculate the probability
of selecting action a...

(2) Calculate the preference of selecting that action by
dividing the Q-function by the temperature parameter tau.

(3) Raise that to e.

(4) Finally, normalize the values by
dividing by the sum of all preferences.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

115

23Strategic exploration

I Speak python

SoftMax strategy

def softmax(env,
 init_temp=1000.0,
 min_temp=0.01,
 decay_ratio=0.04,
 n_episodes=5000):

 <...>
 name = 'SoftMax {} {} {}'.format(init_temp,
 min_temp,
 decay_ratio)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):

 decay_episodes = n_episodes * decay_ratio
 temp = 1 - e / decay_episodes
 temp *= init_temp - min_temp
 temp += min_temp
 temp = np.clip(temp, min_temp, init_temp)

 scaled_Q = Q / temp
 norm_Q = scaled_Q - np.max(scaled_Q)
 exp_Q = np.exp(norm_Q)
 probs = exp_Q / np.sum(exp_Q)

 assert np.isclose(probs.sum(), 1.0)
 action = np.random.choice(np.arange(len(probs)),
 size=1,
 p=probs)[0]

 _, reward, _, _ = env.step(action)
 <...>

 return name, returns, Qe, actions

(1) Code removed.

(2) First we calculate the linearly decaying temperature the same
way we did with the linearly decaying epsilon.

(4) Next we calculate the probabilities by applying the SoftMax function to the Q values.

(6) Finally, we make sure we got
good probabilities and select
the action based on them.

(7) Code removed here too.

(3) I make sure 'min_temp' is not 0, to avoid div by zero. Check the Notebook for details.

(5) Normalize for numeric stability.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

116

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_04/chapter-04.ipynb

24 Chapter 4 I balancing the gathering and utilization of information

UCB: It's not about just optimism; it's about realistic optimism
In the last section, I introduced the optimistic initialization strategy; this is a very clever
(and perhaps philosophical) approach to dealing with the exploration vs. exploitation
tradeoff and it's the simplest method in the optimism in the face of uncertainty family of
strategies. But, there are two significant inconveniences with the specific algorithm we
looked at: First, we do not always know the maximum reward the agent can obtain from
an environment. If you set the initial Q-value estimates of an optimistic strategy to a value
much higher than its actual maximum value, unfortunately, the algorithm will perform
sub-optimally because the agent will take many episodes (depending on the 'counts'
hyperparameter) to bring the estimates near the actual values. But even worse, if you set the
initial Q-values to a value lower than the environment's maximum, the algorithm will no
longer be "optimistic," and it will no longer work.

The second issue with this strategy as we presented it is that the 'counts' variable is a
hyperparameter and it needs tuning, but in reality, what we are trying to represent with this
variable is the uncertainty of the estimate, which shouldn't be a hyperparameter. A better
strategy, instead of believing everything is roses from the beginning and arbitrarily setting
certainty measure values, follows the same principles as optimistic initialization while using
statistical techniques to calculate the value estimates uncertainty and uses that as a bonus for
exploration. This is what the upper confidence bound (UCB) strategy does.

In UCB, we are still optimistic, but it is a more a realistic optimism; instead of blindly
hoping for the best, we look at the uncertainty of value estimates. The more uncertain a
Q-value estimate, the more critical it is to explore it. Note that it is no longer about believing
the value will be the "maximum possible," though it might be! The new metric that we care
about here is uncertainty; we want to give uncertainty the benefit of the doubt.

Show Me the Math

Upper Confidence Bound (UCB) equation

(1) To select the
action at episode e.

(2) Add the
Q-value estimates.

(3) And an
uncertainty bonus.

(4) Then select the action with the maximum total value.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

117

25Strategic exploration

To implement this strategy, we select the action with the highest sum of its Q-value estimate
and an action-uncertainty bonus U. That is, we are going to add a bonus, upper confidence
bound Ut(a), to the Q-value estimate of action a, such that if we attempt action a only a few
times the U bonus is large thus encouraging exploring this action. While if the number of
attempts is significant, we add only a small U bonus value to the Q-value estimates, because
we are more confident on the Q-value estimates, therefore not as critical to explore.

In a practical level, if you plot U as a function of the episodes and counts, you'll notice it is
very much like an exponentially decaying function with a few differences: Instead of the
smooth decay exponential functions show, there is a sharp decay early on and a long tail.
This makes it so that early on when the episodes are low there is a higher bonus for smaller
differences between actions, but as more episode pass, and counts increase, the difference
in bonuses for uncertainty become smaller. In other words, a 0 vs. 100 attempts should give
a higher bonus to 0 than to a 100 in a 100 vs. 200 attempts. Finally, the c hyperparameter
controls the scale of the bonus, a higher c means higher bonuses, lower c lower bonuses.

I Speak python

Upper Confidence Bound (UCB) strategy

def upper_confidence_bound(env,
 c=2,
 n_episodes=5000):

 <...>
 name = 'UCB {}'.format(c)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):
 if e < len(Q):
 action = e
 else:

 U = np.sqrt(c * np.log(e)/N)

 action = np.argmax(Q + U)
 <...>
 return name, returns, Qe, actions

(1) Code removed for brevity.

(2) We first select all actions
once to avoid division by zero.

(5) Stats code removed for brevity.

(3) Then, proceed to calculating the confidence bounds.

(4) Lastly we pick the action with the highest value with an uncertainty bonus,
the more uncertain the value of the action the higher the bonus.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

118

26 Chapter 4 I balancing the gathering and utilization of information

Thompson Sampling: Balancing reward and risk
The UCB algorithm is a frequentist approach to dealing with the exploration vs. exploitation
tradeoff because it makes minimal assumptions about the distributions underlying the
Q-function. But, there are other techniques, such as Bayesian strategies, that can use priors
to make reasonable assumptions and exploit this knowledge. The Thompson sampling
strategy is a sample-based probability matching strategy that allows us to use Bayesian
techniques to balance the exploration and exploitation tradeoff.

A simple way to implement this strategy is to keep track of each Q-value as a Gaussian
(a.k.a. normal) distribution. In reality, you can use any other kind of probability distribution
as prior; beta distributions, for instance, are a common choice. In our case, the Gaussian
mean is the Q-value estimate, and the Gaussian standard deviation measures the uncertainty
of the estimate, which are updated on each episode.

As the name suggests, in Thompson sampling, we sample from these normal distributions
and simply pick the action that returns the highest sample. Then, to update the Gaussian
distributions' standard deviation, we use a formula very similar to the UCB strategy in
which early on when the uncertainty is higher, the standard deviation is more significant;
therefore the Gaussian is broad. But as the episodes progress, and the means shift toward
better and better estimates, the standard deviations gets lower, and the Gaussian distribution
shrinks, and so its samples are more and more likely to be near the estimated mean.

Comparing two action-value functions
represented as Gaussian distributions

(1) This Q function seems
better because its mean is
higher than the other one.

(2) But is it? We are
much more uncertain
about the estimate
of the other one.
Shouldn't we explore it?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

119

27Strategic exploration

In this particular implementation, I use two hyperparameters: alpha, to control the scale
of the Gaussian, or how large will the initial standard deviation be, and beta, to simply
shifts the decay such that the standard deviation shrinks more slowly. In practice, these
hyperparameters need very little tuning for the examples in this chapter because, as you
probably already know, a standard deviation of just 5, for instance, is almost a flat-looking
Gaussian representing over a 10 unit spread. Given our problems have rewards (and
Q-values) between 0 and 1, and approximately between -3 and 3 (the example coming up
next), we wouldn't need any Gaussian with standard deviations too much greater than 1.

Finally, I want to re-emphasize using Gaussian distributions is perhaps not the most
common approach to Thompson sampling, Beta distributions seem to be favorites here. I
personally prefer Gaussian for these problems, simply because of their symmetry around the
mean, and because their simplicity makes them suitable for teaching purposes. However, I
encourage you to dig some more on this topic and share what you find.

I Speak python

Thompson sampling strategy

def thompson_sampling(env,
 alpha=1,
 beta=0,
 n_episodes=5000):

 <...>
 name = 'Thompson Sampling {} {}'.format(alpha, beta)
 for e in tqdm(range(n_episodes),
 desc='Episodes for: ' + name,
 leave=False):

 samples = np.random.normal(
 loc=Q, scale=alpha/(np.sqrt(N) + beta))

 action = np.argmax(samples)

 <...>
 return name, returns, Qe, actions

(1) Initialization code removed.

(4) Stats code removed.

(2) In our implementation we will simply sample numbers from the Gaussian
distributions. Notice how the 'scale' which is the width of the Gaussian (the standard
deviation) shrinks with number of times we try each action. Also, notice how 'alpha'
controls the initial width of the Gaussian, and 'beta' the rate at which they shrink.

(3) Then, we select the action with the highest sample.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

120

28 Chapter 4 I balancing the gathering and utilization of information

tally It Up

Advanced exploration strategies in 2-armed Bernoulli bandit environments

I ran two hyperparameter instantiations of each new strategies introduced: the SoftMax,
the UCB, and the Thompson approach, along with the pure exploitation and exploration
baselines, and the top-performing simple strategies from before on the same five 2-armed
Bernoulli bandit environments. This is again a total of ten agents in five environments across
five seeds. A twenty-five runs total per strategy. Results are averages across these runs.

Besides the fact that the Optimistic strategy uses domain knowledge that we cannot
assume we'll have access to, the results indicate the more advanced approaches do better.

(2) This is the pure exploration baseline.

(1) Advanced exploration strategies.

(4) A close-up into early episodes.

(5) Best performances across all experiments: SoftMax inf.

(7) Linear total regret of the baselines.

(9) Lowest regret by SoftMax inf.

(3) This is the pure exploitation baseline.

(6) Optimistic and SoftMax 100 follow.

(8) Optimistic same low regret.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

121

29Strategic exploration

ConCrete exaMple

10-armed Gaussian bandit environments

10-armed Gaussian bandit environments still have a single non-terminal state; they are
bandit environments. As you probably can tell, they have 10 arms or actions instead of 2 as
their Bernoulli counterparts. But,
the probability distributions and
reward signals are very different
from the Bernoulli bandits. First,
Bernoulli bandits have a probability
of payoff of p, and with 1-p, the
arm will not pay anything. Gaussian
bandits, on the other hand, will
always pay something (unless
they sample a 0 – more on this
next). Second, Bernoulli bandits
have a binary reward signal, you
either get a +1 or a 0. Instead,
Gaussian bandits pay every time by
sampling a reward from a Gaussian
distribution.

To create a 10-armed Gaussian bandit environment, you first sample from a standard
normal (Gaussian with mean 0 and variance 1) distribution 10 times to get the optimal
action-value function q*(ak) for all k (10) arms. These values will become the mean of the
reward signal for each action. To get the reward for action k at episode e, we simply sample
from another Gaussian with mean q*(ak), and variance 1.

R0 R4

R1

R6

R5

R2

R7

R3

R8

R9

1

0 1 2 3 4

5 6 7 8 9

0

2

10-armed Gaussian bandits

(1) Each arm
pays every time!

(2) But the
reward paid varies.
It's sampled
from a Gaussian
distribution.

Show Me the Math

10-armed Gaussian bandits reward function

(1) Prior to interacting with the
environment, we create it by calculating the
optimal action-value for each arm/action k.

(2) We do this by sampling from a standard
Gaussian distribution, that is a Gaussian
with mean 0 and variance 1.

(3) Once our agent is interacting with the
environment, in order to sample the reward R
for arm/action k in episode e.

(4) We sample from a Gaussian distribution
centered on the optimal q-value, and
variance 1.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

122

30 Chapter 4 I balancing the gathering and utilization of information

tally It Up

Advanced exploration strategies in 10-armed Gaussian bandit environments

I ran the same hyperparameter instantiations of the simple strategies introduced earlier,
now on five 10-armed Gaussian bandit environments. This is obviously an "unfair"
experiment because these techniques can perform well in this environment if properly
tuned, but my goal is to show the most "advanced" strategies still do well with the old

hyperparameters, despite the change of the environment. You'll see that on the next page.
Look at that, some of the most straightforward strategies have the lowest total regret and
the highest expected reward across the five different scenarios. Think about that for a sec!

(2) Pure exploitation.

(7) See the linear total regret of the baselines.

(8) Most strategies performed OK.

(1) Simple strategies not doing that much better than the baselines.

(4) Lin e-greedy 1.0 is doing well in terms of reward.

(9) Third-lowest total regret: E-greedy 0.07.

(10) Second-lowest total regret: Exp e-greedy 1.0.

(11) Lowest total regret: Lin e-greedy 1.0.

(3) Pure exploration.

(5) Then, we have exp e-greedy 1.0.
(6) E-greedy 0.07 follow.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

123

31Strategic exploration

tally It Up

Advanced exploration strategies in 10-armed Gaussian bandit environments

I now ran the advanced strategies with the same hyperparameters as before. I also added
the two baselines and the top-2 performing simple strategies in the 10-armed Gaussian
bandits. Just as with all other experiments, this is a total of twenty-five runs.

This time only the advanced strategies make it on top, with an actually pretty decent total
regret. What you should do now is head to the Notebook and have fun! Please, also share
with the community your results, if you run additional experiments.
Can't wait to see how you extend these experiments. Enjoy!

(1) This is the pure exploitation strategy.

(2) This is the pure exploration strategy.
(3) These are all other strategies.

(4) A close-up into early episodes.

(6) See the linear total regret of the baselines.

(8) Top to bottom (lower is better): Thompson 0.5, UCB 0.5, UCB 0.2.

(5) Top to bottom: UCB 0.2, UCB 0.5, Thompson 0.5.

(7) SoftMax inf is no longer doing that great.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

124

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_04/chapter-04.ipynb

32 Chapter 4 I balancing the gathering and utilization of information

Summary
Learning from evaluative feedback is a fundamental challenge that makes reinforcement
learning unique. When learning from evaluative feedback: i.e.: +1, +1.345, +1.5, -100, -4,
your agent doesn't know the underlying MDP and therefore cannot determine what the
maximum reward it can obtain is. Your agent "thinks": "well, I got a +1, but I don't know,
maybe there is a +100 under this rock?" This uncertainty in the environment forces you to
design agents that explore.

But as you learned, you can't take exploration lightly. Fundamentally, exploration wastes
cycles that could otherwise be used for maximizing reward, for exploitation, yet, your agent
can't maximize reward, or at least pretend it can, without gathering information first, which
is what exploration does. All of a sudden, your agent has to learn to balance exploration and
exploitation; it has to learn to compromise, to find an equilibrium between two crucial yet
competing sides. We have all faced this fundamental tradeoff in our lives, so these issues
should be intuitive to you: "a bird in the hand is worth two in the bush," yet "a man's reach
should exceed his grasp." — Pick your poison, and have fun doing it, just don't get stuck to
either one. Balance them!

Knowing this fundamental tradeoff, we introduced several different techniques to create
agents, or strategies, for balancing exploration and exploitation. The epsilon-greedy strategy
does it by exploiting most of the time and exploring only a fraction. This exploration step
is done by sampling an action at random. Decaying epsilon-greedy strategies capture the
fact that agents need more exploration at first because they need to gather information to
start making a right decision, but they should quickly begin to exploit to ensure they don't
accumulate regret, which is a measure of how far from optimal we act. Decaying epsilon-
greedy strategies decay epsilon as episodes increases and, hopefully, as our agent gathers
information.

But then we learn about other strategies that try to ensure that "hopefully" is more likely.
Strategies that take into account estimates and their uncertainty and potential and select
accordingly: Optimistic initialization, UCB, Thompson sampling, and although SoftMax
doesn't really use uncertainty measures, it explores by selecting randomly in the proportion
of the estimates.

By now you:

• Understand that the challenge of learning from evaluative feedback is because agents
cannot see the underlying MDP governing their environments.

• Learned that the exploration vs. exploitation tradeoff rises from this problem.
• Know about many strategies that are commonly used for dealing with this issue.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

125

evaluating
agents' behaviors 5

In this chapter

• You learn about estimating policies when learning
from feedback that is simultaneously sequential and
evaluative.

• You develop algorithms for evaluating policies in
reinforcement learning environments when the
transition and reward functions are unknown.

• You write code for estimating the value of policies in
environments in which the full reinforcement learning
problem is on display.

I conceive that the great part of the miseries
of mankind are brought upon them by false
estimates they have made of the value of things.

— Benjamin Franklin
Founding Father of the United States

 an author, politician, inventor, and a civic activist.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

126

2 Chapter 5 I evaluating agents' behaviors

You know how challenging it is to balance immediate and long-term goals. You probably
experience this multiple times a day: should you watch movies tonight, or keep reading
this book? One has an immediate satisfaction to it; you watch the movie, and you go from
poverty to riches, from loneliness to love, from overweight to fit, etc., in about two hours
and while eating popcorn. Reading this book, on the other hand, won't really give you much
tonight, but maybe, and only maybe, much higher satisfaction in the long term.

And that is a perfect lead to precisely the other issue we discussed. How much more
satisfaction in the long term, exactly?! You may ask. Can we tell? Is there a way to find out?
Well, that's the beauty of life, I don't know, you don't know, and we won't know unless we
try it out, unless we explore it. Life doesn't give you its MDP, life is uncertain. This is what we
studied in the last chapter: balancing information gathering and information utilization.

However, in the previous chapter, we studied this challenge in isolation from the sequential
aspect of RL. Basically, you assume your actions have no long-term effect, and your only
concern is to find the best thing to do for the current situation. For instance, your concern
may be selecting a good movie, or a good book, but without thinking how the movie or the
book will impact the rest of your life. Here, your actions don't have a "compounding effect."

Now, in this chapter, we look at agents that learn from feedback that is simultaneously
sequential and evaluative; agents need to simultaneously balance immediate and long-term
goals, and balance information gathering and utilization. So, back to our "movie or book"
example, you need to decide what to do today knowing each decision you make builds up,
accumulates, and compounds in the long term. Since you are a near-optimal decision-maker
under uncertainty, just as most humans, will you watch a movie or keep on reading? Hint!

You're smart... In this chapter, we will study agents that can learn to estimate the value of
policies, similar to the policy evaluation method, but this time without the MDP. This is
often called the prediction problem because we are estimating value functions, and these
are defined as the expectation of future discounted rewards, that is, they contain values that
depend on the future, so we are learning to predict the future in some sense. Next chapter,
we will look at optimizing policies without MDPs, which is called the control problem
because we attempt to improve agents' behaviors. As you'll see in this book, these two are
equally essential aspects of RL. In machine learning, the saying goes: "the model is only as
good as the data," in RL, I say: "the policy is only as good as the estimates." Or detailed: "the
improvement of a policy is only as good as the accuracy and precision of its estimates."

Once again, in DRL, agents learn from feedback that is simultaneously sequential (as
opposed to one-shot), evaluative (as opposed to supervised) and sampled (as opposed
to exhaustive). In this chapter, we are looking at agents that learn from feedback that is
simultaneously sequential and evaluative. We are temporarily shelving the "sampled" part,
but we will open those gates in chapter 8, and there will be fun galore. I promise.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

127

3Learning to estimate the value of policies

Learning to estimate the value of policies
As I mentioned before, this chapter is about learning to estimate the value of existing
policies. When I was first introduced to this "prediction problem" people talk about, I
didn't get the motivation initially. To me, if you want to estimate values of policies the
straightforward way of doing it is just running the policy a lot and averaging what you get.

And, that's definitely a valid approach, and perhaps the most natural. What I didn't realize
back then, however, is that there are many other approaches to estimating value functions.
Each of these approaches has advantages and disadvantages, some of the methods can be
seen as an exact opposite alternative, but there is also a middle ground that creates a full
spectrum of algorithms.

In this chapter, we will explore a variety of these approaches, and will dig into their pros and
cons, showing you how they relate.

ŘŁ With An RL Accent

Reward vs. Return vs. Value function

Reward: Refers to the one-step reward signal the agent gets: the agent observes a state,
selects an action, and it receives a reward signal. The reward signal is the core of RL, but it
is not what the agent is trying to maximize! Again, the agent is not trying to maximize the
reward! Realize that while your agent maximizes the one-step reward, in the long-term, is
getting less than it could.

Return: Refers to the total discounted rewards. Returns are calculated from any state
and usually go until the end of the episode. That is when a terminal state is reached the
calculation stops. Returns are often referred to as total reward, cumulative reward, sum of
rewards, and are commonly discounted: total discounted reward, cumulative discounted
reward, sum of discounted reward. But, it is basically the same: a return tells you how much
reward your agent obtained in an episode. As you can see, returns are better indicators
of performance because they contain a long-term sequence, a single-episode history
of rewards. But the return is not what an agent tries to maximize, either! An agent that
attempts to obtain the highest possible return may find a policy that takes it through a
noisy path; sometimes, this path will provide a high return, perhaps most of the time a low
one.

Value function: Refers to the expectation of returns. That means, sure, we want high returns,
but high in expectation (on average). So, if the agent is in a very noisy environment, or if
the agent is using a stochastic policy, it's all just fine. The agent is trying to maximize the
expected total discounted reward, after all: value functions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

128

4 Chapter 5 I evaluating agents' behaviors

! MigueL's AnALogy

Rewards, returns, value functions, and life

How do you approach life? Do you select actions that are the best for you, or are you one of
those kind folks that prioritize others before themselves?

There is no shame either way! Being selfish, to me, is an excellent reward signal. It takes
you places. It drives you around. Early on in life, going after the immediate reward can be a
pretty solid strategy.

Lots of people judge others for being "too selfish," but to me, that's the way to get going.
So, go on and do what you want, what you dream of, what gives you satisfaction, go after
the rewards! You'll look selfish and greedy. But you shouldn't care.

As you keep going, you'll realize that going after the rewards is not the best strategy, even
for your benefit. You start seeing a bigger picture. If you overeat candy, your tummy hurts, if
you spend all of your money on online shopping, you can go broke.

So, you start looking at the returns. You start understanding that there is more to your
selfish and greedy motives. You drop the greedy side of you because it harms you in the
long run, and now you can see that. But you stay selfish, you still only think in terms of
rewards, just now "total" rewards, returns. No shame about that, either!

At one point, you'll realize that the world moves without you, that the world has many more
moving parts than you initially thought, that the world has some underlying dynamics that
are very difficult to comprehend. You now know that "what goes around comes around,"
one way or another, one day or another, but it does.

You step back once again, now instead of the going after rewards or returns, you go after
value functions. You wise up! You learn that the more you help others learn, the more you
learn, not sure why, but it works, the more you love your significant other, the more they
love you, crazy! The more you don't spend (save,) the more you can. How strange! Notice,
you are still selfish!

But you become aware of the complex underlying dynamics of the world and can
understand that the best for yourself is to better others — a perfect win-win situation.

I'd like the differences between rewards, returns, and value functions ingrained in you, so
hopefully this should get you thinking for a bit.

Follow the rewards!

Then, the returns!

Then, the value functions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

129

5Learning to estimate the value of policies

concRete exAMpLe

The Random Walk environment

The primary environment we will use through this chapter is called the Random Walk (RW).
This is a walk, single-row grid-world environment, with five non-terminal states. But it's
peculiar, so I want to explain it in two ways.

On the one hand, you can think of the RW as an environment in which the probability of
going left when taking the left action is equal to the probability of going right when taking
the left action, and the probability of going right when taking the right action is equal to
the probability of going left when taking the right action. In other words, the agent has no
control of where it goes! The agent will go left with 50% and right with 50% regardless of
the action it takes. It's a random walk, after all. Crazy!

But to me, that was a very unsatisfactory explanation of the RW, maybe because I like the
idea of agents "controlling" something. What's the point of studying RL (a framework for
learning optimal control) in an environment in which there is no possible control!?

Therefore, you can think of the RW as an environment with a deterministic transition
function (meaning that if the agent chooses left, the agent moves left, and it moves right
if it picks right – as expected.) But pretend the agent wants to evaluate a stochastic policy
that selects actions uniformly at random. That's half the time, it chooses left, the other half,
right.

Either way, the concept is the same: we have a five non-terminal state walk in which the
agent moves left and right uniformly at random. The goal is to estimate the expected total
discounted reward the agent can obtain given these circumstances.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

130

6 Chapter 5 I evaluating agents' behaviors

First-visit Monte-Carlo: Improving estimates after each episode
Alright! The goal is to estimate the value of a policy, that is to learn how much total reward
to expect from a policy, or more proper, the goal is to estimate the state-value function vπ(s)
of a policy π. The most straightforward approach that comes to mind I already mentioned;
it's just to run several episodes with this policy collecting hundreds of trajectories, and then
calculate averages for every state, just as we did in the bandit environments. This method of
estimating value functions is called Monte-Carlo prediction (MC).

MC is easy to implement. The agent will first interact with the environment using policy π
until the agent hits a terminal state ST. The collection of state St, action At, reward Rt+1, and
next state St+1, is called an experience tuple. A sequence of experiences is called a trajectory.
The first thing you need to do is have your agent generate a trajectory.

Once you have a trajectory, you calculate the returns Gt:T for every state St encountered. For
instance, for state St, you go from time step t forward adding up and discounting the rewards
received along the way: Rt+1, Rt+2, Rt+3,..., RT, until the end of the trajectory at time step T.
Then, you repeat that process for state St+1 adding up the discounted reward from time
step t+1 until you again reach T. Then for St+2, and so on for all states except ST, which by
definition has a value of 0. Gt:T will end up using the rewards from time step t+1, up to the
end of the episode at time step T. We discount those rewards with an exponentially decaying
discount factor: γ0, γ1, γ2,..., γT-1. That just means multiplying the corresponding discount
factor γ by the reward R, then adding up the products along the way.

After generating a trajectory and calculating the returns for all states St, you can estimate
the state-value function vπ(s) at the end of every episode e and final time step T by merely
averaging the returns obtained from each state s. In other words, we are estimating an
expectation with an average. As simple as that.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

131

7Learning to estimate the value of policies

shoW Me the MAth

Monte-Carlo learning
(1) WARNING: I'm heavily abusing notation to make sure you get the whole picture. In specific,
you need to notice when each thing is calculated. For instance, when you see a subscript t:T,
that just means it is derived from time step t until the final time step, T. When you see T, that
means it is computed at the end of the episode at time step T.

(2) As a reminder, the action-value
function is the expectation of returns.
This is a definition good to remember.
(3) And the returns are the total
discounted reward.

(11) On this one, we just replace the mean for a learning
value that can be time dependent, or constant.

(4) So, in MC, the first thing we do is sample the policy for a trajectory.
(5) Given that trajectory,
we can calculate the return
for all states encountered.

(6) Then, add up the per-state returns.
(7) And, increment a count (more on this later.)

(8) We can simply estimate the expectation using the
empirical mean. So, the estimated state-value function
for a state is just the mean return for that state.

(9) As the counts approach infinity,
the estimate will approach the true value

(10) But, notice that means can be calculated incrementally. So, there is no need to keep
track of the sum of returns for all states. This equation is equivalent, just more efficient.

(12) Notice that V is calculated only at the end of
an episode, time step T, because G depends on it.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

132

8 Chapter 5 I evaluating agents' behaviors

Every-visit Monte-Carlo: A different way of handling state visits
You probably notice that in practice, there are two different ways of implementing an
averaging-of-returns algorithm. This is because a single trajectory may contain multiple
visits to the same state. So, in this case, should we calculate the returns following each of
those visits independently and then include all of those targets in the averages, or should we
only use the first visit to each state?

Both are valid approaches, and they have very similar theoretical properties. The more
"standard" version is First-visit MC (FVMC), and its convergence properties are easy to
justify because each trajectory is an independent and identically distributed (IID) sample
of vπ(s), so as we collect infinite samples, the estimates will converge to their true values.
Every-visit MC (EVMC) is slightly different because returns are no longer IID when states
are visited multiple times in the same trajectory. But, fortunately for us, EVMC has also been
proved to converge given infinite samples.

BoiL it DoWn

First- vs. Every-visit MC

MC prediction estimates vπ(s) as the average of returns of π. FVMC uses only one return per
state per episode: the return following a first visit. EVMC averages the returns following all
visits to a state, even if in the same episode.

0001 A Bit of histoRy

First-visit Monte-Carlo prediction

You have probably heard the term "Monte-Carlo simulations" or "runs" before. Monte-Carlo
methods, in general, have been around since the 1940s and are a broad class of algorithms
that use random sampling for estimation. They are ancient and widespread. However, it was
in 1996 that first- and every-visit MC methods were identified in the paper "Reinforcement
Learning with Replacing Eligibility Traces" by Satinder Singh and Richard Sutton.

Satinder Singh and Richard Sutton both obtained a Ph.D. in Computer Science from the
University of Massachusetts Amherst, were advised by Professor Andy Barto, became
prominent figures in RL due to there many foundational contributions, and are now
Distinguish Research Scientists at Google DeepMind. Rich got his Ph.D. in 1984 and is a
professor at the University of Alberta, while Satinder got his Ph.D. in 1994 and is a professor
at the University of Michigan.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

133

9Learning to estimate the value of policies

i speAk python

Exponentially Decaying Schedule

def decay_schedule(init_value, min_value,
 decay_ratio, max_steps,
 log_start=-2, log_base=10):
 decay_steps = int(max_steps * decay_ratio)
 rem_steps = max_steps - decay_steps

 values = np.logspace(log_start, 0, decay_steps,
 base=log_base, endpoint=True)[::-1]
 values = (values - values.min()) / \
 (values.max() - values.min())
 values = (init_value - min_value) * values + min_value
 values = np.pad(values, (0, rem_steps), 'edge')
 return values

(1) This function allows
you to calculate all the
values for alpha for the
full training process.

(2) First calculate the number of steps to decay the values using the 'decay_ratio' variable.
(3) Then, calculate the actual values as an inverse log curve. Notice we then normalize between 0
and 1, and finally transform the points to lay between 'init_value' and 'min_value'.

i speAk python

Generate full trajectories

def generate_trajectory(pi, env, max_steps=20):

 done, trajectory = False, []
 while not done:
 state = env.reset()
 for t in count():
 action = pi(state)
 next_state, reward, done, _ = env.step(action)
 experience = (state, action, reward,
 next_state, done)
 trajectory.append(experience)
 if done:
 break
 if t >= max_steps - 1:
 trajectory = []
 break
 state = next_state
 return np.array(trajectory, np.object)

(1) This is a straightforward function. All
is doing is running a policy and extracting
the collection of experience tuples (the
trajectories) for offline processing.

(2) This here is allowing you to pass a
maximum number of steps so that you
can truncate long trajectories if desired.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

134

10 Chapter 5 I evaluating agents' behaviors

i speAk python

Monte-Carlo Prediction 1/2

def mc_prediction(pi,
 env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.3,
 n_episodes=500,
 max_steps=100,
 first_visit=True):

 nS = env.observation_space.n
 discounts = np.logspace(
 0, max_steps, num=max_steps,
 base=gamma, endpoint=False)
 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 V = np.zeros(nS)
 V_track = np.zeros((n_episodes, nS))

 for e in tqdm(range(n_episodes), leave=False):

 trajectory = generate_trajectory(
 pi, env, max_steps)

 visited = np.zeros(nS, dtype=np.bool)
 for t, (state, _, reward, _, _) in enumerate(
 trajectory):

(1) The 'mc_prediction' function
works for both, first- and every-
visit MC. The hyperparameters
you see here are standard.
Remember, the discount
factor, gamma, depends on the
environment.

(2) For the learning rate, alpha, I'm using a decaying value from 'init_alpha' of 0.5 down to 'min_
alpha' of 0.01, decaying within the first 30% ('alpha_decay_ratio' of 0.3) of the 500 total
episodes 'max_episodes'. We already discussed 'max_steps' on the previous function, I'm just
passing the argument around. And 'first_visit' toggles between F and EVMC.

(3) This is cool. I'm calculating all
possible discounts at once. This
'logspace' function for a 'gamma'
of 0.99 and a 'max_step' of 100
returns a 100 number vector: [1,
0.99, 0.9801,..., 0.3697].

(5) Here we are initializing variables we will use inside the main loop: The current estimate of the
state-value function V, and a per-episode copy of V for offline analysis.

(6) We loop for every episode... Note that we are using 'tqdm' here. This package prints a
progress bar and it is useful for impatient people like me...
You may not need it (unless you are also impatient.)

(4) And in here I'm calculating all
of the alphas!

(7) Generate a full
trajectory.

(8) Initialize a visits check bool vector.

(9) This last line is repeated on next page for your convenience.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

135

11Learning to estimate the value of policies

ŘŁ With An RL Accent

Incremental vs. Sequential vs. Trial-and-error

Incremental learning: Refers to the iterative improvement of the estimates. Dynamic
programming is incremental learning: these algorithms iteratively compute the answers.
They don't "interact" with an environment, but they reach the answers through successive
iterations, incrementally. Bandits are also incremental, they reach good approximations
through successive episodes or trials. Reinforcement learning is incremental, as well.
Depending on the specific algorithm, estimates are improved on an either per-episode or
per-time-step basis.

Sequential learning: Refers to learning in an environment with more than one non-
terminal (and reachable) state. Dynamic programming does sequential learning. Bandits are
not sequential, they are one-state one-step MDPs. There is no long-term consequence for
the agent's actions. Reinforcement learning is certainly sequential.

Trial-and-error learning: Refers to learning from interaction with the environment.
Dynamic programming is not trial-and-error learning. Bandits are trial-and-error learning.
Reinforcement learning is trial-and-error learning, too.

i speAk python

Monte-Carlo Prediction 2/2

 for t, (state, _, reward, _, _) in enumerate(
 trajectory):

 if visited[state] and first_visit:
 continue
 visited[state] = True

 n_steps = len(trajectory[t:])
 G = np.sum(discounts[:n_steps] * trajectory[t:, 2])
 V[state] = V[state] + alphas[e] * (G - V[state])

 V_track[e] = V
 return V.copy(), V_track

(10) This first line is repeated on the previous page for your convenience.

(11) We now loop through all experiences in the trajectory.
(12) Check if the state has already been visited on this trajectory, and doing FVMC.

(13) And if so, we go
process the next state.

(17) Finally estimate the value function.
(18) Keep track of the episode's V.
(19) And return V, and the tracking when done.

(14) If this is the first visit or we are doing EVMC, we process the current state.
(15) First, calculate the number of steps from t to T.
(16) Then,
calculate
the return.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

136

12 Chapter 5 I evaluating agents' behaviors

Temporal-Difference Learning: Improving estimates
after each step
One of the main drawbacks of MC is the fact the agent has to wait until the end of an
episode when it can obtain the actual return Gt:T before it can update the state-value
function estimate VT(St). On the one hand, MC has pretty solid convergence properties
because it updates the value-function estimate VT(St) towards the actual return Gt:T, which is
an unbiased estimate of the true state-value function vπ(s).

However, while the actual returns are pretty accurate estimates, they are also not very
precise. Actual returns are also high variance estimates of the true state-value function vπ(s).
It is easy to see why: actual returns accumulate lots of random events in the same trajectory;
all actions, all next states, all rewards are random events. The actual return Gt:T collects and
compounds all of that randomness for multiple time steps, from t to T. Again, the actual
return Gt:T is unbiased, but high variance.

Also, due to the high variance of the actual returns Gt:T, MC can be very sample inefficient.
All of that randomness becomes noise that can only be alleviated with data, lots of data, lots
of trajectories, and actual returns samples. One way to diminish the issues of high variance
is to, instead of using the actual return Gt:T, estimate a return. Stop for a second and think
about before proceeding: Your agent is already calculating the state-value function estimate
V(s) of the true state-value function vπ(s), how can you use those estimates to estimate a
return? Even if just partially estimated. Think!

Yes! You can use a single-step reward Rt+1, and once you observe the next state St+1, you can
use the state-value function estimates V(St+1) as an estimate of the return at the next step
Gt+1:T. This is the relationship in the equations that Temporal-Difference (TD) methods
exploit. These methods, unlike MC, can learn from incomplete episodes by using the one-
step actual return, which is obviously just the immediate reward Rt+1, but then an estimate of
the return from the next state onwards, which is simply the state-value function estimate of
the next state V(St+1). That is, Rt+1 + γV(St+1), which is called the TD target.

BoiL it DoWn

Temporal-Difference learning and bootstrapping

TD methods estimate vπ(s) using an estimate of vπ(s), it "bootstraps," it makes a guess from a
guess, it uses an estimated return instead of the actual return. More concretely, it uses Rt+1 +
γVt(St+1) to calculate and estimate of Vt+1(St).

Because it also uses a one step of the actual return Rt+1, things work out fine. That reward
signal Rt+1 progressively "injects reality" into the estimates.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

137

13Learning to estimate the value of policies

shoW Me the MAth

Temporal-Difference learning equations

(1) We again start from the definition of the
state-value function.
(2) And the definition of the return.

(3) From the return, we can rewrite the equation by grouping up some terms. Check it out.

(4) Now, the same return has a recursive style.

(5) We can use this new definition to also rewrite the state-value function definition equation.

(6) And because the
expectation of the
returns from the next
state is simply the
state-value function of
the next state, we get.

(7) This means we could estimate the
state-value function on every time step.
(8) We roll out a single interaction step.

(10) The key difference to realize is we are now
estimating vπ(st) with an estimate of vπ(st+1). We
are using an estimated, not an actual return.

(9) And can obtain an estimate V(s) of
the true state-value function vπ(s) a
different way than with MC.

(11) A big win is we can now make updates to the
state-value function estimates V(s) every time step.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

138

14 Chapter 5 I evaluating agents' behaviors

i speAk python

The Temporal-Difference learning algorithm

def td(pi,
 env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.3,
 n_episodes=500):

 nS = env.observation_space.n
 V = np.zeros(nS)
 V_track = np.zeros((n_episodes, nS))
 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

 state, done = env.reset(), False
 while not done:

 action = pi(state)

 next_state, reward, done, _ = env.step(action)

 td_target = reward + gamma * V[next_state] * \
 (not done)

 td_error = td_target - V[state]
 V[state] = V[state] + alphas[e] * td_error

 state = next_state

 V_track[e] = V
 return V, V_track

(1) 'td' is a prediction method. It takes in a
policy 'pi', an environment 'env' to interact with,
and the discount factor 'gamma'.
(2) The learning method has a configurable
hyperparameter 'alpha', which is the learning
rate.

(3) One of the many ways of handling the learning rate is to exponentially decay it. The initial
value is 'init_alpha', 'min_alpha' the minimum value, and 'alpha_decay_ratio' is the fraction of
episodes that will take to decay alpha from 'init_alpha' to 'min_alpha'.

(4) We initialize the variables needed.

(6) And loop for 'n_episodes'...

(5) And calculate the
learning rate schedule
for all episodes.

(7) We get the initial state and then enter the interaction loop.

(8) First thing is to sample the policy 'pi'
for the action to take in state 'state'.

(9) We then use the action to interact with the environment... We roll out the policy one step.

(10) And can immediately calculate a target to update the state-value function estimates.

(11) And with the target, an error. (12) Finally
update V(s).

(13) Don't forget to update the
'state' variable for next iteration.
Bugs like this can be hard to find!

(14) And return the V function and the tracking variable.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

139

15Learning to estimate the value of policies

Now, to be clear, the TD target is a biased estimate of the true state-value function vπ(s),
because we use an estimate of the state-value function to calculate an estimate of the state-
value function. Yeah, weird, I know. This way of updating an estimate with an estimate
is referred to as bootstrapping, and it is very much like what the Dynamic Programming
methods we learned about in chapter 3 do. The thing is, though, DP methods bootstrap
on the one-step expectation while TD methods bootstrap on a sample of the one-step
expectation. That sample word there makes a whole lot of a difference.

In the good side, while the new estimated return, the TD target, is a biased estimate of the
true state-value function vπ(s), it also has a much lower variance than the actual return Gt:T
we use in Monte-Carlo updates. This is because the TD target depends only on a single
action, a single transition, and a single reward, so there is much less randomness being
accumulated. As a consequence, TD methods usually learn much faster than MC methods.

0001 A Bit of histoRy

Temporal-Difference learning

In 1988, Richard Sutton released a paper titled "Learning to Predict by the Methods
of Temporal Differences" in which he introduced the TD learning method. The RW
environment we are using in this chapter was also first presented in this paper. The critical
contribution of this paper was the realization that while methods such as MC calculate
errors using the differences between predicted and actual returns, TD was able to use the
difference between temporally successive predictions. Thus the name Temporal-Difference
learning.

TD learning is the precursor of methods such as SARSA, Q-Learning, Double Q-Learning,
DQN, DDQN, and more. We'll learn about these methods in this book.

ŘŁ With An RL Accent

True vs. Actual vs. Estimated

True value function: Refers to the exact and perfectly accurate value function, as if given
by an oracle. The true value function is the value function agents estimate through samples.
If we had the true value function, we could easily estimate returns.

Actual return: Refers to the experienced return, as opposed to an estimated return. Agents
can only experience actual returns, but they can use value function to estimate returns.

Estimated value function or estimated return: Refers to the rough calculation of the true
value function or actual return. "Estimated" means an approximation, a guess. True value
functions let you estimate returns, estimated value functions add bias to those estimates.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

140

16 Chapter 5 I evaluating agents' behaviors

it's in the DetAiLs

FVMC, EVMC, and TD on the RW environment

I ran these 3 policy evaluation algorithms on the RW environment, all methods evaluated
an all-left policy. Now, remember, the dynamics of the environment make it such that any
action, left or right, has a uniform probability of transition (50% left and 50% right). So, in
this case, the policy being evaluated is irrelevant.

I used the same schedule for the learning rate, alpha, in all algorithms: alpha starts at
0.5, and it decreases
exponentially to 0.01 in 250
episodes out of the 500 total
episodes, that's a 50% of the
total number of episodes.
This hyperparameter is
essential. Often, alpha is a
positive constant less than
1. Having a constant alpha
helps with learning in non-
stationary environments.

However, I chose to decay
alpha to show convergence.
The way I'm decaying alpha helps the algorithms get close to converging, but because
I'm not decreasing alpha all the way to zero, they don't fully converge. Other than that,
these results will should help you gain some intuition about the differences between these
methods.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

141

17Learning to estimate the value of policies

tALLy it up

MC and TD both nearly converge to the true state-value function
(1) Here I'll be showing only First-Visit Monte-Carlo prediction (FVMC) and Temporal-Difference
Learning (TD). If you head to the Notebook for this chapter, you'll also see the results for Every-
Visit Monte-Carlo prediction, and some additional plots that may be of interest to you!

(2) Take a close look at these plots. These are the running state-value function
estimates V(s) of an all-left policy in the Random Walk environment. As you can
see in these plots, both algorithms show near-convergence to the true values.
(3) Now, see the difference trends of these algorithms. FVMC running estimates
are very noisy, they jump back and forth around the true values.

(4) TD running estimates don't jump as much, but they are off center for most of the
episodes. For instance V(5) is usually higher than vπ(5), while V(1) is usually lower than
vπ(1). But if you compare those values with FVMC estimates, you notice a different trend.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

142

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_05/chapter-05.ipynb

18 Chapter 5 I evaluating agents' behaviors

tALLy it up

MC estimates are noisy, TD estimates off target

(1) If we get a close-up (log-scale
plot) these trends, you will see
what's happening. MC estimates
jump around the true values. This is
because of the high variance of the
MC targets.

(3) TD estimates are off target most
of the time, but they are less jumpy.
This is because TD targets are low
variance, though biased. They use an
estimated return for target.

(2) A couple of
pros though; first
you can see all
estimates get
close to their true
values very early
on.
Also, the
estimates jump
around the true
values.

(4) The bias
shows, too. In the
end, TD targets
give up accuracy in
order to become
more precise.
Also, they take
a bit long before
estimates ramp
up, at least in this
environment.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

143

19Learning to estimate the value of policies

tALLy it up

MC targets high variance is evident, TD targets bias, too

(2) These plots are
showing the targets for
the initial state in the RW
environment. MC targets,
the returns, are either 0
or 1 because the episode
terminates either on the
left, with a 0 return or on
the right, with a 1 return,
while the optimal value is
0.5!

(4) Here you can see the
range of the TD targets is
much lower, MC alternates
exactly between 1 and
0, TD jumps between
approximately 0.7 and ~0.3,
depending on which "next
state" is sampled. But as
the Vt(St+1) is an estimate,
Gt:t+1 is biased, off target,
inaccurate.

(1) Here we can see the bias/variance
tradeoff between MC and TD targets.
Remember, the MC target is the return,
which accumulates a lot of random noise.
That means high variance targets.

(3) TD targets are calculated using an estimated
return. We use the value function to predict how
much value we will get from the next state onwards.
This helps us truncate the calculations and get more
estimates per episode (as you can see on the x axis, we
have ~1600 estimates in 500 episodes), but because
we use Vt(St+1), which is an estimate and therefore likely
wrong, TD targets are biased.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

144

20 Chapter 5 I evaluating agents' behaviors

Learning to estimate from multiple steps
So far, in this chapter, we looked at the two central algorithms for estimating value functions
of a given policy through interaction. In MC
methods, we sample the environment all the
way through the end of the episode before we
estimate the value function. These methods
spread the actual return, the discounted total
reward, on all states. For instance, if the discount
factor is less than 1 and the return is only 0 or 1,
as it is the case in the RW environment, the MC
target will always be either 0 or 1 for every single
state. The same signal gets pushed back all the
way to the beginning of the trajectory. This is
obviously not the case for environments with a
different discount factor or reward function.

On the other hand, in TD learning, the agent interacts with the environment only once,
and it estimates the expected return to go to then estimate the target and then the value
function. TD methods bootstrap, they make a guess from a guess. What that means is that,
instead of waiting until the end of an episode to get the actual return like MC methods do,
TD methods use a single-step reward but then an estimate of the expected return-to-go,
which is the value function of the next state.

But, is there something in between? I mean, that's fine that TD bootstraps after just one
step, but how about after two steps? Three? Four? How many steps should we wait before we
estimate the expected return and bootstrap on the value function?

As it turns out, there is a spectrum of algorithms lying in between MC and TD. In this
section, we will take a look at what's in the middle. You will see that we can tune how much
bootstrapping our targets depend on in way for trading-off bias and variance.

! MigueL's AnALogy

MC and TD have very distinct personalities

I like to think of MC-style algorithms as type A personality agents and TD-style algorithms
as type B personality agents. If you look it up you'll see what I mean. Type A people are
outcome-driven, time-conscious, and business-like, type B are easy-going, reflective, and
hippie-like. The fact that MC uses actual returns and TD uses predicted returns should make
you wonder if there is a personality to each of these types target. Think about it for a while,
I'm sure you'll be able to notice some interesting patterns to help you remember.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

145

21Learning to estimate from multiple steps

N-step TD Learning: Improving estimates after a couple of steps
The motivation should be clear; we have two extremes, Monte-Carlo methods, and
Temporal-Difference methods. One can perform better than the other, depending on the
circumstances. MC is an infinite-step method because it goes all the way until the end of the
episode.

I know, "infinite" may sound confusing, but recall in chapter 2 we defined a terminal state
as a state with all actions and all transitions coming from those actions looping back to that
same state with no reward. This way, you can think of an agent "getting stuck" in this loop
forever and therefore doing an infinite number of steps without accumulating reward, or
updating the state-value function.

So, TD, on the other hand, is a one-step method because it interacts with the environment
for a single step before bootstrapping and updating the state-value function. You can
generalize these two methods into an n-step method. So, instead of doing a single step, like
TD, or the full episode like MC, why not use n-steps to calculate value functions and abstract
n out? This method is called n-step TD, which does an n-step bootstrapping. Interestingly an
intermediate n value often performs the better than either extreme. You see, you shouldn't
become an extremist!

shoW Me the MAth

N-step temporal-difference equations

(1) Notice how in n-step TD we must wait n steps before we can update V(s).
(2) Now, n doesn't have to be ∞ like in MC, or 1 like in TD. Here you get to pick. In reality n will be n or
less if your agent reaches a terminal state. So, it could be less than n, but never more.

(3) Here you see how the value
function estimate gets updated
approximately every n steps.

(4) But after that, you can just
plug-in that target as usual.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

146

22 Chapter 5 I evaluating agents' behaviors

i speAk python

N-step TD 1/2

def ntd(pi,
 env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 n_step=3,
 n_episodes=500):

 nS = env.observation_space.n
 V = np.zeros(nS)
 V_track = np.zeros((n_episodes, nS))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 discounts = np.logspace(
 0, n_step+1, num=n_step+1, base=gamma, endpoint=False)

 for e in tqdm(range(n_episodes), leave=False):

 state, done, path = env.reset(), False, []

 while not done or path is not None:
 path = path[1:]

 while not done and len(path) < n_step:

(1) Here is my implementation of the
n-step TD algorithm. There are many
ways you can code this up, this is
just one of them for your reference.

(3) Here we have the
usual suspects.

(5) Now, here is a hybrid between MC and TD. Notice we calculate the discount
factors, but instead of going to 'max_steps' like in my MC implementation, we go
to 'n_step + 1' to include n steps and the bootstrapping estimate.

(6) We get into the episodes loop.

(4) Calculate all alphas in advance.

(7) This 'path' variable will hold the 'n_step'-most-recent experiences. A partial trajectory.

(8) We are going until we hit done and the path is set to none. You'll see soon.

(9) Here, we are "popping" the
first element of the path.

(10) This line repeats on the next page.

(2) Here we are using the same hyperparameters as before. Notice 'n_step' is a default of 3.
That is 3 steps and then bootstrap, or less if we hit a terminal state, in which case we don't
bootstrap (again, the value of a terminal state is zero by definition.)

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

147

23Learning to estimate from multiple steps

i speAk python

N-step TD 2/2

 while not done and len(path) < n_step:
 action = pi(state)
 next_state, reward, done, _ = env.step(action)
 experience = (state, reward, next_state, done)
 path.append(experience)
 state = next_state
 if done:
 break

 n = len(path)
 est_state = path[0][0]

 rewards = np.array(path)[:,1]

 partial_return = discounts[:n] * rewards

 bs_val = discounts[-1] * V[next_state] * (not done)

 ntd_target = np.sum(np.append(partial_return,
 bs_val))

 ntd_error = ntd_target - V[est_state]

 V[est_state] = V[est_state] + alphas[e] * ntd_error

 if len(path) == 1 and path[0][3]:
 path = None
 V_track[e] = V
 return V, V_track

(11) Same. Just for you to follow the indentation.

(12) This is the
interaction block,
we are basically
collecting experiences
until we hit done or
the length of the path
is equal to 'n_step'.

(13) 'n' here could be 'n_step' but it
could also be a smaller number if a
terminal state is in the 'path'.

(14) Here we are extracting the state
we are estimating, which is not 'state'.

(15) 'rewards' is a vector of all rewards encountered from the 'est_state' until 'n'.

(16) 'partial_return' is a vector of discounted rewards from 'est_state' to 'n'.

(17) 'bs_val' is the bootstrapping value. Notice that in this case 'next state' is correct.

(18) 'ntd_target' is the sum of the partial return and bootstrapping value.

(19) This is just the error, like we've been calculating all along.

(20) The update to the state-value function.

(21) Here we set 'path' to 'None' to break out of the episode loop, if 'path' has only one
experience and the 'done' flag of that experience is 'True' (only a terminal state in 'path'.)

(22) We return V and V_track as usual.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

148

24 Chapter 5 I evaluating agents' behaviors

Forward-view TD(λ): Improving estimates of all visited states
But, a question emerges: what is a good n value, then? When should you use a one-step,
two-step, three-step or anything else? I already gave some practical advice that values of
n higher than one are usually better, but we shouldn't either go all the way out to actual
returns. Bootstrapping helps, but its bias is a challenge.

So, how about using a weighted combination of all n-step targets as a single target? I mean,
our agent could go out and calculate the n-step targets corresponding to the one-, two-,
three-,..., infinite-step target, then mix all of these targets with an exponentially decaying
factor. Gotta have it!

This is what a method called Forward-view TD(λ) does. Forward-view TD(λ) is a
prediction method that combines multiple n-steps into a single update. In this particular
version, the agent will have to wait until the end of an episode before it can update the state-
value function estimates. However, another method, called, Backward-view TD(λ), can split
the corresponding updates into partial updates and apply those partial updates to the state-
value function estimates on every step. Like leaving a trail of TD updates along a trajectory.
Pretty cool, right? Let's take a deeper look.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

149

25Learning to estimate from multiple steps

shoW Me the MAth

Forward-view TD(λ)

(1) Sure, this is a loaded equation, but we will unpack it below. The
bottom line is that we are using all n-step returns until the final
step T, and weighting it with an exponentially decaying value.

(2) The thing is, because
T is variable, we need to
weight the actual return
with a normalizing value
so that all weights add up
to 1.

(3) All this equation is saying is that
we will calculate the one-step return
and weight it with the following factor.

(4) And also the two-step return and weight it with this factor.

(5) Then the same for the three-step return, and this factor.

(6) You do this for all n-steps...

(7) Until your agent reaches a terminal state. Then you weight by this normalizing factor.

(8) Notice the issue with this approach is that you must sample
an entire trajectory before you can calculate these values.

(9) Here you have it, V will
become available at time T.

(10) Because of this.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

150

26 Chapter 5 I evaluating agents' behaviors

TD(λ): Improving estimates of all visited states after each step
MC methods are under "the curse of the time step" because they can only apply updates to
the state-value function estimates after reaching a terminal state. With n-step bootstrapping,
you are still under "the curse of the time step" because you still have to wait until n
interactions with the environment have passed before you can make an update to the
state-value function estimates. You are basically playing catch-up with an n-step delay. For
instance, in a five-step bootstrapping method, you will have to wait until you've seen five
(or less when reaching a terminal state) states, and five rewards before you can make any
calculations, a little bit like MC methods.

With Forward-view TD(λ), we are back at MC in terms of the time step; The Forward-view
TD(λ) must also wait until the end of an episode before it can apply the corresponding
update to the state-value function estimates. But at least we gain something: we can get
lower-variance targets if we are willing to give up unbiasedness.

In addition to generalizing and unifying MC and TD methods, Backward-view TD(λ), or
just TD(λ) for short, can still tune the bias/variance tradeoff in addition to the ability to
apply updates on every time step, just like TD.

The mechanism that provides TD(λ) this advantage is known as eligibility traces. An
eligibility trace is a memory vector that keeps track of recently visited states. The basic idea
is to track the states that are eligible for an update on every step. We keep track, not only
whether a state is eligible or not, but also by how much, so that the corresponding update is
applied correctly to eligible states.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

151

27Learning to estimate from multiple steps

For example, all eligibility traces are initialized to zero, and when you encounter a state,
you add a one to its trace. Each time step, you calculate an update to the value function
for all states and multiply it by the eligibility trace vector. This way, only eligible states will
get updated. After the update, the eligibility trace vector is decayed by the λ (weight mix-
in factor) and γ (discount factor), so that future reinforcing events have less impact on
earlier states. By doing this, the most recent states get more significant credit for a reward
encountered in a recent transition than those states visited earlier in the episode. Of course,
given that λ is not set to one; otherwise, this is just very similar to a MC update which gives
equal credit (assuming no discounting) to all states visited during the episode.

A final thing I wanted to reiterate is that TD(λ) when λ=0 is equivalent to the TD method
we learned about before. For this reason, TD is often referred to as TD(0). On the other
hand, TD(λ), when λ=1 is equivalent to MC, well kind of. In reality, it is equal to MC
assuming offline updates. That means, assuming the updates are accumulated and applied
at the end of the episode. With online updates, the estimated state-value function changes
likely every step, and therefore the bootstrapping estimates vary, changing, in turn, the
progression of estimates. Still, TD(1) is commonly assumed equal to MC. Moreover, a recent
method, called True Online TD(λ), is a different implementation of TD(λ) that achieves
perfect equivalence of TD(0) with TD and TD(1) with MC.

shoW Me the MAth

Backward-view TD(λ) — TD(λ) with eligibility traces, "the" TD(λ)

(1) Every new episode we set the eligibility vector to 0.
(2) Then, we interact with the environment one cycle.
(3) When you encounter a state St, make it eligible for
an update... Technically, you increment its eligibility by 1.
(4) We then simply calculate the TD error just as we
have been doing so far.

(5) However, unlike before, we update the
estimated state-value function V, that
is, the entire function at once, every time
step! Notice I'm not using a Vt(St), but a
Vt instead. Because we are multiplying by
the eligibility vector, all eligible states will
get the corresponding credit. (6) Finally, we decay the eligibility.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

152

28 Chapter 5 I evaluating agents' behaviors

i speAk python

The TD(λ) algorithm, a.k.a. Forward-view TD(λ)

def td_lambda(pi,
 env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.3,
 lambda_=0.3,
 n_episodes=500):

 nS = env.observation_space.n
 V = np.zeros(nS)
 V_track = np.zeros((n_episodes, nS))
 E = np.zeros(nS)
 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 for e in tqdm(range(n_episodes), leave=False):
 E.fill(0)

 state, done = env.reset(), False

 while not done:
 action = pi(state)
 next_state, reward, done, _ = env.step(action)

 td_target = reward + gamma * V[next_state] * \
 (not done)
 td_error = td_target - V[state]

 E[state] = E[state] + 1
 V = V + alphas[e] * td_error * E
 E = gamma * lambda_ * E

 state = next_state
 V_track[e] = V
 return V, V_track

(1) The method 'td_lambda' has
a very similar signature to all
other methods. The only new
hyperparameter is 'lambda_' (the
underscore is just because 'lambda'
is a restricted keyword in Python.

(2) Set the usual suspects.

(3) Add a new guy: the eligibility trace vector.

(5) Here we enter the episode loop.

(6) Set E to zero every new episode.

(4) Calculate
alpha for all
episodes.

(7) Set initial variables.

(8) Get into the time step loop.

(9) We first interact with the environment for one step and get the experience tuple.
(10) Then, we use that experience to calculate the TD error, just as usual.

(11) We increment the
eligibility of 'state' by 1.
(12) And apply the error
update to all eligible
states as indicated by E.
(13) We decay E.
(14) And continue our
lives as usual.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

153

29Learning to estimate from multiple steps

tALLy it up

Running estimates that n-step TD and TD(λ) produce in the RW environment

(1) I think the most
interesting part of the
differences and similarities
of MC, TD, n-step TD and
TD(lambda) can be visualized
side-by-side. For this, I highly
recommend you head to the
book repository and checkout
the corresponding Notebook
for this chapter. You'll find
much more than what I've
shown you in the text.
(2) But for now I can highlight
that n-step TD curves are a
bit more like MC: noisy and
centered, while TD(lambda) is
a bit more like TD: smooth and
off-target.
(3) When we look at the log-
scale plots, we can see how
the high variance estimates
of n-step TD [at least higher
than TD(lambda) in this
experiment], and how the
running estimates move above
and below the true values,
though they are centered.
(4) TD(lambda) values are not
centered, but are also much
smoother than MC. These two
are interesting properties. Go
compare them with the rest
of the methods you've learned
about so far!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

154

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_05/chapter-05.ipynb

30 Chapter 5 I evaluating agents' behaviors

concRete exAMpLe

Evaluating the optimal policy of the Russell and Norvig's Grid-world environment

Lets run all algorithms in a slightly different environment. The environment is one you've
probably come across multiple times in the past. It is from Russell and Norvig's book on AI.

This environment which, I will call Russell and Norvig's Grid-world (RNG), is a 3x4 grid world
in which the agent starts at the bottom-left corner and it has to reach the top-right corner.
There is a hole, similar to the Frozen Lake environment, south of the goal, and a wall near
the start. The transition function has a 20% noise, that is 80% the action succeeds, and 20%
it fails uniformly at random in orthogonal directions. The reward function is a -0.04 living
penalty, a +1 for landing on the goal, and a -1 for landing on the hole.

Now, what we are doing here is evaluating a policy. I happen to obtain the optimal policy in
chapter 3's Notebook, I just didn't have space in that chapter to talk about it. In fact, make
sure you check all the Notebooks provided with the book.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

155

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_03/chapter-03.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/

31Learning to estimate from multiple steps

tALLy it up

FVMC, TD, n-step TD and TD(λ) in the RNG environment

(1) I ran the same exact
hyperparameter as before
except for 1000 episodes
instead of the 500
for the RW. The results
shown on the right are the
running estimates of the
state-value function for 5
randomly selected states
(randomly, but with the
same seed for each plot for
easy comparison – also not
really 100% random. I first
filter estimated values
lower than a threshold,
0.1) out of the total 12
states. I did this so that
you can better appreciate
meaningful trends of a
handful states.

(2) As you can see, all 4
algorithms (5 if you head
to the Notebook!) find
a pretty good estimate
of the true state-value
function. If you look closely,
you can see that TD and
TD(lambda) show the two
smoothest curves. MC, on
the other hand, followed by
n-step TD show the most
centered trends.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

156

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_05/chapter-05.ipynb

32 Chapter 5 I evaluating agents' behaviors

tALLy it up

RNG shows a bit better the bias and variance effects on estimates

(1) Alright, so I figure I
probably need to "zoom in"
and show you the front of
the curves. These plots are
not log scale like the other
ones I have shown in the
past. These one are a slice
on the first 50 episodes.
Also, I'm showing only the
values greater than 0.1,
but as you can see, that
includes most states. Value
functions of states 3, 5,
and 7 are 0, and 10 and 11
are far from being ran by
the optimal policy because
the action in the state 9
and 6 points left and up
respectively, which is away
from state 10 and 11.

(2) Look at the trends this
time around. They are easier
to spot. For instance, MC
is jagged, showing those up
and down trends. TD on the
other hand is smooth, but
slow. n-step TD is somewhat
in between, and TD(lambda),
interestingly shows the
smoothness of TD, which
you can probably easily
appreciate, but also it is not
as slow. For instance look
at the curve of V(6), it first
crosses the 0.4 line around
25 episodes, TD all the way
at 45.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

157

33Learning to estimate from multiple steps

tALLy it up

FVMC and TD targets of the RNG's initial state

(1) These final plots are the sequence of target values of the initial state. As you might expect,
the MC targets are independent of the sequence number, because they are actual returns and
do not bootstrap on the state-value function.

(3) TD targets are a bit more dependent on the sequence. Notice that early on, the targets are
very off and somewhat noisy. However, as the targets add up they become much more stable.

(2) You can
probably
also notice
they are high
variance.
These ones
are mostly
concentrated
on top, but
have a handful
down here.

(4) You may
notice 3 lines
start to form.
Remember,
these are
targets for
the initial
state, state
8. If you look
at the policy,
you will notice
that going up
in state 8 can
only have 3
transitions... (5) ... with 80% the agents lands on state 4 (up), 10% is bounces back to 8

(left), and 10% lands on state 9 (right). Can you think which line on the plot
above corresponds to which "next state". Why?! Run experiments!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

158

34 Chapter 5 I evaluating agents' behaviors

Summary
Learning from sequential feedback is challenging; you learned lots about it in chapter 3. You
created agents that balance immediate and long-term goals. Methods such as Value Iteration
(VI) and Policy Iteration (PI) are central to RL. Learning from evaluative feedback is also
very difficult. Chapter 4 was all about a particular type of environment in which agents must
learn to balance the gathering and utilization of information. Strategies such as Epsilon-
Greedy, SoftMax, Optimistic Initialization, to name a few, are also at the core of RL.

And I want you to stop for a second and think about these two tradeoff one more time
as separate problems. I've seen over-500-pages textbooks dedicated to each of these
tradeoffs. So, while you should be happy we only put 30 pages on each, you should also be
wondering. If you are looking to develop new DRL algorithms, to push the state-of-the-art,
I recommend you study these two tradeoffs independently. Search for books on "planning
algorithms" and "bandit algorithms," and put time and effort understanding each of those
fields. You'll feel leaps ahead when you come back to RL and see all the connections. Now,
if your goal is simply to understand DRL, to implement a couple of methods, to use them in
your own projects, what's in here will do.

In this chapter, you learned about agents that can deal with feedback that is simultaneously
sequential and evaluative. And as mentioned before, this is no small feat! To simultaneously
balance immediate and long-term goals and the gathering and utilization of information
is something even most humans have problems with! Sure, in this chapter, we restricted
ourselves to the prediction problem, which consists of estimating values of agents' behaviors.
For this, we introduced methods such as Monte-Carlo prediction and Temporal-Difference
learning. Those two methods are the extremes in a spectrum that can be generalized with
the n-step TD agent. By merely changing the step size, you can get virtually any agent in
between. But then we learned about TD(λ) and how this a single agent can combine the two
extremes and everything in between in a very innovative way.

Next chapter, we will look at the control problem, which is nothing but improving agents'
behaviors. Just as we split the policy iteration algorithm into policy evaluation and policy
improvement, splitting the reinforcement learning problem into the prediction problem and
the control problem allows us to dig into the details and get better methods.

By now you:

• Understand that the challenge of reinforcement learning is because agents cannot see
the underlying MDP governing their evolving environments.

• Learned how these two challenges combine and give rise to the field of RL.
• Know about many ways of calculating targets for estimating state-value functions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

159

improving
agents' behaviors 6

In this chapter

• You learn about improving policies when learning
from feedback that is simultaneously sequential and
evaluative.

• You develop algorithms for finding optimal policies
in reinforcement learning environments when the
transition and reward functions are unknown.

• You write code of agents that can go from random
to optimal behavior using only their experiences
and decision-making, and apply them to a variety of
environments.

When it is obvious that the goals cannot be
reached, don't adjust the goals, adjust the
action steps.

— Confucius
Chinese teacher, editor, politician, and philosopher

of the Spring and Autumn period of Chinese history

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

160

2 Chapter 6 I improving agents' behaviors

Up until this chapter, you have studied in isolation and interplay learning from two of the
three different types of feedback a reinforcement learning agent must deal with: sequential,
evaluative, and sampled. In chapter 2, you learned to represent sequential decision-making
problems using a mathematical framework known as Markov Decision Processes. In chapter
3, you learned how to solve these problems with algorithms that extract policies from these
MDPs. In chapter 4, you learned to solve simple control problems that are multi-option
single-choice decision-making problems, called Multi-armed Bandits, when the MDP
representation is not available to the agent. Finally, in chapter 5, we mixed these two types of
control problems, that is, we dealt with control problems that are sequential and uncertain,
but we only learned to estimate value functions. We solved what is called the Prediction
Problem, which is basically learning to evaluate policies, learning to predict returns.

In this chapter, we will introduce agents that solve the Control Problem, which we get
simply by changing two things. First, instead of estimating state-value functions, V(s), we
estimate action-value functions, Q(s, a). The main reason for this is that Q-functions, unlike
V-functions, let us see the value of actions without having to use an MDP. Second, after we
obtain these Q-value estimates, we use them to improve the policies. This is very similar
to what we did in the policy iteration algorithm: we evaluate, we improve, then evaluate
the improved policy, then improve on this improved policy, and so on. As I mentioned in
chapter 2, this pattern is called Generalized Policy Iteration (GPI), and it can help us create
an architecture that virtually any reinforcement learning algorithm, including state-of-the-
art deep reinforcement learning agents, fits under.

The outline for this chapter is as follows: first, I'll expand on the generalize policy iteration
architecture, and then you learn about many different types of agents that solve the
control problem. You'll learn about the control version of the Monte-Carlo prediction and
Temporal-difference learning agents. You also learn about slightly different kinds of agents
that decouple learning from behavior. What this all means in practical terms is that in this
chapter, you develop agents that learn to solve tasks by trial-and-error learning. These
agents learn optimal policies solely through their interaction with the environment.

The anatomy of reinforcement learning agents
In this section, I'd like to give you a mental model that most, if not all, reinforcement
learning agents fit under. First, every reinforcement learning agent gathers experience
samples, either from interacting with the environment or from querying a learned model
of an environment. Still, data is generated as the agents learn. Second, every reinforcement
learning agent learns to estimate something, perhaps a model of the environment, or possibly
a policy, a value function, or just the returns. Third, every reinforcement learning agent
attempts to improve a policy, that's the whole point of RL, after all.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

161

3The anatomy of reinforcement learning agents

F5 RefResh My MeMoRy

Rewards, returns, and value functions

Now it's a good time to refresh your memory. You need to remember the difference
between rewards, returns, and value functions, so that this chapter makes sense to you and
you are able to develop agents that learn optimal policies through trial-and-error learning.
So, allow me to repeat myself:

A reward is a numeric signal indicating the
goodness of a transition. Your agent observes
state St, takes action At, then the environment
changes and gives a reward Rt+1, and emits a new state St+1. Rewards are that single numeric
signal indicating the goodness of the transition occurring on every time step of an episode.

A return is the summation of all the rewards
received during an episode. Your agent
receives reward Rt+1, then Rt+2, and so on
until it gets the final reward RT right before
landing in the terminal state ST. Returns are
the sum of all those rewards during an episode. Returns are often defined as the discounted
sum, instead of just a sum. A discounted sum puts a priority on rewards found early in an
episode (depending on the discount factor, of course.) Technically speaking, a discounted
sum is a more general definition of the return, since a discount factor of one makes it a plain
sum.

A value function is
the expected return.
Expectations are
calculated as the sum
of all possible values,
each multiplied by
the probability of its
occurrence. Think of
expectations as the
average of an infinite
number of samples; the
expectation of returns is
like sampling an infinite
number of returns and
averaging them. When you calculate a return starting after selecting an action, then the
expectation is the action-value function of that state-action pair, Q(s, a). If you disregard the
action taken and just count from the state s, that becomes the state-value function V(s).

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

162

4 Chapter 6 I improving agents' behaviors

Most agents gather experience samples
One of the unique characteristics of RL is that agents learn by trial-and-error. The agent
interacts with an environment, and as it does so, it gathers data. The unusual aspect here
is that gathering data is a separate challenge than learning from data. And as you will see
shortly, learning from data is also a different thing than improving from data. In RL, there
is gathering, learning, and improving. For instance, an agent that is pretty good at collecting
data may not be as good at learning from data, or conversely, an agent that is not good at
collecting data may be good at learning from data, and so on. We all have that friend that
didn't take good notes in school, yet it did well on tests, while others had everything written
down, but didn't do as well.

In chapter 2, when we learned about dynamic programming methods, I mentioned value
and policy iteration shouldn't be referred to as RL, but planning methods instead. The
reason being they do not gather data. There is no need for DP methods to interact with the
environment because a model of the environment, the MDP, is provided beforehand.

For an algorithm to be considered a standard RL method, the aspect of interacting with the
environment, with the problem we're trying to solve, should be present. Most RL agents
gather experience samples by themselves, unlike supervised-learning methods, for instance,
which are given a dataset, RL agents have the additional challenge of selecting their datasets.
Most RL agents gather experience samples because RL is often about solving interactive
learning problems.

ŘŁ With An RL Accent

Planning vs. Learning problems

Planning problems: Refers to problems in which a model of the environment is available
and thus, there is no learning required. These types of problems can be solved with planning
methods such as value iteration and policy iteration. The goal in these types of problems is
to find, as opposed to learn, optimal policies. Suppose I give you a map and ask you to find
the best route from point A to point B; there is no learning required there, just planning.

Learning problems: Refers to problems in which learning from samples is required,
usually because there isn't available a model of the environment or perhaps because it is
impossible to do create one. The main challenge of learning problems is that we estimate
using samples and samples can have high variance, which means they will be of poor
quality and difficult to learn from. Samples can also be biased, either for being from a
different distribution than the one estimating or for using estimates to estimate, which can
make our estimates incorrect altogether. Suppose I don't give you a map of the area this
time. How would you find "the best route"? By trial-and-error learning, likely.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

163

5The anatomy of reinforcement learning agents

Most agents estimate something
After gathering data, there are multiple things an agent can do with this data. Some agents,
for instance, learn to predict expected returns or value functions. In the previous chapter, you
learned about many different ways of doing so, from using Monte-Carlo to TD targets, from
every-visit to first-visit MC targets, from n-step to λ-return targets. There are many different
ways of calculating targets that can be used for estimating value functions.

But value functions are not the only thing agents can learn with experience samples. Agents
may be designed to learn models of the environment, too. As you will see in the next
chapter, model-based RL agents use the data collected for learning transition and reward
functions. By learning a model of the environment, agents can predict the next state and
reward. Further, with these, agents can either plan a sequence of actions similar to the
way DP methods work or maybe use synthetic data generated from interacting with these
learned models to learn something else . The point is, agents may be designed to learn
models of the environment.

Moreover, agents can be designed to improve on policies directly using estimated returns. In
later chapters, we'll see how policy gradient methods consist of approximating functions that
take in a state and output a probability distribution over actions. To improve these policy
functions, we can use actual returns, in the simplest case, but also estimated value functions.
Finally, agents can be designed to estimate multiple things at once, and this is the typical
case. The important thing is most agents estimate something.

ŘŁ With An RL Accent

Non-interactive vs. Interactive learning problems

Non-interactive learning problems: Refers to a type of learning problem in which there
is no need or possibility for interacting with an environment. In these types of problems
there is no interaction with an environment while learning, but there is learning from data
previously generated. The objective is to find something given the samples, usually a
policy but not necessarily. For instance, in inverse RL, the objective is to recover the reward
function given expert-behavior samples. In apprenticeship learning, the objective is to go
from this recovered reward function to a policy. In behavioral cloning, which is a form of
imitation learning, the goal is to go from expert-behavior samples directly to policies using
supervised learning.

Interactive learning problems: Refers to a type of learning problem in which learning and
interaction are interleaved. The interesting aspect of these problems is that the learner also
controls the data-gathering process. Optimal learning from samples is one challenge, and
finding samples for optimal learning is another.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

164

6 Chapter 6 I improving agents' behaviors

F5 RefResh My MeMoRy

Monte-Carlo vs. Temporal-Difference targets

Other important concepts worth repeating are the different ways value functions can be
estimated. In general, all methods that learn value functions progressively move estimates
a fraction of the error towards the targets. The general equation most learning methods
follow is: estimate = estimate + step * error. The error is simply the difference between a
sampled target and the current estimate: (target - estimate). The two main and opposite ways
for calculating these targets are Monte-Carlo and Temporal-Difference learning.

The Monte-Carlo target consists of the actual return. Really, nothing else. Monte-Carlo
estimation consists of adjusting the estimates of the value functions using the empirical
(observed) mean return in place of the expected (as if you could average infinite samples)
return.

The Temporal-Difference target consists of an estimated return. Remember
"bootstrapping"? It basically means using the estimated expected return from later states,
for estimating the expected return from the current state. TD does that. Learning a guess
from a guess. The TD target is formed by using a single reward and the estimated expected
return from the next state using the running value function estimates.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

165

7The anatomy of reinforcement learning agents

Most agents improve a policy
Lastly, most agents improve a policy. This final step heavily depends on the type of agent
being trained and what the agent estimates. For instance, if the agent is estimating value
functions, a common thing to improve is the target policy implicitly encoded in the value
function, which is the policy being learned about. The benefit of improving the target policy
is that the behavior policy, which is the data-generating policy, will consequently improve,
therefore improving the quality of data the agent will subsequently gather. If the target and
behavior policies are the same, then the improvement of the underlying value function
explicitly increases the quality of the data generated afterward.

Now, if a policy is being represented explicitly instead of through value functions, such as
in policy gradient and actor-critic methods, agents can use actual returns to improve these
policies. Agents can also use value functions to estimate returns for improving policies.
Finally, in model-based RL, there are multiple options for improving policies. One can
use a learned model of the environment to plan a sequence of actions. In this case, there is
an implicit policy being improved in the planning phase. One can use the model to learn
a value function, instead, which implicitly encodes a policy. One can use the model to
improve the policy directly, too. The bottom line is all agents attempt to improve a policy.

ŘŁ With An RL Accent

Greedy vs. ε-Greedy vs. Optimal policy

Greedy policy: Refers to a policy that always selects the actions believed to yield the
highest expected return from each and every state. It is essential to know that a "greedy
policy" is greedy with respect to a value function. The "believed" part comes from the value
function. The insight here is that when someone says "the greedy policy," you must ask,
greedy with respect to what? A greedy policy with respect to a random value function is a
pretty bad policy.

ε-Greedy (epsilon-greedy) policy: Refers to a policy that often selects the actions believed
to yield the highest expected return from each and every state. Same as before applies; an
epsilon-greedy policy is epsilon-greedy with respect to a specific value function. Always
make sure you understand which value function is being referenced.

Optimal policy: Refers to a policy that always selects the actions actually yielding the
highest expected return from each and every state. While a greedy policy may or may not be
an optimal policy, an optimal policy must undoubtedly be a greedy policy. You ask, "greedy
with respect to what?" Well done! An optimal policy is a greedy policy with respect to a
unique value function, the optimal value function.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

166

8 Chapter 6 I improving agents' behaviors

Generalized Policy Iteration
Another simple pattern that is more commonly used to understand the architecture of
reinforcement learning algorithms is called Generalized Policy Iteration (GPI). GPI is a
general idea that the continuous interaction of Policy Evaluation and Policy Improvement
drives policies towards optimality.

As you probably remember in the Policy Iteration algorithm, we had two processes: Policy
Evaluation and Policy Improvement. The policy-evaluation phase takes in any policy,
and it evaluates it; it estimates the policy's value function. In Policy Improvement, these
estimates, the value function, are used to obtain a better policy. Once Policy Evaluation and
Improvement stabilize, that is, once their interaction no longer produces any changes, then
the policy and the value function are optimal.

Now, if you remember, after studying Policy Iteration, we learned about another algorithm,
called Value Iteration. This one was very similar to Policy Iteration; it had a policy-
evaluation and a policy-improvement phase. The main difference, however, was that the
policy-evaluation phase consisted of a single iteration. In other words, the evaluation of
the policy didn't produce the actual value function. In the policy-evaluation phase of Value
Iteration, the value function estimates move towards the actual value function, but not all
the way there. Yet, even with this truncated policy evaluation phase, the generalized policy
iteration pattern for Value Iteration also produces the optimal value function and policy.

The critical insight here is that Policy Evaluation, in general, consists of gathering and
estimating value functions, just like the algorithms you learned about in the previous
chapter. And as you know, there are multiple ways of evaluating a policy, numerous methods
of estimating the value function of a policy, various approaches to choose from for checking
off the policy evaluation requirement of the generalized policy iteration pattern.

Furthermore, Policy Improvement consists of changing a policy to make it greedier with
respect to a value function. In the Policy Improvement method of the Policy Iteration
algorithm, we make the policy entirely greedy with respect to the value function of the
evaluated policy. But, we were able to completely greedify the policy only because we had
the MDP of the environment. However, the policy-evaluation methods that we learned
about in the previous chapter do not require an MDP of the environment, and this comes
at cost. We can no longer completely greedify policies, we need to have our agents explore.
Going forward, instead of completely greedifying the policy, we make the policy just
greedier, leaving room for exploration. This kind of partial policy improvement was used in
chapter 4 when we used different explorations strategies for working with estimates.

So, there you have it. Most RL algorithms follow this GPI pattern: they have distinct policy-
evaluation and improvement phases, and all we must do is pick and choose the methods.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

167

9The anatomy of reinforcement learning agents

! MigueL's AnALogy

Generalized Policy Iteration and why you should listen to criticism

Generalized Policy Iteration (GPI) is similar to the eternal dance of critics and performers.
Policy evaluation gives the much-needed feedback that policy improvement uses to make
policies better. In the same way, critics provide the much-needed feedback performers can
use to do better.

As Benjamin Franklin said: "Critics are our friends, they show us our faults." He was a smart
guy; he allowed GPI to help him improve. You let critics tell you what they think, you use
that feedback to get better. It's simple! Some of the best companies out there follow this
process, too. What do you think the saying "data-driven decisions" means? It's saying they
make sure to use an excellent policy-evaluation process so that their policy-improvement
process yields solid results; that's the same pattern as GPI! Norman Vincent Peale said: "The
trouble with most of us is that we'd rather be ruined by praise than saved by criticism." So, go, let
critics help you.

Just beware! That they can indeed help you doesn't mean critics are always right or that you
should take their advice blindly, especially if it is feedback that you hear for the first time.
Critics are usually biased, so can policy evaluation! It's your job as a great performer to listen
to this feedback carefully, to get smart about gathering the best possible feedback, and to
act upon it only when sure. But, in the end, the world is of those who do the work.

Theodore Roosevelt said it best:

"It is not the critic who counts; not the man who points out how the strong man stumbles, or
where the doer of deeds could have done them better. The credit belongs to the man who is
actually in the arena, whose face is marred by dust and sweat and blood; who strives valiantly;
who errs, who comes short again and again, because there is no effort without error and
shortcoming; but who does actually strive to do the deeds; who knows great enthusiasms, the
great devotions; who spends himself in a worthy cause; who at the best knows in the end the
triumph of high achievement, and who at the worst, if he fails, at least fails while daring greatly,
so that his place shall never be with those cold and timid souls who neither know victory nor
defeat."

In later chapters, we'll study actor-critic methods, and you'll see how this whole analogy
extends, believe it or not! Actors and critics help each other. Stay tuned for more.

It's awe-inspiring that patterns in optimal decision-making are valid across the board. What
you learn studying DRL can help you become a better decision-maker, and what you learn
in your own life can help you create better agents.

Cool, right?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

168

10 Chapter 6 I improving agents' behaviors

Learning to improve policies of behavior
In the previous chapter, you learned how to solve the Prediction Problem: how to make
agents most accurately estimate the value function of a given policy. However, while this is
a useful ability for our agents to have, it does not directly make them better at any task. In
this section, you'll learn how to solve the Control Problem: how to make agents optimize
policies. This new ability allows agents to learn optimal behavior by trial-and-error learning,
starting from arbitrary policies and ending in optimal ones. This means that after this
chapter you can develop agents that can solve any task represented an MDP. The task has to
be a discrete state- and action-space MDP, but other than that, it is just plug-and-play.

To show you a few agents, we are going to leverage the GPI pattern you just learned. That is,
we are going to select algorithms for the policy-evaluation phase from the ones you learned
about in the last chapter, and strategies for the policy-improvement phase from the ones
you learned about in the chapter before. Hopefully, this sets your imagination free on the
possibilities. Just pick and choose algorithms for policy evaluation and improvement, and
things will work, that's because of the interaction of these two processes.

ŘŁ With An RL Accent

Prediction vs. Control Problem vs. Policy Evaluation vs. Improvement

Prediction Problem: Refers to the problem of evaluating policies, of estimating value
functions given a policy. Estimating value functions is nothing but learning to predict
returns. State-value functions estimate expected returns from states, and action-value
functions estimate expected returns from state-action pairs.

Control Problem: Refers to the problem of finding optimal policies. The Control Problem
is usually solved by following the pattern of Generalized Policy Iteration (GPI,) where the
competing processes of policy evaluation and policy improvement progressively move
policies towards optimality. RL methods often pair an action-value prediction method with
policy improvement and action selection strategies.

Policy Evaluation: Refers to algorithms that solve the Prediction Problem. Note that there
is a dynamic programming method called Policy Evaluation, but this term is also used to
refer to all algorithms that solve the Prediction Problem.

Policy Improvement: Refers to algorithms that make new policies that improve on an
original policy by making it greedier than the original with respect to the value function
of that original policy. Note that Policy Improvement by itself does not solve the Control
Problem. Often a policy evaluation must be paired with a policy improvement to solve the
Control Problem. Policy improvement only refers to the computation for improving a policy
given its evaluation results.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

169

11Learning to improve policies of behavior

concRete exAMpLe

The Slippery Walk Seven environment

For this chapter, we use an environment called Slippery Walk Seven (SWS). This environment
is a walk, a single-row grid-world environment, with seven non-terminal states. The
particular thing of this environment is that it is a slippery walk; action effects are stochastic.
If the agent chooses to go left, there is a chance it does, but there is also some chance that it
goes right, or that it stays in place.

Let me show you the MDP for this environment. Though, remember that the agent doesn't
have any access to the transition probabilities. The dynamics of this environment are unknown
to the agent. I'm only giving you this information for didactic reasons.

Also, have in mind that to the agent, there are no relationships between the states in
advance. The agent doesn't know that state 3 is in the middle of the entire walk, or that
it is in between states 2 and 4, it doesn't even know what a "walk" is! The agent doesn't
know that action zero goes left, or one goes right... Honestly, I encourage you to go to the
Notebook and play with the environment yourself to gain a deeper understanding. The fact
is the agent only sees the state ids, say, 0, 1, 2, etc., and chooses action either 0, or 1.

The SWS environment is similar to the Random Walk (RW) environment that we learned
about in the previous chapter, but with the ability to do control. Remember that the
random walk is an environment in which the probability of going left, when taking the left
action, is equal to the probability of going right. And the probability of going right, when
taking the right action, is equal to the probability of going left. So, there is no control. This
environment is noisy, but the actions the agent selects make a difference in its performance.
And also, this environment has 7 non-terminal states, as opposed to 5 of the RW.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

170

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_06/chapter-06.ipynb

12 Chapter 6 I improving agents' behaviors

Monte-Carlo Control: Improving policies after each episode
Let's try to create a control method using Monte-Carlo prediction for our policy evaluation
needs. Let's initially assume we are using the same policy improvement step we use for
the policy iteration algorithm. That is, the policy improvement step gets the greedy policy
with respect to the value function of the policy evaluated. Would this make an algorithm
that helps us find optimal policies solely through interaction? Actually, no. There are two
changes we need before we can make this approach work.

First, we need to make sure our agent
estimates the action-value function Q(s,
a), instead of the V(s, a) that we estimated
in the previous chapter. The problem with
the V-function is that, without the MDP,
it is not possible to know what's the best
action to take from a state. In other words,
the policy-improvement step wouldn't
work.

Second, we need to make sure our agent
explores. The problem is that we are no
longer using the MDP for our policy-
evaluation needs. When we estimate from
samples, we get values for all of the state-
action pairs we visited, but what if some of
the best states weren't visited?

There, let's use First-Visit Monte-Carlo
Prediction for the policy-evaluation
phase and a Decaying Epsilon-Greedy
action selection strategy for the policy-
improvement phase. And that's it—you have a complete, model-free RL algorithm in
which we evaluate policies with Monte-Carlo prediction and improve them with Decaying
e-Greedy action selection strategy.

Also, just as with Value Iteration, which has a truncated policy-evaluation step, we can
truncate the Monte-Carlo prediction method. So, instead of rolling out several episodes
for estimating the value function of a single policy using Monte-Carlo prediction, as we
did in the previous chapter, we truncate the prediction step after a single full roll-out and
trajectory sample estimation, and improve the policy right after that single estimation step.
We alternate a single MC-prediction step and a single Decaying e-Greedy action selection
improvement step.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

171

13Learning to improve policies of behavior

Let's now look at our first RL method MC control. You'll see three functions:

• 'decay_schedule': compute decaying values as specified in the function arguments.
• 'generate_trajectory': roll-out the policy in the environment for a full episode.
• 'mc_control': complete implementation of MC control method.

i speAk python

Exponentially Decaying Schedule

def decay_schedule(
 init_value, min_value,
 decay_ratio, max_steps,
 log_start=-2, log_base=10):

 decay_steps = int(max_steps * decay_ratio)

 rem_steps = max_steps - decay_steps

 values = np.logspace(
 log_start, 0, decay_steps,
 base=log_base, endpoint=True)[::-1]

 values = (values - values.min()) / \
 (values.max() - values.min())

 values = (init_value - min_value) * values + min_value

 values = np.pad(values, (0, rem_steps), 'edge')
 return values

(1) The decay schedule we will use for
both alpha and epsilon is the same we
used in the previous chapter for alpha.
Let's go into more detail this time.

(2) What I personally like about this function is that you give it an initial value, a minimum
value, and the percentage of the 'max_steps' to decay the values from initial to minimum.

(3) So, this 'decay_steps' is the index where the decaying of values terminates and the
'min_value' continues till 'max_steps'.
(4) 'rem_steps' is therefore just the difference.

(5) I'm calculating the values using the logspace starting from 'log_start', which I set by
default to -2, and ending on 0. The number of values in that space that I ask for is 'decay_
steps' and the base is 'log_base' which I default to 10. Notice I reverse those values!

(6) Be cause the values may not end exactly at 0, given it is the log, I change them to be
between 0 and 1 so that the curve looks smooth and nice.

(7) Then, we can do a linear transformation and get points between `init_value` and `min_value`.

(8) This pad function just repeats the rightmost value 'rem_step' number of times.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

172

14 Chapter 6 I improving agents' behaviors

i speAk python

Generate exploratory policy trajectories

def generate_trajectory(
 select_action, Q, epsilon,
 env, max_steps=200):

 done, trajectory = False, []

 while not done:

 state = env.reset()

 for t in count():

 action = select_action(state, Q, epsilon)

 next_state, reward, done, _ = env.step(action)
 experience = (state,
 action,
 reward,
 next_state,
 done)
 trajectory.append(experience)
 if done:
 break

 if t >= max_steps - 1:
 trajectory = []
 break

 state = next_state

 return np.array(trajectory, np.object)

(1) This version of the 'generate_
trajectory' function is slightly
different. We now need to take
in an action-selecting strategy,
instead of a greedy policy.

(2) We begin by initializing the 'done' flag and a list of
experiences named 'trajectory'.

(3) We then start looping through until
the 'done' flag is set to true.
(4) We reset the environment to
interact in a new episode.
(5) Then start counting steps 't'.

(6) Then, use the passed 'select_action' function to pick an action.

(7) We step the environment using that action and obtain the full experience tuple.

(8) We append the
experience to the
'trajectory' list.

(9) If we hit a terminal state and the 'done'
flag is raised, then break and return.
(10) And if the count of steps 't' in the
current trajectory hits the maximum
allows, we clear the trajectory, break, and
try to obtain another trajectory.

(11) Remember to update the state.
(12) Finally, we return a numpy version of
the trajectory for easy data manipulation.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

173

15Learning to improve policies of behavior

i speAk python

Monte-Carlo Control 1/2

def mc_control(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 n_episodes=3000,
 max_steps=200,
 first_visit=True):

 nS, nA = env.observation_space.n, env.action_space.n

 discounts = np.logspace(
 0, max_steps,
 num=max_steps, base=gamma,
 endpoint=False)

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio,
 n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio,
 n_episodes)

 pi_track = []
 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 for e in tqdm(range(n_episodes), leave=False):

(1) 'mc_control' is very similar
to 'mc_prediction'. The two
main differences is that we now
estimate the action-value function
Q, and that we need to explore.
(2) Notice in the function
definition we are using values for
'epsilon' to configure a decaying
schedule for random exploration.

(3) We calculate values for the
discount factors in advance.
Notice we use 'max_steps'
because that's the maximum
length of a trajectory.
(4) We also calculate alphas in
advance using the passed values.

(5) Finally, we repeat for epsilon,
and obtain an array that will work
for the full training session.

(6) Here we are just setting up variables,
including the Q-function.

(7) This is an epsilon-
greedy strategy,
though we decay
epsilon on each
episode, not step.
(8) Continues...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

174

16 Chapter 6 I improving agents' behaviors

i speAk python

Monte-Carlo Control 2/2

 for e in tqdm(range(n_episodes), leave=False):

 trajectory = generate_trajectory(select_action,
 Q,
 epsilons[e],
 env,
 max_steps)

 visited = np.zeros((nS, nA), dtype=np.bool)
 for t, (state, action, reward, _, _) in enumerate(\
 trajectory):

 if visited[state][action] and first_visit:
 continue
 visited[state][action] = True

 n_steps = len(trajectory[t:])
 G = np.sum(discounts[:n_steps] * trajectory[t:, 2])
 Q[state][action] = Q[state][action] + \
 alphas[e] * (G - Q[state][action])

 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))
 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]

 return Q, V, pi, Q_track, pi_track

(9) Repeating the previous line so that you can keep up with the indentation.

(10) Here we are entering the episode loop. We will run for 'n_episodes'.
Remember that 'tqdm' just shows a nice progress bar, nothing out of this world.

(11) Every new episode 'e' we generate a
new trajectory with the exploratory policy
defined by the 'select_action' function. We
limit the trajectory length to 'max_steps'.
(12) We now keep track of the visits to state-action pairs, this is
another important change from the 'mc_prediction' method.

(13) Notice here we are processing trajectories offline, that is, after
the interactions with the environment have stopped.

(14) Here we check
for state-action-
pair visits and act

(15) We proceed to calculating the return the same way we did with the accordingly.
prediction method, except that we are using a Q-function this time.

(16) Notice how we are using the alphas.
(17) After that, it is just a matter of saving values for post analysis.

(18) At the end, we extract the state-value
function and the greedy policy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

175

17Learning to improve policies of behavior

Sarsa: Improving policies after each step
As we discussed in the previous chapter, one of the disadvantages of Monte-Carlo methods
is that they are offline methods in an episode-to-episode sense. What that means is that we
must wait until we reach a terminal state before we can make any improvements to our value
function estimates. However, it is straightforward to use Temporal-Difference prediction
for the policy-evaluation phase, instead of Monte-Carlo prediction. Simply by replacing MC
with TD prediction, we now have a different algorithm, the well-known Sarsa agent.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

176

18 Chapter 6 I improving agents' behaviors

i speAk python

The Sarsa agent 1/2

def sarsa(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio,
 n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio,
 n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(1) The Sarsa agent is the direct
conversion of TD for control problems.
That is, at its core, Sarsa is just TD with
two main changes. First it evaluates the
action-value function Q. Second, it uses
an exploratory policy-improvement step.
(2) We are doing the same thing we did
with 'mc_control' using epsilon here.

(7) In Sarsa, we don't need to calculate all discount factors in advance, because we won't
use full returns. Instead, we use estimated returns, so we can calculate discounts online.

(3) First, create some handy variables. Remember, 'pi_track' will hold a greedy policy per episode.

(4) Then, we create the Q-function. I'm using 'np.float64' precision... perhaps overkill.

(5) 'Q_track' will hold the estimated Q-function per episode.
(6) The 'select_
action' function
is the same as
before: an e-greedy
strategy.

(8) Notice we are, however,
calculating all alphas in advance.
This function call returns a vector
with corresponding alphas to use.

(9) Although the 'select_action' function is not a decaying strategy on its own. We are
calculating decaying epsilons in advance, so our agent will be using a decaying e-greedy strategy.

(10) Let's continue on the next page.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

177

19Learning to improve policies of behavior

i speAk python

The Sarsa agent 2/2

 for e in tqdm(range(n_episodes), leave=False):

 state, done = env.reset(), False
 action = select_action(state, Q, epsilons[e])

 while not done:

 next_state, reward, done, _ = env.step(action)
 next_action = select_action(next_state,
 Q,
 epsilons[e])

 td_target = reward + gamma * \
 Q[next_state][next_action] * (not done)

 td_error = td_target - Q[state][action]

 Q[state][action] = Q[state][action] + \
 alphas[e] * td_error

 state, action = next_state, next_action

 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))
 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]

 return Q, V, pi, Q_track, pi_track

(11) Same line... You know the drill.

(12) We are now inside the episode loop.
(13) We start each episode by resetting the environment and the done flag.

(14) We select the action (perhaps exploratory) for the initial state.

(15) We repeat until we hit a terminal state.
(16) First, step the environment and get the experience.

(17) Notice that before we make any calculations, we
need to obtain the action for next step.

(18) We calculate the 'td_target' using that next state-action pair. And we do the little trick
for terminal states of multiplying by '(not done)', which simply zeros out the future on terminal.
(19) Then calculate the 'td_error' as the difference between the target and current estimate.

(20) Finally, update the Q-function by moving the estimates a bit towards the error.

(21) We update the state and action for next step.

(22) Save the Q-function and greedy policy for analysis.

(23) At the end, calculate the estimated optimal
V-function and its greedy policy, and return all this.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

178

20 Chapter 6 I improving agents' behaviors

ŘŁ With An RL Accent

Batch vs. Offline vs. Online learning problems and methods

Batch learning problems and methods: When you hear the term "batch learning,"
people are referring to one of two things: they mean a type of learning problem in which
experience samples are fixed and given in advance, or they mean a type of learning method
which is optimized for learning synchronously from a batch of experiences, also called
fitting methods. Batch learning methods are typically studied with non-interactive learning
problems, more specifically, batch learning problems. But batch learning methods can
also be applied to interactive learning problems. For instance, growing batch methods are
batch learning methods that also collect data, they "grow" the batch. Also, batch learning
problems don't have to be solved with batch learning methods, the same way that batch
learning methods are not designed exclusively to solve batch learning problems.

Offline learning problems and methods: When you hear the term "offline learning,"
people are usually referring to one of two things: they are either talking about a problem
setting in which there is a simulation available for collecting data (as opposed to real-world,
online environment) or they could also be talking about learning methods that learn offline,
meaning between episodes, for instance. Note that, in offline learning methods, learning
and interaction can still be interleaved, but performance is only optimized after some
samples have been collected, similar to the growing batch described above, but with the
difference that, unlike growing batch methods, offline methods commonly discard old
samples, they don't grow a batch. MC methods, for instance, are often considered offline
because learning and interaction are interleaved on an episode-to-episode basis. There
are two distinct phases, interacting and learning; MC is interactive, but also offline learning
method.

Online learning problems and methods: When you hear the term "online learning,"
people are referring to one of two things: either to learning while interacting with a live
system, such a robot, or to methods that learn from an experience as soon as it's collected,
on each and every time step.

Note that offline and online learning are often used in different contexts. I've seen offline vs.
online to mean non-interactive vs. interactive, but I've also seen them, as I mentioned, for
distinguishing between learning from a simulator vs. a live system.

My definitions here are consistent with common uses of many RL researchers: Richard
Sutton (2018 book), David Silver (2015 lectures), Hado van Hasselt (2018 lectures), Michael
Littman (2015 paper), Csaba Szepesvari (2009 book).

Just be aware of the lingo, though. That's what's important.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

179

21Decoupling behavior from learning

Decoupling behavior from learning
I want you to think about the TD update equation for state-value functions for a second;
remember, it uses Rt+1 + γV(St+1) as the TD target. However, if you stare at the TD update
equation for action-value functions instead, which is Rt+1 + γQ(St+1, At+1), you may notice
there are a few more possibilities there. Look at the action being used and what that
means. Think about what else you can put in there. One of the most critical inventions in
reinforcement learning was the development of the Q-learning algorithm, a model-free off-
policy bootstrapping method that directly approximates the optimal policy despite the policy
generating experiences. Yes, this means, the agent, in theory, can act randomly and still find
the optimal value function and policies. How is this possible?

Q-Learning: Learning to act optimally, even if we choose not to
The Sarsa algorithm is a sort of "learning on the job." The agent learns about the same
policy it uses for generating experience. This type of learning is called on-policy. On-policy
learning is excellent—we learn from our own mistakes. But, let me make it clear, in on-
policy learning, we learn from our own current mistakes only. So, what if we want to learn
from our own previous mistakes? What if we want to learn from the mistakes of others?
In on-policy learning, you simply can't. Off-policy learning, on the other hand, is sort of
"learning from others." The agent learns about a policy that is different from the policy
generating experiences. In off-policy learning there are two policies: a behavior policy, used
to generate experiences, to interact with the environment, and a target policy, which is the
policy we are learning about. Sarsa is an on-policy method; Q-learning is an off-policy one.

shoW Me the MAth

Sarsa vs. Q-learning update equations

(1) The only difference between Sarsa and Q-learning is the action used in the target.

(3) It uses the action actually taken in
the next state to calculate the target.

(2) This is Sarsa update equation.

(4) This one is Q-learning's.

(5) Q-learning uses the action with the
maximum estimated value in the next
state, despite the action actually taken.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

180

22 Chapter 6 I improving agents' behaviors

i speAk python

The Q-Learning agent 1/2

def q_learning(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio,
 n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio,
 n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(8) Let's continue on the next page.

(1) Notice that the beginning
of the Q-Learning agent is
identical to the beginning of
the Sarsa agent.
(2) In fact, I'm even using the
same exact hyperparameters
for both algorithms.

(3) Here are some handy variables.

(4) The Q-function and the tracking variable for offline analysis.

(5) The same e-greedy action-selection strategy.

(6) The vector with all alphas to be used during learning.

(7) The vector with all epsilons to decay as desired.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

181

23Decoupling behavior from learning

i speAk python

The Q-Learning agent 2/2

 for e in tqdm(range(n_episodes), leave=False):

 state, done = env.reset(), False

 while not done:

 action = select_action(state, Q, epsilons[e])
 next_state, reward, done, _ = env.step(action)

 td_target = reward + gamma * \
 Q[next_state].max() * (not done)

 td_error = td_target - Q[state][action]
 Q[state][action] = Q[state][action] + \
 alphas[e] * td_error

 state = next_state
 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))

 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]
 return Q, V, pi, Q_track, pi_track

(9) Same line as before...

(10) We are iterating over episodes.

(11) We reset the environment and get the initial state, set the done flag to false.
(12) Now enter the interaction loop for online learning (steps).

(13) We repeat the loop until we hit a terminal state and a done flag is raised.
(14) First thing we do is select an action for the current state. Notice the use of epsilons.

(15) We step the environment and get a full experience tuple (s, a, s', r, d).
(16) Next, we calculate the TD target. Q-Learning is a special algorithm because it tries to
learn the optimal action-value function q* even if it uses an exploratory policy such as the
decaying e-greedy we are running. This is called off-policy learning.

(17) Again, the '(not done)' ensures the "max value of the next state" is set to zero on
terminal states. It is very important the agent doesn't expect any reward after death!!!
(18) Next, we calculate the TD error as the difference between the estimate and the target.

(19) We then move the Q-function for the
state-action pair to be a bit closer to the error.

(20) Next, we update the state.
(21) Save the Q-function and the policy.

(22) And the V-function a final policy on exit.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

182

24 Chapter 6 I improving agents' behaviors

! MigueL's AnALogy

Humans also learn on-policy and off-policy

On-policy is learning about a policy that is being used to make decisions; you can think
about it as "learning on the job." Off-policy learning is learning about a policy different
from the policy used for making decisions, you can think about it as "learning from others'
experiences," or "learning to be great, without trying to be great." Both are important ways
of learning and perhaps vital for a solid decision-maker. Interestingly, you can see whether a
person prefers to learn on-policy or off-policy pretty quickly.

My son, for instance, tends to prefer on-policy learning. Sometimes I see him struggle
playing with a toy, I come over and try to show him how to use it, but then he complains
until I leave him alone. He keeps trying and trying, and he eventually learns, but he prefers
his own experience instead of others'. On-policy learning is a straightforward and stable
way of learning.

My daughter, on the other hand, seems to be OK with learning off-policy. She can learn
from my demonstrations before she even attempts a task. I show her how to draw a house,
then she tries.

Now, beware; this is a stretch analogy. Imitation learning and off-policy learning are not
the same. Off-policy learning is more about the learner using their experience at say
running, to get better at something else, say playing soccer. In other words, you do something
while learning about something else. I'm sure you think of instances when you have done
that, when you have learned about painting, while cooking. It doesn't matter where the
experiences come from for doing off-policy learning; as long as the target policy and the
behavior policy are different, then you can refer to that as off-policy learning.

Also, before you make conclusions about which one is "best," know that in RL, both have
pros and cons. On the one hand, on-policy learning is very intuitive and stable. If you want
to get good at playing the piano, why not practicing the piano?

On the other hand, it seems useful to learn from sources other than your own hands-on
experience; after all, there is only so much time in a day. Maybe meditation can teach you
something about playing the piano, and help you get better at it. But, while off-policy
learning helps you learn from multiple sources (and/or multiple skills), methods using off-
policy learning are often of higher variance and, therefore, slower to converge.

Additionally, know that off-policy learning is one of the three elements that, when
combined, have been proven to lead to divergence: off-policy learning, bootstrapping, and
function approximation. These don't play nice together. You've learned about the first two
so far, and the third one is soon to come.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

183

25Decoupling behavior from learning

ŘŁ With An RL Accent

Greedy in the Limit with Infinite Exploration and Stochastic Approx. Theory

Greedy in the Limit with Infinite Exploration (GLIE) is a set of requirements on-policy RL
algorithms, such as Monte-Carlo control and Sarsa, must hold to guarantee convergence to
the optimal policy. The requirements are as follow:

All state-action pairs must be explored infinitely often.

The policy must converge on a greedy policy.

What this means in practice is that an e-greedy exploration strategy, for instance, must
slowly decay epsilon towards zero. If it goes down too quickly, the first condition may not
be met, if it decays too slowly, well, it takes longer to converge.

Notice that for off-policy RL algorithms, such as Q-learning, the only requirement of these
two that holds is the first one. The second one is no longer a requirement because in
off-policy learning, the policy learned about is different than the policy we are sampling
actions from. Q-learning, for instance, only requires all state-action pairs to be updated
sufficiently, and that is covered by the first condition above.

Now, whether you can check off with certainty that requirement using simple exploration
strategies such as e-greedy, that's another question. In simple grid worlds and discrete
action and state spaces, e-greedy most likely works. But, it is easy to imagine intricate
environments that'd require more than random behavior.

There is another set of requirements for general convergence based on Stochastic
Approximation Theory that applies to all of these methods. Because we are learning from
samples, and samples have some variance, the estimates won't converge unless we also
push the learning rate, alpha, towards zero:

The sum of learning rates must be infinite.

The sum of squares of learning rates must be finite.

That means you must pick a learning rate that decays but never reaches zero. For instance, if
you use 1/t or 1/e, the learning rate is initially large enough to ensure the algorithm doesn't
follow only a single sample too tightly, but becomes small enough to ensure it finds the
signal behind the noise.

Also, even though these convergence properties are useful to know for developing the
theory of RL algorithms, in practice, learning rates are commonly set to a small-enough
constant, depending on the problem. Also, know that a small constant is better for non-
stationary environments, which are common in the real world.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

184

26 Chapter 6 I improving agents' behaviors

Double Q-Learning: a max of estimates for an estimate of a max
Q-learning often over-estimates the value function. Think about this. On every step, we take
the maximum over the estimates of the action-value function of the next state. But what we
need is the actual value of the maximum action-value function of the next state. In other
words, we are using the maximum over merely estimates as an estimate of the maximum.

Doing this is not only an inaccurate way of estimating the maximum value but also a more
significant problem, given that these bootstrapping estimates, which are used to form TD
targets, are often biased. The use of a maximum of biased estimates as the estimate of the
maximum value is a problem known as Maximization Bias.

It's simple. Imagine an action-value function that its actual values are all zeros, but the
estimates have some bias, some positive, some negative. For example, 0.11, 0.65, -0.44, -0.26,
and so on. We know the actual maximum of the values is zero, but the maximum over the
estimates is 0.65. Now, if we sometimes pick a value with a positive bias and sometimes one
with a negative bias, then perhaps the issue wouldn't be as pronounced. But because we are
always taking a max, we always tend to high values even if they have the largest bias, the
biggest error. Doing this over and over again compounds the errors in a very negative way.

We all know someone with a positive-bias personality that has let something gone wrong in
their lives. Someone that is blinded by shiny things, that are not as shiny. To me, this is one
of the reasons why many people advise against feeding the AI hype; because overestimation
is often your enemy, and certainly something to mitigate for an improved performance.

ŘŁ With An RL Accent

On-policy vs. Off-policy learning

On-policy learning: Refers to methods that attempt to evaluate or improve the policy used
to make decisions. It is straightforward; think about a single policy. This policy generates
behavior. Your agent evaluates that behavior and select areas of improvement based
on those estimates. Your agent learns to assess and improve the same policy it uses for
generating the data.

Off-policy learning: Refers to methods that attempt to evaluate or improve a policy
different from the one used to generate the data. This one is more complex. Think about
two policies. One produces the data, the experiences, the behavior, but your agent uses that
data to evaluate, improve, and overall learn about a different policy, a different behavior.
Your agent learns to assess and improve a policy different than the one used for generating
the data.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

185

27Decoupling behavior from learning

i speAk python

The Double Q-Learning agent 1/3

def double_q_learning(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q1 = np.zeros((nS, nA), dtype=np.float64)
 Q2 = np.zeros((nS, nA), dtype=np.float64)
 Q_track1 = np.zeros((n_episodes, nS, nA), dtype=np.float64)
 Q_track2 = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(init_alpha,
 min_alpha,
 alpha_decay_ratio,
 n_episodes)

 epsilons = decay_schedule(init_epsilon,
 min_epsilon,
 epsilon_decay_ratio,
 n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(1) As you'd expect, Double
Q-learning takes the
same exact arguments as
Q-learning.

(2) We start with the same old handy variables.

(3) But immediately you should see a big difference here. We are using two state-value functions
Q1 and Q2. You can think of this similar to cross-validation: one Q-function estimates will help
us validate the other Q-function estimates. The issue, though, is now are splitting the experience
between two separate functions. This somewhat slows down training.

(4) The rest on
this page is pretty
straightforward
and you should
already know what's
happening. The 'select_
action', 'alphas',
and 'epsilons' are
calculated the same
way as before.

(5) Continues...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

186

28 Chapter 6 I improving agents' behaviors

i speAk python

The Double Q-Learning agent 2/3

 for e in tqdm(range(n_episodes), leave=False):

 state, done = env.reset(), False
 while not done:

 action = select_action(state,
 (Q1 + Q2)/2.,
 epsilons[e])

 next_state, reward, done, _ = env.step(action)

 if np.random.randint(2):
 argmax_Q1 = np.argmax(Q1[next_state])

 td_target = reward + gamma * \
 Q2[next_state][argmax_Q1] * (not done)

 td_error = td_target - Q1[state][action]

 Q1[state][action] = Q1[state][action] + \
 alphas[e] * td_error

(6) From the previous page...

(7) We are back inside the episode loop.
(8) Every new episode, we start by resetting the environment and getting an initial state.

(9) Then we repeat until we hit a terminal state (and the done flag is set to True).
(10) Every step we select an action using our 'select_action' function.

(11) But notice something interesting, we are using the mean of our two Q-functions!!
We could also use the sum of our Q-functions here. They will give very similar results.

(12) We then send the action to the environment and get the experience tuple.
(13) Things start changing now. Notice we flip a coin to determine an update to Q1 or Q2.

(14) We use the action Q1 thinks is best...
(15) But get the value from Q2 to calculate the TD target.

(16) Notice here, we get the value from Q2 and prescribed by Q1.
(17) Then calculate the TD error from the Q1 estimate.

(18) Finally move our estimate closer to that target by using the error.

(19) This line repeats on the next page...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

187

29Decoupling behavior from learning

i speAk python

The Double Q-Learning agent 3/3

 Q1[state][action] = Q1[state][action] + \
 alphas[e] * td_error

 else:
 argmax_Q2 = np.argmax(Q2[next_state])

 td_target = reward + gamma * \
 Q1[next_state][argmax_Q2] * (not done)

 td_error = td_target - Q2[state][action]

 Q2[state][action] = Q2[state][action] + \
 alphas[e] * td_error

 state = next_state

 Q_track1[e] = Q1
 Q_track2[e] = Q2
 pi_track.append(np.argmax((Q1 + Q2)/2., axis=1))

 Q = (Q1 + Q2)/2.
 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]

 return Q, V, pi, (Q_track1 + Q_track2)/2., pi_track

(20) Okay. From the previous page, we were calculating Q1.

(21) Now if the random int was 0 (50% of the times), we update the other Q-function, Q2.

(22) But, it is basically the mirror of the other update. We get the 'argmax' of Q2...
(23) Then use that action, but get the estimate from the other Q-function Q1.

(24) Again, pay attention to the roles of Q1 and Q2 here reversed.
(25) So, we calculate the TD error from the Q2 this time.

(26) And use it to update the Q2 estimate of the state-action pair.

(28) We change the value of the
'state' variable and keep looping, again
until we land on a terminal state and
the 'done' variable is set to True.
(29) Here we store Q1 and Q2 for
offline analysis.

(30) Notice the policy is the argmax of
the mean of Q1 and Q2.
(31) The final Q is the mean.
(32) The final V is the max of Q.

(33) The final policy is the argmax of the mean of Qs.
(34) We end up returning all this.

(27) Notice how we use the 'alphas' vector.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

188

30 Chapter 6 I improving agents' behaviors

One way of dealing with maximization bias is to track estimates in two Q-functions. At each
time step, we choose one of them to determine the action, to determine which estimate is
the highest according to that Q-function. But, then we use the other Q-function to obtain that
action's estimate. By doing this, there is a lower chance of always having a positive bias error.
Then, to select an action for interacting with the environment, we use the average, or the
sum, across the two Q-functions for that state, that is, the maximum over Q1(St+1)+Q2(St+1),
for instance. The technique of using these two Q-functions is called Double Learning,
and the algorithm that implements this technique is called Double Q-learning. In a few
chapters, you'll learn about a deep reinforcement learning algorithm called Double Deep
Q-Networks (DDQN), which uses a variant of this Double Learning technique.

it's in the DetAiLs

FVMC, Sarsa, Q-learning, and Double Q-learning on the SWS environment

Let's put it all together and test all the algorithms we just learned about in the Slippery Walk
Seven environment.

Just so you are aware, I used the same hyperparameters in all algorithms, the same gamma,
alpha, epsilon, and respective decaying schedules. Remember, if you don't decay alpha
towards 0, the algorithm
does not fully converge. I'm
decaying it to 0.01, which is
good enough for this simple
environment. Epsilon
should also be decayed to
zero for full convergence,
but in practice this is rarely
done. In fact, often state-
of-the-art implementations
don't even decay epsilon
and use a constant value
instead. Here, we are
decaying to 0.1.

Another thing, note that in these runs I set the same number of episodes for all algorithms,
they all run 3,000 episodes in the SWS environment. You'll notice some algorithms don't
converge in these many steps, but that doesn't mean they wouldn't converge at all. Also,
some of the other environments in the chapter's Notebook, such as Frozen Lake, terminate
on a set number of steps, that is, your agent has 100 steps to complete each episode, else it
is given a done flag. This is somewhat of an issue that we will address in later chapters. But,
please, go to the Notebooks and have fun! I think you'll enjoy playing around in there.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

189

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_06/chapter-06.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/

31Decoupling behavior from learning

tALLy it up

Similar trends among bootstrapping and on-policy methods
(1) This first one is First-
Visit Monte-Carlo control.
See how the estimates
have high variance, just as
in the prediction algorithm.
Also, all these algorithms
are using the same action
selection strategy. The only
difference is the method
used in the policy-evaluation
phase! Cool, right!?
(2) Sarsa is an on-policy
bootstrapping method,
MC is on-policy, but not
bootstrapping. In these
experiments, you can see
how Sarsa has less variance
than MC, yet it takes pretty
much the same amount of
time to get to the optimal
values.
(3) Q-learning is an off-
policy bootstrapping
method. See how much
faster the estimates
track the true values.
But, also, notice how the
estimates are often higher
and jump around somewhat
aggressively.
(4) Double Q-learning, on
the other hand, is slightly
slower than Q-learning to
get the estimates to track
the optimal state-value
function, but it does so in a
much more stable manner.
There is still some over-
estimation, but controlled.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

190

32 Chapter 6 I improving agents' behaviors

tALLy it up

Examining the policies learned in the SWS environment

(1) Here are a few
interesting plots to
understand the algorithms.
Remember from the last
page that Q-learning
reaches the optimal values
first, but it overshoots?
Well, how does that
translate in terms of
success? In this plot,
you can see how Double
Q-learning gets to 100%
success rate earlier than
Q-learning. BTW, I define
success as reaching a "goal
state," which in SWS is the
rightmost cell.
(2) How about the mean
return each agent gets
while training? How does
their performance track
an agent that'd follow the
optimal policy? Well, the
same Double Q-learning
gets optimal first. These
results are averaged over
5 random seeds, they are
noisy but the trends should
hold.
(3) Finally, we can look at
a moving average of the
regret, which again is the
difference from optimal,
how much reward the
agent left on the table
(while learning, so perhaps,
justified). Once again,
Double Q-learning shows
the best performance.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

191

33Decoupling behavior from learning

tALLy it up

Examining the value functions learned in the SWS environment

(1) These are also some
interesting plots. I'm
showing the moving
average over 100
episodes of the estimated
expected return. That
is, how much the agent
expects to get for a full
episode (from an initial to
a terminal state) versus
how much the agent
should expect to get, given
the optimal V-function of
the initial state.
(2) In this next plot, we are
looking at the state-value
function, the V-function,
estimation error. This is
the Mean Absolute Error
across all estimates from
their respective optimal.
Take a look at how quickly
Q-learning drops near
zero, but also how Double
Q-learning gets to the
lowest error first. Sarsa
and FVMC are comparable
in this simple environment.
(3) Finally, we show the
action-value function, the
Q-function, error. These
errors are different than
the previous plot because
for the previous, I'm using
only the difference of the
estimated max action and
the optimal, while here,
I'm calculating the MAE
across all actions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

192

34 Chapter 6 I improving agents' behaviors

Summary
In this chapter, you put everything you have learned so far into practice. We learned about
algorithms that optimize policies through trial-and-error learning. These algorithms learn
from feedback that is simultaneously sequential and evaluative; that is, these agents learn to
simultaneously balance immediate and long-term goals and the gathering and utilization of
information. But unlike in the previous chapter, in which we restricted our agents to solve
the prediction problem, in this chapter, our agents learned to solve the control problem.

There are many essential concepts you learned about in this chapter. You learned that the
prediction problem consists of evaluation policies, while the control problem consists of
optimizing policies. You learned that the solutions to the prediction problem are in policy
evaluation methods, such as those learned about in the previous chapter. But unexpectedly,
the control problem is not solved alone by policy-improvement methods you have learned
about in the past. Instead, to solve the control problem, we need to use policy-evaluation
methods that can learn to estimate action-value functions merely from samples, and policy-
improvement methods that take into account the need for exploration.

The key takeaway from this chapter is the generalized policy iteration pattern (GPI,) which
consists of the interaction between policy-evaluation and policy-improvement methods.
While policy evaluation makes the value function consistent with the policy evaluated,
policy improvement reverses this consistency but produces a better policy. GPI tells us that
by having these two processes interact, we iteratively produce better and better policies until
convergence to optimal policies and value functions. The theory of reinforcement learning
supports this pattern and tells us that, indeed, we can find optimal policies and value
functions in the discrete state and action spaces with only a few requirements. You learned
that GLIE and Stochastic Approximation theory applies at different levels to RL algorithms.

You learned about many other things, from on-policy to off-policy methods, from online
to offline, and more. Double Q-learning and double learning, in general, are essential
techniques that we build on later. In the next chapter, we examine advanced methods for
solving the control problem. As environments get challenging, we use other techniques
to learn optimal policies. So next, we look at methods that are more effective in solving
environments, and they do so more efficiently, too. That is, they solve these environments,
and do so using fewer experience samples than methods we learned about in this chapter.

By now you:

• Know that most RL agents follow a pattern known as Generalized Policy Iteration.
• Know that GPI solves the Control Problem with policy evaluation and improvement.
• Learned about several agents that follow the GPI pattern to solve the control problem.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

193

achieving goals more
effectively and efficiently 7

In this chapter

• You learn about making reinforcement learning agents
more effective at reaching optimal performance when
interacting with challenging environments.

• You learn about making reinforcement learning agents
more efficient at achieving goals by making the most
from the experiences.

• You improve on the agents presented in the previous
chapters to have them make the most out of the data
they collect and therefore optimize their performance
more quickly.

Efficiency is doing things right; effectiveness is
doing the right things.

— Peter Drucker
Founder of modern Management and

Presidential Medal of Freedom recipient

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

194

2 Chapter 7 I achieving goals more effectively and efficiently

 In this chapter, we improve on the agents you learned about in the previous chapter. More
specifically, we take on two separate lines of improvement. First, we use the λ return that
you learned about in chapter 5 for the policy evaluation requirements of the generalized
policy iteration pattern. We explore using the λ return for both on-policy and off-policy
methods. Using the λ return with eligibility traces propagates credit to the right state-action
pairs more quickly than standard methods, making the value-function estimates get near
the actual values faster.

Second, we explore algorithms that use experience samples to learn a model of the
environment, a Markov Decision Process (MDP.) By doing so, these methods extract the
most out of the data they collect and often arrive at optimality more quickly than methods
that don't. The group of algorithms that attempt to learn a model of the environment is
referred to as model-based reinforcement learning.

It's important to note that even though we explore these lines of improvements separately,
nothing prevents you from trying to combine them, and it is perhaps something you should
do after finishing this chapter. Let's get to the details right away.

ŘŁ With An RL Accent

Planning vs. model-free RL vs. model-based RL

Planning: Refers to algorithms that require a model of the environment to produce a
policy. Planning methods can be of state-space planning type, which means they use the
state space to find a policy, or they can be of plan-space planning type, meaning they
search in the space of all possible plans (think about genetic algorithms.) Some examples of
planning algorithms that we have learned about in this book are Value Iteration and Policy
Iteration.

Model-free RL: Refers to algorithms that do not use models of the environments, but are
still able to produce a policy. The unique characteristic here is these methods obtain policies
without the use of a map, a model, an MDP. Instead, they use trial-and-error learning to
obtain policies. Some examples of model-free RL algorithms that we have explored in this
book are MC, Sarsa, and Q-learning.

Model-based RL: Refers to algorithms that can learn, but do not require, a model of the
environment to produce a policy. The distinction is they do not require the models in
advance, but can certainly make good use of them if available, and more importantly,
attempt to learn the models through interaction with the environment. Some examples
of model-based RL algorithms we learn about in this chapter are Dyna-Q and Trajectory
Sampling.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

195

3Learning to improve policies using robust targets

Learning to improve policies
using robust targets
The very first line of improvement we discuss in this chapter is using more robust targets
in our policy-evaluation methods. Recall that in chapter 5, we explored policy-evaluation
methods that use different kinds of targets for estimating value functions. You learned about
the Monte-Carlo and the TD approach, but also about a target called the λ-return that uses a
weighted combination of targets obtained using all visited states.

TD(λ) is the prediction method that uses the λ-return for our policy evaluation needs.
However, as you remember from the previous chapter, when dealing with the control
problem, we need to use a policy-evaluation method for estimating action-value functions,
and a policy-improvement method that allows for exploration. In this section, we discuss
control methods similar to Sarsa and Q-learning, but use instead the λ-return.

concRete exAmpLe

The Slippery Walk Seven environment

To introduce the algorithms in this chapter, we use the same environment we used in the
previous chapter, called Slippery Walk Seven (SWS). However, at the end of the chapter, we
test the methods in much more challenging environments.

Recall that the SWS is a walk, a single-row grid-world environment, with seven non-terminal
states. Remember that this environment is a "slippery" walk, meaning that it is noisy, that
action effects are stochastic. If the agent chooses to go left, there is a chance it does, but
there is also some chance that it goes right, or that it stays in place.

As a refresher, above is the MDP of this environments. But remember and always have
in mind, the agent doesn't have any access to the transition probabilities. The dynamics of
this environment are unknown to the agent. Also, to the agent, there are no relationships
between the states in advance.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

196

4 Chapter 7 I achieving goals more effectively and efficiently

Sarsa(λ): Improving policies after each step
based on multi-step estimates
Sarsa(λ) is a straightforward improvement to the original Sarsa agent. The main difference
between Sarsa and Sarsa(λ) is that instead of using the one-step bootstrapping target, the TD
target, as we do in Sarsa, in Sarsa(λ), we use the λ-return. And that's it; you have Sarsa(λ).
Seriously! Did you see how learning the basics makes the more-complex concepts easier?

Now, I'd like to dig a little deeper into the concept of eligibility traces that you first
read about in this book in chapter 5. When I introduced eligibility traces in chapter 5,
I introduced a specific type of trace called the accumulating trace. However, in reality,
there are multiple ways of tracing state or state-action pairs responsible for a reward. In
this section, we dig deeper into the accumulating trace and adapt it for solving the control
problem, but we also explore a different kind of trace called the replacing trace and use
them both in the Sarsa(λ) agent.

0001 A Bit of histoRy

Introduction of the Sarsa and Sarsa(λ) agents

In 1994, Gavin Rummery and Mahesan Niranjan published a paper titled "Online Q-Learning
using Connectionist Systems," in which they introduced an algorithm they called at the time
"Modified Connectionist Q-Learning." In 1996, Singh and Sutton dubbed this algorithm
Sarsa because of the quintuple of events that the algorithm uses: (St, At, Rt+1, St+1, At+1). People
often like knowing where these names come from as you will soon see, RL researchers can
get pretty creative with these names.

Funny enough, before this open and "unauthorized" rename of the algorithm, in 1995
on his Ph.D. thesis titled "Problem Solving with Reinforcement Learning," Gavin issued
Sutton an apology for continuing to use the name "Modified Q-Learning" despite Sutton's
preference for "Sarsa." Sutton also continued to use Sarsa, which is ultimately the name that
stuck with the algorithm in the RL community. By the way, Gavin's thesis also introduced
the Sarsa(λ) agent.

Right after obtaining his Ph.D. in 1995, Gavin became a programmer and later a lead
programmer for the company responsible for the series of the Tomb Raider games. Gavin
has had a very successful career as a game developer.

Mahesan, who became Gavin's Ph.D. supervisor after the unexpected death of Gavin's
original supervisor, followed a more traditional academic career holding lecturer and
professor roles ever since his Ph.D. graduation in 1990.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

197

5Learning to improve policies using robust targets

For adapting the accumulating trace to solving the control problem, the only necessary
change is that we must now track the visited state-action pairs, instead of just visited states.
So, instead of using an eligibility vector for tracking visited states, we use an eligibility
matrix for tracking visited state-action pairs.

Now, the replace-trace mechanism is also straightforward. It consists of clipping eligibility
traces to a maximum value of one; that is, instead of accumulating eligibility without bound,
we allow traces to only grow to one. This strategy has the advantage that if your agents get
stuck in a loop, the traces still don't grow out of proportion. The bottom line is that traces,
in the replace-trace strategy, are set to one when a state-action pair is visited, and decay
based on the λ value just like in the accumulate-trace strategy.

0001 A Bit of histoRy

Introduction of the eligibility trace mechanism

The general idea of an eligibility trace mechanism is probably due to A. Harry Klopf, when,
in a 1972 paper titled "Brain Function and Adaptive Systems – A Heterostatic Theory," he
described how synapses would become "eligible" for changes after reinforcing events. He
hypothesized:

"When a neuron fires, all of its excitatory and inhibitory synapses that were active during
the summation of potentials leading to the response are eligible to undergo changes in
their transmittances."

However, in the context of RL, Richard Sutton's Ph.D. thesis (1984) introduced the
mechanism of eligibility traces. More concretely, he introduced the accumulating trace that
you've learned about in this book, also known as the conventional accumulating trace.

The replacing trace, on the other hand, was introduced by Satinder Singh and Richard
Sutton in a 1996 paper titled "Reinforcement Learning with Replacing Eligibility Traces," and
we discuss in this chapter.

They found a few interesting facts. First, they found that the replace-trace mechanism
results in faster and more reliable learning than the accumulate-trace one. They also found
that the accumulate-trace mechanism is biased, while the replace-trace one is unbiased. But
more interestingly, they found relationships between TD(1), MC, and eligibility traces.

More concretely, they found that TD(1) with replacing traces is related to First-visit MC and
that TD(1) with accumulating traces is related to Every-visit MC. Moreover, they found that
the offline version of the replace-trace TD(1) is identical to First-visit MC. It's a small world!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

198

6 Chapter 7 I achieving goals more effectively and efficiently

BoiL it DoWn

Frequency and recency heuristics in the accumulating-trace mechanism

The accumulating trace combines a frequency and a recency heuristic. When your agent
tries a state-action pair, the trace for this pair is incremented by one. Now, imagine there
is a loop in the environment, and the agent tries the same state-action pair several times.
Should we make this state-action pair "more" responsible for rewards obtained in the
future, or should we make it just responsible?

Accumulating traces allow trace values higher than one while replacing traces don't. Traces
have a way for combining frequency (how often you try a state-action pair) and recency
(how long ago you tried a state-action pair) heuristics implicitly encoded in the trace
mechanism.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

199

7Learning to improve policies using robust targets

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

200

8 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Sarsa(λ) agent 1/2

def sarsa_lambda(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 lambda_=0.5,
 replacing_traces=True,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA),
 dtype=np.float64)

 E = np.zeros((nS, nA), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio, n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(1) The Sarsa lambda
agent is a mix between the
Sarsa and the TD lambda
methods.

(2) Here is the 'lambda_'
hyperparameter (ending in _
because the word 'lambda' is
reserved in Python.

(3) The 'replacing_traces' variables sets the algorithm to use replacing or accumulating traces.

(4) We use the usual variables as we have before.
(5) Including the Q-function and the tracking matrix.

(6) These are the eligibility traces that will allow us to keep track of states eligible for updates.

(7) The rest is
just as before with
the 'select_action'
function, and the
vectors 'alphas'
and 'epsilons'.

(8) We
continue on
the next page
with this line.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

201

9Learning to improve policies using robust targets

i speAk python

The Sarsa(λ) agent 2/2

 for e in tqdm(range(n_episodes), leave=False):

 E.fill(0)
 state, done = env.reset(), False
 action = select_action(state, Q, epsilons[e])

 while not done:

 next_state, reward, done, _ = env.step(action)
 next_action = select_action(next_state,
 Q,
 epsilons[e])

 td_target = reward + gamma * \
 Q[next_state][next_action] * (not done)
 td_error = td_target - Q[state][action]

 E[state][action] = E[state][action] + 1
 if replacing_traces: E.clip(0, 1, out=E)

 Q = Q + alphas[e] * td_error * E
 E = gamma * lambda_ * E

 state, action = next_state, next_action

 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))

 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]
 return Q, V, pi, Q_track, pi_track

(9) Continues here...

(10) Every new episode we set the eligibility of every state to zero.
(11) We then reset the environment and the done flag as usual.

(12) We select the action of the initial state.

(13) We enter the interaction loop.

(14) We send the action to the environment and receive the experience tuple.

(16) We calculate the TD target and the TD error just like in the original Sarsa.
(17) Then, we increment the state-action pair trace, and clip it to 1 if it is a replacing trace.

(18) And notice this! We are applying the TD error to all eligible state-action pairs at once. Even
though we are using the entire Q-table, E will be mostly 0, and greater than zero for eligible pairs.

(15) We select the action to use at the next state using
the Q table and the epsilon corresponding to this episode.

(19) We decay the eligibilities.

(20) Update the variables.
(21) Save Q and pi.

(22) At the end of training we extract V, pi, and return.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

202

10 Chapter 7 I achieving goals more effectively and efficiently

! migueL's AnALogy

Accumulating and replacing traces, and a gluten- and banana-free diet

A few months back, my daughter was having trouble sleeping at night. Every night, she
would wake up multiple times, crying very loudly, but unfortunately, not telling us what the
problem was.

After a few nights, my wife and I decided to do something about it and try to "trace" back
the issue so that we could more effectively "assign credit" to what was causing the sleepless
nights.

We put on our detective hats (if you are a parent, you know what this is like) and tried
many things to diagnose the problem. After a week or so, we narrowed the issue to foods;
we knew the bad nights were happening when she ate certain foods, but we couldn't
determine which foods exactly were to blame. I noticed that throughout the day, she
would eat lots of carbs with gluten, such as cereal, pasta, crackers, and bread. And, close to
bedtime, she would snack on fruits.

An "accumulating trace" in my brain pointed to the carbs. "Of course!" I thought, "gluten is
evil; we all know that. Plus, she is eating all that gluten throughout the day." If we trace back
and accumulate the number of times she ate gluten, gluten was clearly eligible, was clearly
to blame. So, we did remove the gluten.

But, to our surprise, the issue only subsided, it didn't entirely disappear as we hoped. After
a few days, my wife remembered she had trouble eating bananas at night when she was a
kid. I couldn't believe it, I mean, bananas are fruits, and fruits are only good for you, right?
But funny enough, in the end, removing bananas got rid of the bad nights. Hard to believe!

But, see, perhaps if I would've used a "replacing trace" instead of an "accumulating trace,"
all of the carbs she ate multiple times throughout the day would have received a more
conservative amount of blame.

Instead, because I was using an accumulating trace, it seemed to me that the many times
she ate gluten were to blame. Period. I couldn't see clearly that the recency of the bananas
played a role.

The bottom line is that accumulating traces can "exaggerate" when confronted with
frequency while replacing traces moderate the blame assigned to frequent events. This
moderation can help the more-recent, but rare events surface and be taken into account.

Don't make any conclusions, yet. Like everything in life, and in RL, it's vital for you to know
the tools and don't just dismiss them at first glance. I'm just showing you the available
options, but it is up to you to use the right tools to achieve your goals.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

203

11Learning to improve policies using robust targets

Watkins's Q(λ): Decoupling behavior from learning, again
And, of course, there is an off-policy control version of the λ algorithms. Q(λ) is an
extension of Q-Learning that uses the λ return for policy evaluation requirements of the
generalized policy iteration pattern. Remember, the only change we are doing here is
replacing the TD target for off-policy control (the one that uses the max over the action in
the next state) with a λ return for off-policy control. There are actually two different ways
to extend Q-Learning to eligibility traces, but, I'm only introducing the original version,
commonly referred to as Watkins's Q(λ).

0001 A Bit of histoRy

Introduction of the Q-learning and Q(λ) agents

In 1989, the Q-Learning and Q(λ) methods were introduced by Chris Watkins in his Ph.D.
thesis titled "Learning from Delayed Rewards," which was foundational to the development
of the current theory of reinforcement learning.

Q-Learning is still one of the most popular reinforcement learning algorithms, perhaps
because it is simple and it works well. Q(λ) is now referred to as Watkins's Q(λ) because there
is a slightly different version of Q(λ) due to Jing Peng and Ronald Williams that was worked
between 1993 and 1996 (that version is referred to as Peng's Q(λ).)

In 1992, Chris, along with Peter Dayan, published a paper titled "Technical Note Q-Learning,"
in which they proved a convergence theorem for Q-Learning. They showed that Q-Learning
converges with probability 1 to the optimum action-value function, with the assumption
that all state-action pairs are repeatedly sampled and represented discretely.

Unfortunately, Chris stopped doing RL research almost right after that. He went on to work
for hedge funds in London, then visited research labs, including a group led by Yann LeCun,
always working AI-related problems, but not so much RL. For the past 22+ years, Chris has
been a "Reader in Artificial Intelligence" at the University of London.

After finishing his 1991 Ph.D. thesis titled "Reinforcing Connectionism: Learning the
Statistical Way" (yeah, connectionism is what they called neural networks back then – "deep
reinforcement learning" you say? Yep!)

Peter went on a couple of postdocs including one with Geoff Hinton at the University of
Toronto. Peter was a postdoc advisor to Demis Hassabis, founder of DeepMind. Peter has
held many director positions at research labs, and the latest is the Max Plank Institute.

Since 2018 he's been a Fellow of the Royal Society, one of the highest awards given in the
UK.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

204

12 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Watkins's Q(λ) agent 1/3

def q_lambda(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 lambda_=0.5,
 replacing_traces=True,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 E = np.zeros((nS, nA), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio, n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(1) The Q lambda agent is a
mix between the Q-Learning
and the TD lambda
methods.

(2) Here is the 'lambda_'
and the 'replacing_traces'
hyperparameters.

(3) Useful variables.

(4) The Q-table.

(5) The eligibility traces matrix
for all state-action pairs.

(6) The usual
suspects...

(7) To be continued...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

205

13Learning to improve policies using robust targets

i speAk python

The Watkins's Q(λ) agent 2/3

 for e in tqdm(range(n_episodes), leave=False):

 E.fill(0)

 state, done = env.reset(), False

 action = select_action(state,
 Q,
 epsilons[e])

 while not done:

 next_state, reward, done, _ = env.step(action)

 next_action = select_action(next_state,
 Q,
 epsilons[e])

 next_action_is_greedy = \
 Q[next_state][next_action] == Q[next_state].max()

 td_target = reward + gamma * \
 Q[next_state].max() * (not done)

 td_error = td_target - Q[state][action]

(8) Continues on the episodes loop.

(9) Okay. Because Q lambda is an off-policy method
we must use E with care. We are learning about the
greedy policy, but following an exploratory policy.
First we fill E with zeros as before.

(10) Reset the environment and 'done'.

(11) But, notice how we are pre-selecting the action just like in Sarsa, but we didn't do that in
Q-Learning... This is because we need to check if our 'next action' is greedy!

(12) Enter the interaction loop.

(13) Step the environment and get the experience.

(14) We select the 'next_action'... Sarsa-style!

(15) And use it to verify that the action on the next step will still come from the greedy policy.

(16) On this step, we still calculate the TD target as in regular Q-Learning, using the max.

(17) And use the TD target to
calculate the TD error.

(18) We continue from this line on the next page.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

206

14 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Watkins's Q(λ) agent 3/3

 td_error = td_target - Q[state][action]

 if replacing_traces: E[state].fill(0)

 E[state][action] = E[state][action] + 1
 Q = Q + alphas[e] * td_error * E

 if next_action_is_greedy:
 E = gamma * lambda_ * E
 else:
 E.fill(0)

 state, action = next_state, next_action

 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))

 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]

 return Q, V, pi, Q_track, pi_track

(19) So, again, calculate a TD error using the target and the current estimate
of the state-action pair. Notice, this is not 'next_state', this is 'state'!!!

(21) We increment the eligibility of the current state-action pair by 1.

(20) The other approach to replace-trace control methods is to zero out all
action values of the current 'state' and then increment the current 'action'.

(22) And just as before, we multiply the entire eligibility trace matrix by the error and the
learning rate corresponding to episode 'e', then move the entire Q towards that error. By doing
so, we are effectively dropping a signal to all visited states to various degree.

(23) Notice this too. If the action we will take on the next state (which we already selected)
is a greedy action, then we decay the eligibility matrix as usual, otherwise, we must reset the
eligibility matrix to zero because we will no longer be learning about the greedy policy.
(24) At the end of the step, we update the state and action to be the next state and action.

(25) We save
Q and pi.

(26) And at the end of training
also save V and the final pi.

(27) Finally, we return all this.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

207

15Agents that interact, learn and plan

Agents that interact, learn and plan
In chapter 3, we discussed planning algorithms such as value iteration (VI) and policy
iteration (PI). These are planning algorithms because they require a model of the
environment, an MDP. Planning methods calculate optimal policies offline. On the other
hand, in the last chapter, I presented model-free reinforcement learning methods, perhaps
even suggesting that they were an improvement over planning methods. But are they?

The advantage of model-free RL over planning methods is that the former does not require
MDPs. Often MDPs are challenging to obtain in advance, sometimes MDPs are even
impossible to create. Just imagine representing the game of Go with 10170 possible states or
StarCraft II with 101685 states, those are pretty significant numbers, and that doesn't even
include the action spaces or transition function, imagine! Not requiring an MDP in advance
is a practical benefit.

But, let's think about this for a second, what if we do not require an MDP in advance, but
perhaps learn one as we interact with the environment? Think about it, as you walk around
a new area, you start building a map in your head. You walk around for a while, find a coffee
shop, get some coffee, and you know how to get back. The skill of learning maps should be
pretty intuitive to you. Can reinforcement learning agents do something similar to this?

In this section, we explore agents that interact with the environment, just like the model-free
methods, but they also learn models of the environment from these interactions, MDPs.
By learning maps, agents often require fewer experience samples to learn optimal policies.
These methods are called model-based reinforcement learning. Note that in the literature,
you often see VI and PI referred to as planning methods, but you may also see them referred
to as model-based methods. I prefer to draw the line and call them planning methods
because the require and MDP to do anything useful at all. Sarsa and Q-Learning algorithms
are model-free because they do not require and do not learn an MDP. The methods that you
learn about in this section are model-based because they do not require, but do learn and use
an MDP (or at least an approximation of an MDP.)

ŘŁ With An RL Accent

Sampling models vs. distributional models

Sampling models: Refers to models of the environment that produce a single sample of
how the environment will transition given some probabilities, you sample a transition from
the model.

Distributional models: Refers to models of the environment that produce the probability
distribution of the transition and reward functions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

208

16 Chapter 7 I achieving goals more effectively and efficiently

Dyna-Q: Learning sample models
One of the most well-known architectures for unifying planning and model-free methods
is called Dyna-Q. Dyna-Q consists of interleaving a model-free RL method, such as
Q-learning, and a planning method, similar to Value Iteration, using both experiences
sampled from the environment and experiences sampled from the learned model to
improve the action-value function.

In Dyna-Q, we keep track of both the transition and reward function as 3-dimensional
tensors indexed by the state, the action and the next state. The transition tensor keeps count
of the number of times we've seen the 3-tuple (s, a, s') indicating how many times we arrived
at state s' from state s when selecting action a. The reward tensor holds the average reward
we received on the 3-tuple (s, a, s') indicating the expected reward when we select action a
on state s and transition to state s'.

0001 A Bit of histoRy

Introduction of the Dyna-Q agent

Ideas related to model-based RL methods can be traced back many years back, and are due
to several researchers, but there are three main papers that set the foundation for the Dyna
architecture.

The first is a 1981 paper by Richard Sutton and Andrew Barto titled "An Adaptive Network
that Constructs and Uses an Internal Model of Its World," then a 1990 paper by Richard
Sutton titled "Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming," and, finally, a 1991 paper by Richard Sutton titled
"Dyna, an Integrated Architecture for Learning, Planning, and Reacting" in which the
general architecture leading to the specific Dyna-Q agent was introduced.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

209

17Agents that interact, learn and plan

i speAk python

The Dyna-Q agent 1/3

def dyna_q(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 n_planning=3,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 T_count = np.zeros((nS, nA, nS), dtype=np.int)
 R_model = np.zeros((nS, nA, nS), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio, n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(1) Dyna-Q is very similar to the
Q-Learning agent, but it also
learns a model of the environment
and it uses that model to improve
the estimates.

(2) This 'n_planning'
hyperparameter is the number of
updates to the estimates that
will run from the learned model.

(3) Most of the first part of the algorithm is the same.

(4) We initialize the Q-function to zero, etc.

(5) But then, we create a function to keep track of the transition function.
(6) And another one to keep track of the reward signal.

(7) Then initialize the
exploration strategy
'select_action', the
'alphas' and 'epsilons'
vectors, as usual.

(8) To be continued...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

210

18 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Dyna-Q agent 2/3

 for e in tqdm(range(n_episodes), leave=False):

 state, done = env.reset(), False
 while not done:

 action = select_action(state, Q, epsilons[e])

 next_state, reward, done, _ = env.step(action)

 T_count[state][action][next_state] += 1

 r_diff = reward - \
 R_model[state][action][next_state]

 R_model[state][action][next_state] += \
 (r_diff / T_count[state][action][next_state])

 td_target = reward + gamma * \
 Q[next_state].max() * (not done)

 td_error = td_target - Q[state][action]
 Q[state][action] = Q[state][action] + \
 alphas[e] * td_error

 backup_next_state = next_state
 for _ in range(n_planning):

(9) Continues on the episode loop.

(10) So, each new episode, we start by resetting the environment and obtaining the
initial state. We also set the 'done' flag to False and enter the step-interaction loop.

(11) We select the action, just like in original Q-Learning (inside the loop only).

(12) We step the environment and get the experience tuple.

(13) Then, start learning the model! We increment the transition count for the state-action-
next_state triplet indicating that full transition happened once more.

(14) We also attempt to calculate an incremental mean of the reward signal. Get the difference.

(15) Then use that difference and the transition count to learn the reward signal.

(16) We calculate the TD target as usual, Q-learning style (off-policy, using the max).

(17) And the TD error, too. Using the TD target and the current estimate.

(18) Finally, update the Q-function.
(19) And right before we get into the planning steps, we backup the next state variable.

(20) To be continued...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

211

19Agents that interact, learn and plan

i speAk python

The Dyna-Q agent 3/3

 for _ in range(n_planning):

 if Q.sum() == 0: break

 visited_states = np.where(\
 np.sum(T_count, axis=(1, 2)) > 0)[0]
 state = np.random.choice(visited_states)

 actions_taken = np.where(\
 np.sum(T_count[state], axis=1) > 0)[0]
 action = np.random.choice(actions_taken)

 probs = T_count[state][action] / \
 T_count[state][action].sum()
 next_state = np.random.choice(\
 np.arange(nS), size=1, p=probs)[0]

 reward = R_model[state][action][next_state]
 td_target = reward + gamma * \
 Q[next_state].max()
 td_error = td_target - Q[state][action]
 Q[state][action] = Q[state][action] + \
 alphas[e] * td_error

 state = backup_next_state

 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))
 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]
 return Q, V, pi, Q_track, pi_track

(21) We continue from the planning loop.
(22) First, we want to make
sure there has been updates to
the Q-function before, otherwise
there is no much to plan.

(23) Then we select a state from a list of states already visited by the agent in experience.

(24) We then select an action that has been taken on that state.

(25) We use the count matrix to calculate probabilities of a next state and then a next state.

(26) Use the reward model as the reward.

(27) And
update the
Q-function using
that simulated
experience!

(28) At the end of the
planning steps we set the
state as the next state.

(29) The rest is the same.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

212

20 Chapter 7 I achieving goals more effectively and efficiently

tALLy it up

Model-based methods learn the transition and reward function (transition below)
(1) Take a look at the first
plot to the right. This one is
the model that Dyna-Q has
learned just after 1 episode.
Now, there are obvious issues
with this model, but also, this
is only after a single episode.
This could mean trouble when
using the learned model early
on because there will be a bias
when sampling an incorrect
model.
(2) Only after 10 episodes,
you can see the model taking
shape. In the second plot, you
should be able to see the right
probabilities coming together.
The axis to the right is the
initial state s, the axis to the
left is the landing state, the
colors are the actions and
bar heights are the transition
probabilities.
(3) After 100 episodes
the probabilities look pretty
close to the real MDP.
Obviously, this is a very simple
environment, so the agent
is able to gather enough
experience samples for
building an MDP very quickly.
(4) You can see here the
probabilities are good enough
and describe the MDP
correctly. You know that going
"right" on state 7 should take
you to state 8 with about
50% chance, to 7 with about
30% and to 6 with about 20.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

213

21Agents that interact, learn and plan

Trajectory Sampling: Making plans for the immediate future
In Dyna-Q, we learn the model as previously described, adjust action-value functions as we
do in vanilla Q-Learning, and then run a few planning iterations at the end of the algorithm.
Notice that if we were to remove the model-learning and planning lines from the code, we
would be left with the same Q-Learning algorithm as we had in the previous chapter.

At the planning phase, we only sample from the state-action pairs that have been visited,
so that the agent doesn't waste resources with state-action pairs that the model has no
information. From those visited state-action pairs, we sample a state uniformly at random
and then sample action from previously selected actions also uniformly at random. Finally,
we obtain the next state and reward sampling from the probabilities of transition given that
state-action pair. But doesn't this seem intuitively incorrect? We are planning using from a
state selected uniformly at random!

Couldn't this technique be more effective if we used a state that we expect to encounter
during the current episode? Think about it for a second. Would you prefer prioritizing
planning your day, week, month, and year, or would you instead plan some random event
that "could" happen in your life? Say that you are a software engineer, would you prefer
planning reading a programming book, and working on that side project, or a future
possible career change to medicine? Planning for the immediate future is the smarter
approach. Trajectory Sampling is a model-based RL method that does just that.

BoiL it DoWn

Trajectory sampling

While Dyna-Q samples the learned MDP uniformly at random, Trajectory Sampling gathers
trajectories, that is, transitions and rewards that can be encountered in the immediate
future. You are planning "your week," not just some random time in your life. It makes more
sense to do it this way.

The traditional trajectory-sampling approach is to sample from an initial state until reaching
a terminal state using the on-policy trajectory. In other words, sampling actions from the
same behavioral policy at the given time step.

However, you should not limit yourself to this approach; you should experiment. For
instance, my implementation samples starting from the current state, instead of an initial
state, to a terminal state within a preset number of steps, sampling a policy greedy with
respect to the current estimates.

But you can try something else. As long as you are sampling a trajectory, you can call that
trajectory sampling.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

214

22 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Trajectory Sampling agent 1/3

def trajectory_sampling(env,
 gamma=1.0,
 init_alpha=0.5,
 min_alpha=0.01,
 alpha_decay_ratio=0.5,
 init_epsilon=1.0,
 min_epsilon=0.1,
 epsilon_decay_ratio=0.9,
 max_trajectory_depth=100,
 n_episodes=3000):

 nS, nA = env.observation_space.n, env.action_space.n
 pi_track = []

 Q = np.zeros((nS, nA), dtype=np.float64)
 Q_track = np.zeros((n_episodes, nS, nA), dtype=np.float64)

 T_count = np.zeros((nS, nA, nS), dtype=np.int)
 R_model = np.zeros((nS, nA, nS), dtype=np.float64)

 select_action = lambda state, Q, epsilon: \
 np.argmax(Q[state]) \
 if np.random.random() > epsilon \
 else np.random.randint(len(Q[state]))

 alphas = decay_schedule(
 init_alpha, min_alpha,
 alpha_decay_ratio, n_episodes)

 epsilons = decay_schedule(
 init_epsilon, min_epsilon,
 epsilon_decay_ratio, n_episodes)

 for e in tqdm(range(n_episodes), leave=False):

(1) Trajectory
sampling is for the
most part the same
as Dyna-Q, with a
few exceptions.

(2) Instead of 'n_
planning' we use a
'max_trajectory_
depth' to restrict
the trajectory
length.

(3) Most of the algorithm is the same as Dyna-Q.

(4) The Q-function, etc.

(5) We create the same variables to model the transition function.
(6) And another one for the reward signal.

(7) The 'select_
action' function, the
'alphas' vector, and
'epsilons' vector are
all the same.

(8) To be continued...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

215

23Agents that interact, learn and plan

i speAk python

The Trajectory Sampling agent 2/3

 for e in tqdm(range(n_episodes), leave=False):

 state, done = env.reset(), False
 while not done:

 action = select_action(state, Q, epsilons[e])

 next_state, reward, done, _ = env.step(action)

 T_count[state][action][next_state] += 1

 r_diff = reward - \
 R_model[state][action][next_state]

 R_model[state][action][next_state] += \
 (r_diff / T_count[state][action][next_state])

 td_target = reward + gamma * \
 Q[next_state].max() * (not done)

 td_error = td_target - Q[state][action]
 Q[state][action] = Q[state][action] + \
 alphas[e] * td_error

 backup_next_state = next_state
 for _ in range(max_trajectory_depth):

(9) Continues on the episode loop.

(10) Again, each new episode, we start by resetting the environment and obtaining the
initial state. We also set the 'done' flag to False and enter the step interaction loop.

(11) We select the action.

(12) We step the environment and get the experience tuple.

(13) We learn the model just like in Dyna-Q: increment the transition count for the state-
action-next_state triplet indicating that full transition occurred.

(14) Then, again, calculate an incremental mean of the reward signal, first get the difference.

(15) Then, use that difference and the transition count to learn the reward signal.

(16) We calculate the TD target as usual.

(17) The TD error using the TD target and the current estimate.

(18) Then, update the Q-function.
(19) And right before we get into the planning steps, we backup the next state variable.

(20) To be continued...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

216

24 Chapter 7 I achieving goals more effectively and efficiently

i speAk python

The Trajectory Sampling agent 3/3

 for _ in range(max_trajectory_depth):

 if Q.sum() == 0: break

 # action = select_action(state, Q, epsilons[e])
 action = Q[state].argmax()

 if not T_count[state][action].sum(): break

 probs = T_count[state][action] / \
 T_count[state][action].sum()
 next_state = np.random.choice(\
 np.arange(nS), size=1, p=probs)[0]

 reward = R_model[state][action][next_state]

 td_target = reward + gamma * \
 Q[next_state].max()
 td_error = td_target - Q[state][action]
 Q[state][action] = Q[state][action] + \
 alphas[e] * td_error
 state = next_state

 state = backup_next_state

 Q_track[e] = Q
 pi_track.append(np.argmax(Q, axis=1))
 V = np.max(Q, axis=1)
 pi = lambda s: {s:a for s, a in enumerate(\
 np.argmax(Q, axis=1))}[s]
 return Q, V, pi, Q_track, pi_track

(21) Notice we are now using a 'max_trajectory_depth' variable, but still planning.

(22) We still check for the Q-function to have any difference... so it is worth our compute.

(23) Select the action either on-policy or off-policy (using the greedy policy.)

(24) If we haven't experienced the transition, planning would be a mess, so break out.

(25) Otherwise, we get the probabilities of 'next_state' and sample the model accordingly.

(26) Then, get the reward as prescribed by the reward-signal model.

(27) And continue updating the Q-function as if with real experience.

(28) Notice here we
update the 'state'
variable right before
we loop and continue
the on-policy
planning steps.

(29) Outside the
planning loop we restore
the state, and continue
real interaction steps.(30) Everything else just as usual.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

217

25Agents that interact, learn and plan

tALLy it up

Dyna-Q and Trajectory Sampling sample the learned model differently
(1) This first plot is the states
that were sampled by the planning
phase of Dyna-Q and the actions
selected in those states. As you
can see, Dyna-Q samples uniformly
at random, not only the states,
but also the actions taken in
those states.
(2) With Trajectory Sampling you
have a very different sampling
strategy. Remember, in the SWS
environment the rightmost
state, state 8, is the only non-
zero reward state. Landing on
state 8 provides a reward of +1.
The greedy trajectory sampling
strategy samples the model in an
attempt to improve greedy action
selection. This is the reason why
the states sampled are skewed
towards the goal state, state
8. The same happens with the
sampling of the action. As you can
see, the right action is sampled far
more than the left action across
the board.
(3) To understand the implications
of the different sampling
strategies, I plotted the landing
states after sampling an action
in state 7, which is the state
to the left of the goal state.
As we've seen Dyna-Q does the
sampling uniformly at random so
probabilities reflect the MDP.
(4) Trajectory sampling, on the
other hand, lands on the goal
state far more often therefore
experiencing non-zero rewards
from the model more frequently.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

218

26 Chapter 7 I achieving goals more effectively and efficiently

concRete exAmpLe

The Frozen Lake environment

In chapter 2, we developed the MDP for an environment called Frozen Lake (FL). As you
remember, FL is a simple grid-world (GW) environment. It has discrete state and action
spaces, with 16 states and 4 actions.

The goal of the agent is to go from a start location to a goal location while avoiding falling
into holes. In this particular instantiation of the Frozen Lake environment, the goal is to go
from state 0 to state 15. The challenge is that the surface of the lake is frozen, and therefore
slippery, very slippery.

The FL environment is a 4x4 grid with 16 cells, states 0-15, top-left to bottom-right. State
0 is the only state in the initial state distribution, meaning that on every new episode, the
agent shows up in that (START) state. States 5, 7, 11, 12, and 15 are terminal states, meaning,
once the agent lands on any of those states, the episode terminates. States 5, 7, 11, and 12
are holes, and state 15 is the "goal." What makes "holes" and "goal" be any different is the
reward function. All transitions landing on the goal states, state 15, provide a +1 reward,
while every other transition in the entire grid-world provides a 0 reward, no reward. The
agent will naturally try to get to that +1 transition, and that involves avoiding the holes. The
challenge of the environment is that actions have stochastic effects, so the agent moves
only a third of the time as intended. The other two-thirds is split evenly in orthogonal
directions. If the agent tries to move out of the grid world, it will just bounce back to the cell
from which it tried to move.

Agent starts each trial here. Slippery frozen surface
may send the agent to
unintended places.

Agents gets a +1 when
he arrives here.

These are holes that will
end the trial if the agent
falls into any of them.

START

10

4

8

12

2 3

5 6 7

9 10 11

13 14 15

GOAL

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

219

27Agents that interact, learn and plan

it's in the DetAiLs

Hyperparameter values for the Frozen Lake environment

The Frozen Lake (FL) environment is a more challenging environment than, for instance,
the Slippery Walk Seven (SWS) environment. Therefore, one of the most important changes
we need to make is to increase the number of episodes the agent interacts with the
environment.

While in the SWS environment we allow the agent to interact for only 3,000 episodes, in the
FL environment we let the agent gather experience for 10,000 episodes. This simple change
also automatically adjusts the decay schedule for both alpha and epsilon.

Simply changing the value of the 'n_episodes' parameter from 3,000 to 10,000,
automatically
changes the
amount of
exploration
and learning
of the agent.
Alpha now
decays from
an initial value
of 0.5 to a
minimum
value of 0.01
after 50%
of the total
episodes
which is 5,000
episodes, and epsilon decays from an initial value of 1.0 to a minimum value of 0.1 after
90% of the total episodes, which is 9,000 episodes.

Finally, it's important to mention that I'm using a gamma of 0.99, and that the Frozen Lake
environment, when used with OpenAI Gym, is automatically wrapped with a time limit
Gym Wrapper. This "TimeWrapper" instance makes sure the agent terminates an episode
with no more than 100 steps. Technically speaking, these two decisions (gamma and
the time wrapper) change the optimal policy and value function the agent learns, and
should not be taken lightly. I recommend playing with the FL environment in chapter 7's
Notebook and changing gamma to different values (1, 0.5, 0) and also removing the time
wrapper by getting the environment instance attribute 'unwrapped', for instance 'env = env.
unwrapped'. Try to understand how these two things affect the policies and value functions
found.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

220

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_07/chapter-07.ipynb

28 Chapter 7 I achieving goals more effectively and efficiently

tALLy it up

Model-based RL methods get estimates closer to actual in fewer episodes

(1) One interesting experiment
you should try is training vanilla
Sarsa and Q-learning agents on
this environment and comparing
the results. But just look at the
Sarsa-lambda agent struggle
estimating the optimal state-
value function. Remember in
these plots the horizontal lines
represent the optimal state-value
function for a handful of states, in
this case, I pulled states 0, 4, 6,
9, and 10.
(2) The Q-lambda agent is off-
policy and you can see it moving
the estimates of the optimal
state-value function towards the
true values, unlike Sarsa-lambda.
Now, to be clear, this is a matter
of number of steps, I'm sure
Sarsa-lambda would converge
to the true values if given more
episodes.
(3) The Dyna-Q agent is even
faster than the Q-lambda agent
at tracking the true values, but
notice too, how there is a large
error spike at the beginning of
training. This is likely because the
model is incorrect early on, and
Dyna-Q randomly samples states
from the learned model, even
states not sufficiently visited.
(4) My implementation of
trajectory sampling uses the
greedy trajectory, so the agent
samples states likely to be
encountered. Perhaps, the reason
why there is more stability in TS.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

221

29Agents that interact, learn and plan

tALLy it up

Both traces and model-based methods are efficient at processing experiences
(1) Now, lets discuss how the results
shown in the previous page relate to
success. As you can see on the first
plot to the right, all algorithms except
Sarsa-lambda reach the same success
rate as an optimal policy. Also, model-
based RL methods appear to get there
first, but not by much, though. Recall that
"success" here just means the number of
times the agent reached the goal state
(state 15 in the FL environment.)
(2) On the second plot to the right, you
can see the estimated expected return
of the initial state. Notice how both
model-based methods have a huge error
spike at the beginning of the training run,
Trajectory Sampling stabilizes a little bit
sooner than Dyna-Q, yet the spike is still
significant. Q-lambda methods get there
without the spike and soon enough, while
Sarsa-lambda methods never make it
before training is stopped.
(3) The third plot is the actual episode
return averaged over 100 episodes.
As you can see, both model-based
methods and Q-lambda agents obtain
the expected return after approximately
2,000 episodes. Sarsa-lambda agents
don't get there before the training
process is stopped. Again, I'm pretty sure
given enough time, Sarsa-lambda agents
would get there.
(4) This last plot is the action-value
function mean absolute error. As you can
see, the model-based methods also bring
the error down close to zero the fastest.
However, shortly after 2,000 episodes
both model-based and Q-lambda methods
are pretty much the same. Sarsa-lambda
methods are also slow to optimal here.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

222

30 Chapter 7 I achieving goals more effectively and efficiently

concRete exAmpLe

The Frozen Lake 8x8 environment

How about we step it up and try these algorithms in a very challenging environment?

This one is called Frozen Lake 8x8 (FL8x8) and as you might expect, this is an 8 by 8 grid
world, with very similar properties to the FL. The initial state is state 0, the state on the top
left corner, the terminal and goal state is state 63, the state on the bottom right corner. The
stochasticity of action effects is the same, the agent moves to the intended cell with a mere
33.33% chance, and the rest is split evenly in orthogonal directions.

The main difference in this environment, as you can see, is that there are many more holes,
and obviously they are in different locations. States 19, 29, 35, 41, 42, 46, 49, 52, 54, and 59
are holes, that's a total of 10 holes.

Similarly to the original FL environment, in FL8x8, the right policy allows the agent to
be able to reach the terminal state 100% of the episodes. However, in the OpenAI Gym
implementation agents that learn optimal policies do not find these particular policies
because of gamma and the 'TimeWrapper' we discussed recently. Think about it for an
second, given the stochasticity of these environments, a safe policy could terminate in
zero rewards for the episode due to the time wrapper. Also, given a gamma value less than
one, the more steps the agent takes, the lower the reward will impact the return. For these
reasons, safe policies are not necessarily optimal policies, therefore the agent doesn't learn
them. Remember that the goal is not simply to find a policy that reaches the goal 100% of
the times, but to find a policy that reaches the goal within 100 steps in FL and 200 steps in
FL8x8. Agents may need to take some risks to accomplish this goal.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

223

31Agents that interact, learn and plan

it's in the DetAiLs

Hyperparameter values for the Frozen Lake 8x8 environment

The Frozen Lake 8x8 (FL8x8) environment is the most challenging discrete state- and
action-space environment that we discuss in this book. This environment is challenging for
a number of reasons, first having 64 states, that's the largest number of states we've worked
with, but more importantly having a single non-zero reward. That's truly what makes this
environment particularly challenging.

What that really means is agents will only know they have done it right once they hit the
terminal state for the first time, remember, this is randomly! After they find the non-zero
reward transition, agents such as Sarsa and Q-learning (not the lambda versions, but the
vanilla ones) will only update the value of the state from which the agent transitioned
to the goal state. That's a one-step back up of the value function. Then, for that value
function to be propagated back one more step, guess what, the agent needs to randomly
hit that second-to-final state. But, that is for the non-lambda versions. With Sarsa-lambda
and Q-lambda, the propagation of values depends on the value of lambda. For all the
experiments in this chapter, I use a lambda of 0.5, which more or less tells the agent to
propagate the values half the trajectory (also depending on the type of traces being used,
but as a ballpark.)

Surprisingly enough, the only change we make to these agents is the number episodes
we let them
interact with the
environments.
While in the SWS
environment
we allow the
agent to interact
for only 3,000
episodes,
and in the FL
environment
we let the
agent gather
experience for
10,000 episodes,
in FL8x8 we
let these agents gather 30,000 episodes. This means that alpha now decays from an initial
value of 0.5 to a minimum value of 0.01 after 50% of the total episodes which is now 15,000
episodes, and epsilon decays from an initial value of 1.0 to a minimum value of 0.1 after
90% of the total episodes, which is now 27,000 episodes.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

224

32 Chapter 7 I achieving goals more effectively and efficiently

tALLy it up

On-policy methods no longer keep up, off-policy with traces and model-based do
(1) Results show pretty much
the same trends. the Sarsa-
lambda agent perhaps takes
too long to be an interesting
contender. I've mentioned
before this is possibly due to
being an on-policy algorithm.
As you can see, non of the
estimates gets even close to
the optimal values.
(2) The Q-lambda agent,
however, has estimates that
do reflect the optimal values. A
caveat that I want to mention,
the optimal values shown in
these graphs do not take into
account the time step limit
that the agent suffers through
interaction. That should affect
the estimates.
(3) The Dyna-Q agent has
a big advantage. Being a
model-based RL method, all
of the interaction steps prior
to hitting a terminal state
actually help with something,
help learning the MDP. Once the
agent find the reward for the
first time, the planning phase
of model-based RL methods
propagates the values quickly.
(4) We see a very similar trend
with the Trajectory Sampling
agent as before, the estimates
do track the optimal values,
and more importantly, there is
not a huge spike due to model
error. TS shows a much more
stable curve for the estimates.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

225

33Agents that interact, learn and plan

tALLy it up

Some model-based methods show large error spikes to be aware of

(1) I had to separate the plotting of policy
success rate and episode return.
(2) On the plot to the right, you can see how
the error of the estimated expected return for
Dyna-Q is very large, while Trajectory Sampling
and Q-lambda agents are much more stable.
You can see how Sarsa-lambda agents are just
too off.
(3) The action-value function estimation error is
pretty much the same with all agents. However,
you may notice that Dyna-Q is the lowest
error. Why do you think this is? Remember,
my Trajectory Sampling implementation only
generates greedy trajectory samples, that
means that some states will not get updates
(or visited) after a number of episodes, while
methods such as Dyna-Q select uniformly at
random, which means many state-action pairs
will get updates, even if those are irrelevant for
policy performance.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

226

34 Chapter 7 I achieving goals more effectively and efficiently

Summary
In this chapter, you learned about making RL more effective and efficient. By effective here,
I mean that agents presented in this chapter are capable of solving the environment in the
limited number of episodes allowed for interaction. Other agents, such as vanilla Sarsa, or
Q-Learning, or even Monte-Carlo control, would have trouble solving these challenges in
the limited number of steps, at least for sure, they would have trouble solving the FL8x8
environment in only 30,000 episodes. That is what effectiveness means to me in this chapter;
agents are successful in producing the desired results.

We also explore more efficient algorithms. And by efficient here, I mean data-efficient; I
mean that the agents we introduced in this chapter can do more with the same data than
other agents. Sarsa(λ) and Q(λ), for instance, can propagate rewards to value-function
estimates much quicker than their vanilla counterparts, Sarsa and Q-learning. By adjusting
the λ hyperparameter, you can even assign credit to all states visited in an episode. A value
of one for λ is not always the best, but at least you have the option when using Sarsa(λ) and
Q(λ).

You also learned about model-based RL methods, such as Dyna-Q and Trajectory sampling.
These methods are sample-efficient in a different way. They use samples to learn a model of
the environment; if your agent lands 100% of 1M samples on state s' when taking action a,
in state s, why not use that information to improve value functions and policies. Advanced
model-based deep reinforcement learning methods are often used in environments in which
gathering experience samples is costly. Domains such as robotic, or problems in which you
don't have a high-speed simulation, or where hardware requires lots of financial resources.

For the rest of the book, we are moving on to discuss the subtleties that arise when using
non-linear function approximation with reinforcement learning. Everything that you have
learned so far still applies. The only difference is that instead of using vectors and matrices
for holding value functions and policies, now we move into the world of supervised learning
and function approximation. Remember, in DRL, agents learn from feedback that is
simultaneously sequential (as opposed to one-shot), evaluative (as opposed to supervised),
and sampled (as opposed to exhaustive). So far, we haven't touched the "sampled" part;
agents have always been able to visit all states or state-action pairs, but starting with the next
chapter, we concentrate on problems that cannot be exhaustively sampled.

By now you:

• Know how to develop RL agents that are more effective at reaching their goals.
• Know how to make RL agents that are mode sample-efficient.
• Know how to deal with feedback that is simultaneously sequential and evaluative.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

227

introduction to value-based
deep reinforcement learning 8

In this chapter

• You understand the inherent challenges of training
reinforcement learning agents with non-linear function
approximators.

• You create a deep reinforcement learning agent that
when trained from scratch with minimal adjustments
to hyperparameters can solve different kinds of
problems.

• You identify the advantages and disadvantages
of using value-based methods when solving
reinforcement learning problems.

Human behavior flows from three main sources:
desire, emotion, and knowledge.

— Plato
A philosopher in Classical Greece

and Founder of the Academy in Athens

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

228

Chapter 8 I introduction to value-based deep reinforcement learning2

We have made a great deal of progress so far, and you are ready to grok deep reinforcement
learning truly. In chapter 2, you learned to represent problems in a way reinforcement
learning agents can solve using Markov Decision Processes (MDP.) In chapter 3, you
developed algorithms that solve these MDPs. That is agents that find optimal behavior in
sequential decision-making problems. In chapter 4, you learned about algorithms that solve
one-step MDPs without having access to these MDPs. These problems are uncertain because
the agents do not have access to the MDP. Agents learn to find optimal behavior through
trial-and-error learning. In chapter 5, we mixed these two types of problems: sequential and
uncertain, so we explore agents that learn to evaluate policies. Agents didn't find optimal
policies but were able to evaluate policies, were able to estimate value functions accurately.
In chapter 6, we studied agents that find optimal policies on sequential decision-making
problems under uncertainty. These agents go from random to optimal by merely interacting
with their environment and deliberately gathering experiences for learning. In chapter 7, we
learned about agents that are even better at finding optimal policies by getting the most out
of their experiences.

Chapter 2 is a foundation for all chapters in this book use. Chapter 3 is about planning
algorithms that deal with sequential feedback. Chapter 4 is about bandit algorithms that deal
with evaluative feedback. Chapters 5, 6, and 7 are about RL algorithms, algorithms that deal
with feedback that is simultaneously sequential and evaluative. This type of problem is what
people refer to as 'tabular' reinforcement learning. Starting from this chapter, we dig into the
details of deep reinforcement learning.

More specifically, in this chapter, we begin our incursion on the use of deep neural networks
for solving reinforcement learning problems. In deep reinforcement learning, there are
different ways of leveraging the power of highly non-linear function approximators, such
as deep neural networks. They are value-based, policy-based, actor-critic, model-based,
and gradient-free methods. This chapter goes in-depth on value-based deep reinforcement
learning methods.

Types of algorithmic approaches you learn
about in this book

Policy-basedDerivative-free Actor-critic Value-based Model-based

(1) You are here for
the next 3 chapters.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

229

3The kind of feedback deep reinforcement learning agents use

The kind of feedback
deep reinforcement learning agents use
In deep reinforcement learning, we build agents that are capable of learning from feedback
that is simultaneously evaluative, sequential, and sampled. I've been restating this
throughout the book because you need to understand what that means.

In the first chapter, I mentioned that deep reinforcement learning is about complex
sequential decision-making problems under uncertainty. You probably thought, "what a
bunch of words." But as I promised, all these words mean something. "Sequential decision-
making problems" is what you learned about in chapter 3. "Problems under uncertainty" is
what you learned about in chapter 4. In chapters 5, 6, and 7, you learned about "sequential
decision-making problems under uncertainty." In this chapter, we add the "complex" part
back to that whole sentence. Let's use this introductory section to review one last time the
three types of feedback a deep reinforcement learning agent uses for learning.

Boil it Down

Kinds of feedback in deep reinforcement learning

Sequential
(as opposed
to one-shot)

Evaluative
(as opposed

to supervised)

Sampled
(as opposed

to exhaustive)

Supervised
Learning × × ✓

Planning
(Chapter 3)

✓ × ×

Bandits
(Chapter 4)

× ✓ ×

'Tabular'
reinforcement
learning
(Chapters 5, 6, 7)

✓ ✓ ×

Deep
reinforcement
learning
(Chapters 8, 9, 10, 11, 12)

✓ ✓ ✓

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

230

Chapter 8 I introduction to value-based deep reinforcement learning4

Deep reinforcement learning agents
deal with sequential feedback
Deep reinforcement learning agents have to deal with sequential feedback. One of the main
challenges of sequential feedback is that your agents can receive delayed information.

You can imagine a chess game in which you make a few wrong moves early on, but the
consequences those wrong moves only manifest at the end of the game when and if you
materialize a loss.

Delayed feedback makes it tricky to interpret the source of the feedback. Sequential
feedback gives rise to the temporal credit assignment problem, which is the challenge of
determining which state, action, or state-action pair is responsible for a reward. When there
is a temporal component to a problem and actions have delayed consequences, it becomes
challenging to assign credit for rewards.

Sequential feedback

we use value functions to decide on actions, and not merely rewards.
This is the challenge of sequential feedback, and one of the reasons 3

But before the agent can
complete this
“better–looking” path, it
will get a high penalty.

2

Consider this environment in which one
path looks obviously better than the
other even after several steps.

1

-10 -10 -10 -10 -10

-100

-1

-1

-1

-1

-1-1 -1-1-1

-10

-10

-10

-10

-10

0

Start

Goal

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

231

5The kind of feedback deep reinforcement learning agents use

But, if it is not sequential, what is it?
The opposite of delayed feedback is immediate feedback. In other words, the opposite of
sequential feedback is one-shot feedback. In problems that deal with one-shot feedback,
such as supervised learning or multi-armed bandits, decisions do not have long-term
consequences. For example, in a classification problem, classifying an image, whether
correctly or not, has no bearing on future performance; for instance, the images presented
to the model next are not any different whether the model classified correctly or not the
previous batch. In DRL, this sequential dependency exists.

Moreover, in Bandit problems, there is also no long-term consequence, though perhaps a
bit harder to see why. Bandits are one-state one-step MDPs in which episodes terminate
immediately after a single action selection. Therefore, actions do not have long-term
consequences in the performance of the agent during that episode.

2-armed bandit

Note: We assume slot machines have a
stationary probability of pay off, meaning
the probability of payoff will not change
with a pull, which is likely incorrect for real
slot machines.

When you go to a casino and play the
slots machines, your goal is to find the
machine that "pays" the most, and
then stick to that arm.

1

In bandit problems, we assume the
probability of pay off stays the same
after every pull. This makes it a
one-shot-kind of problem.

2

An intelligent agent, you!!!

Slot machines

Classification problem
Dataset

into the model.
A mini-batch is fed

1 Model predicts
and calculates a loss.
E.g.: Accuracy 70%, or
80% or 2%, or 100%.

2

But, the 'dataset' doesn’t really care how the model does.
The model will be fed next another randomly sampled
mini-batch in total disregard of model performance.
In other words, there are no long-term consequences.

3

Model

...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

232

Chapter 8 I introduction to value-based deep reinforcement learning6

Deep reinforcement learning agents
deal with evaluative feedback
The second property we learned about is that of evaluative feedback. Deep reinforcement
learning, 'tabular' reinforcement learning, and bandits, all deal with evaluative feedback. The
crux of evaluative feedback is that the goodness of the feedback is only relative because the
environment is uncertain. We do not know the actual dynamics of the environment; we do
not have access to the transition function and reward signal.

As a result, we must explore the environment around us to find out what's out there. The
problem is, by exploring, we miss capitalizing on our current knowledge and, therefore,
likely accumulate regret. Out of all this, the exploration-exploitation tradeoff arises.
It's a constant by-product of uncertainty. While not having access to the model of the
environment, we must explore to gather new information or improve on our current
information.

Evaluative feedback

don't see entire maps such as this one
To understand the challenge of evaluative feedback you must be aware that agents 1

Instead, they only see the current state and reward such as this one.2

So, is that -10 bad? Is it good?3

-10 -10 -10
-10

-10

-1-1 -1-1

-10

-10

-10

-10

-10 -100

-1

-1

-1

-1

-1

0
-10

0
Start

Goal

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

233

7The kind of feedback deep reinforcement learning agents use

But, if it is not evaluative, what is it?
The opposite of evaluative feedback is supervised feedback. In a classification problem, your
model receives supervision; that is, during learning, your model is given the correct labels
for each of the samples provided. There is no guessing. If your model makes a mistake, the
correct answer is provided immediately after. What a good life!

The fact that correct answers are given to the learning algorithm makes supervised feedback
much easier to deal with than evaluative feedback. That is a clear distinction between
supervised learning problems and evaluative-feedback problems, such as multi-armed
bandits, 'tabular' reinforcement learning, and deep reinforcement learning.

Bandit problems may not have to deal with sequential feedback, but they do learn from
evaluative feedback. That's the core issue bandit problems solve. When under evaluative
feedback, agents must balance exploration vs. exploitation requirements. Now, if the
feedback is evaluative and sequential at the same time, the challenge is even more
significant. Algorithms must simultaneously balance immediate- and long-term goals and
the gathering and utilization of information. Both, 'tabular' reinforcement learning, and
deep reinforcement learning learn from feedback that is simultaneously sequential and
evaluative.

Bandits deal with evaluative feedback

You go pull the first arm and get, 10 bucks.
Is that good or bad? What if the other gives
you $50? What if it gives you $1 with every
pull for the next 500 pulls?!!?

1

More importantly how do you
know you could you do better
trying the other machine?

2

Nobody is there to tell you
there is no 'supervision'.

3

You Slot machines

Clasification is "supervised"

Dataset

Each mini-batch
contains the correct
"answers" (labels),
which are given to the
"agent" (model)!

Somebody said
cheating!?!?!

1

So, the model tries
and will be given the
correct answers after
each trial.

2

But, you know life gives you no "right" answer!3

Model

...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

234

Chapter 8 I introduction to value-based deep reinforcement learning8

Deep reinforcement learning agents
deal with sampled feedback
What differentiates deep reinforcement learning from 'tabular' reinforcement learning is the
complexity of the problems. In deep reinforcement learning, agents are unlikely to be able to
sample all possible feedback exhaustively. That means that agents need to generalize using
the gathered feedback and come up with intelligent decisions based on that generalization.

Think about it. You can't expect exhaustive feedback from life. You can't be a doctor and a
lawyer and an engineer all at once. At least not if you want to be good at any of these. So,
you must use the experience you gather early on to make more intelligent decisions for
your future. It's basic. Were you good at math in high-school? Great, then, pursue a math-
related degree. Were you better at the arts? Then, go to pursue that path. Generalizing helps
you narrow your path going forward by helping you find patterns, make assumptions, and
connect the dots, that help you reach your optimal self.

By the way, supervised learning deals with sampled feedback. Indeed, the core challenge in
supervised learning is to learn from sampled feedback: to be able to generalize to unseen
samples, which is something neither multi-armed bandit nor 'tabular' reinforcement
learning problems do.

Sampled feedback

by 160 pixels.

Imagine you are feeding your agent images as states.1

Each image is 2102

With 3 channels
representing the amount
of red, green and blue.

3

Each pixel in an
8-bit image can
have a value
from 0 to 255

4

How many possible states is that you ask?5

That’s (2553)210x160=(16,581,375)33,600 = a lot!6

For giggles, I ran this in Python and it returns a 242,580-digit number. To put it in
perspective, the known, observable universe has between 1078 and 1082 atoms, which
is an 83-digit number at most.

7

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

235

9The kind of feedback deep reinforcement learning agents use

But, if it is not sampled, what is it?
The opposite of sampled feedback is exhaustive feedback. To exhaustively sample
environments means agents have access to all possible samples. 'Tabular' reinforcement
learning, and bandits agents, for instance, only need to sample for long enough to gather all
necessary information for optimal performance. To be able to gather exhaustive feedback
is also why there are optimal convergence guarantees in 'tabular' reinforcement learning.
Common assumptions, such as "infinite data" or "sampling every state-action pair infinitely
often," are reasonable assumptions in small grid worlds with finite state and action spaces.

This dimension we haven't dealt with until now. In this book so far, we surveyed the
'tabular' reinforcement learning problem. 'Tabular' reinforcement learning learns from
evaluative, sequential, and exhaustive feedback. But, what happens when we have more
complex problems in which we cannot assume our agents will ever exhaustively sample
environments? What if the state space is high-dimensional, such as a Go board with 10170
states? How about ATARI games with (2553)210x160 at 60 Hz? What if the environment state
space has continuous variables, such as a robotic arm indicating joint angles? How about
problems with both high-dimensional and continuous states or even high-dimensional and
continuous actions? These complex problems are the reason for the existence of the field of
deep reinforcement learning.

Sequential, evaluative and exhaustive feedback

feedback looks like
Again, this is what sequential 1

But, given you have a discrete number of states and actions, you can assume
exhaustively sampling the environment. In a small state and action spaces,
things are easy in practice, and theory is doable. As the number of states and
actions spaces increase, the need for function approximation becomes evident.

3

feedback looks like
And this is what evaluative 2

-10 -10 -10
-10

-10

-1-1 -1-1

-10

-10

-10

-10

-10 -100

-1

-1

-1

-1

-1

0
-10

0
Start

Goal

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

236

Chapter 8 I introduction to value-based deep reinforcement learning10

Introduction to function approximation
for reinforcement learning
It's essential to understand why we use function approximation for reinforcement learning
in the first place. It is common to get lost in words and pick solutions due to the hype. You
know, if you hear "deep learning," you get more excited than if you hear non-linear function
approximation, yet they are the same. That's human nature. It happens to me; it happens to
many, I'm sure. But our goal is to remove the cruft and simplify our thinking.

In this section, I motivate the use of function approximation to solve reinforcement learning
problems in general. Perhaps a bit more specific to value functions, than RL overall, but the
underlying motivation applies to all forms of DRL.

Reinforcement learning problems
can have high-dimensional state and action spaces
The main drawback of 'tabular' reinforcement learning is that the use of a table to represent
value functions is no longer practical in complex problems. Environments can have high-
dimensional state spaces, meaning that the number of variables that comprise a single state
is vast. For example, ATARI games described above are high dimensional because of the 210
by 160 pixels, and the 3 color channels. Regardless of the values that these pixels can take
when we talk about 'dimensionality,' we are referring to the number of variables that make
up a single state.

State

3 A high-dimensional state has
many variables. A single image
frame from ATARI, for example
has 210x160x3 = 100,800 pixels.

State

High-dimensional state spaces

This is a state.
Each state is a unique
configuration of
variables.

1 2 For exampler, variables
can be position, velocity,
target, location, pixel,
value, etc.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

237

11Introduction to function approximation for reinforcement learning

Reinforcement learning problems
can have continuous state and action spaces
Moreover, environments can additionally have continuous variables, meaning that a variable
can take on an infinite number of values. Now, to clarify, state and action spaces can be
high-dimensional with discrete variables, they can be low-dimensional with continuous
variables, and so on.

Now, even if the variables are not continuous and, therefore, not infinitely large, they can
still take on a large number of values to make it impractical for learning without function
approximation. This is the case of ATARI, for instance, where each image-pixel can take on
256 values (0-255 integer values.) There you have a finite state-space, yet large enough to
require function approximation for any learning to occur.

But, sometimes, even low-dimension state spaces can be infinitely large state spaces. For
instance, imagine a problem in which only the x, y, z coordinates of a robot compose
the state-space. Sure, a three-variable state-space is a pretty low-dimensional state-space
environment, but what if any of the variables is provided in continuous form, that is, that
variable can be of infinitesimal precision. Say, it could be a 1.56, or 1.5683, or 1.5683256,
and so on. Then, how do you make a table that takes all these values into account? Yes, you
could discretize the state space, but let me save you some time and get right to it: you need
function approximation.

State

Continuous state spaces

State

0.0 - 100.0

This is a state.
Each state is a unique
configuration of
variables.

1

3 A continuous state-space has at least one variable that can take on
an infinite number of values. For example, position, angles, altitude,
are variables that can have infinitesimal accuracy: say, 2.1, or 2.12,
or 2.123, and so on.

2 Variables can be position,
velocity, target, location,
pixel, value, etc.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

238

Chapter 8 I introduction to value-based deep reinforcement learning12

ConCrete example

The Cart-Pole environment

The cart-pole environment is a classic in reinforcement learning. The state space is low-
dimensional but continuous, making it an excellent environment for developing algorithms;
training is fast, yet still somewhat challenging, and function approximation can help.

Its state space is comprised of four variables:

• The cart position on the track (x axis) with a range from -2.4 to 2.4
• The cart velocity along the track (x axis) with a range from -inf to inf
• The pole angle with a range of ~-40 degrees to ~ 40 degrees
• The pole velocity at the tip with a range of -inf to inf

There are two available actions in every state:

• Action 0 applies a -1 force to the cart (push it left)
• Action 1 applies a +1 force to the cart (push it right)

You reach a terminal state if:

• The pole angle is more than 12 degrees away from the vertical position
• The cart center is more than 2.4 units from the center of the track
• The episode count reaches 500 time steps (more on this later)

The reward function is:

• +1 for every time step

along a track

The cart-pole environment consists on balancing a pole1

that is hinged to a cart2

and can move 3

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

239

13Introduction to function approximation for reinforcement learning

There are advantages when using function approximation
I'm sure you get the point that in environments with high-dimensional or continuous
state spaces, there are no practical reasons for not using function approximation. In earlier
chapters, we discussed planning and reinforcement learning algorithms. All of those
methods represent value functions using tables.

F5 refresh my memory

Algorithms such as Value Iteration and Q-learning use tables for value functions

Value iteration is a method that takes in an MDP and derives an optimal policy for such MDP
by calculating the optimal state-value function, v*. To do this, value iteration keeps track of
the changing state-value function, v, over multiple iterations. In value iteration, the state-
value function estimates are represented as a vector of values indexed by the states. This
vector is stored with a lookup table for querying and updating estimates.

The Q-learning algorithm does not need an MDP and does not use a state-value function.
Instead, in Q-learning, we estimate the values of the optimal action-value function, q*.
Action-value functions are not vectors, but, instead, are represented by matrices. These
matrices are 2-d tables indexed by states and actions.

A state-value function
A state-value function
is indexed by the state,
and it returns a value
representing the
expected reward to go
at the state

1

V -1.5

0

1.4-3.5

1

0.2

2

1.1

3 4

3.4

5State

An action-value function

a value representing the expeded reward to go for taking that action at that state.
An action-value function, Q, is indexed by the state and and the action and it returns1

5.7-1.5

0

0

Q
-0.2

1

1.2

6.14.21 -2.1 2.7

2 3

States

Actions

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

240

Chapter 8 I introduction to value-based deep reinforcement learning14

Boil it Down

Function approximation can make our algorithms more efficient

In the cart-pole environment, we want to use generalization because it is a more efficient
use of experiences. With function approximation, agents learn and exploit patterns with less
data (and perhaps faster).

A state-value function with and without
function approximation

Imagine this state-value function.1

Without function approximation, each
value is independent.

2

With function approximation the
underlying relationship
of the states can be learned and
exploited.

3

Without function
approximation, the
update only
changes one state.

5

With function
approximation, the
updates changes
multiple states.

6

Note:
Of course, this is a simplified example, but it helps illustrate what’s happening.
What would be different in ‘real’ examples?
First, if we approximate an action-value function, Q, we would have to add another
dimension.
Also, with non-linear function approximator, such as a neural network, more complex
relationship can be discovered.

7

Value

40 1 2 3

Value

40 1 2 3 40 1 2 3

these plots after just a single update.
The benefit of using function approximation is particularly obvious if you imagine 4

Value

40 1 2 3

V =[-2.5, -1.1, 0.7, 3.2, A.6]

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

241

15NFQ: The first attempt to value-based deep reinforcement learning

While the inability of Value Iteration and Q-learning to solve problems with sampled
feedback make them impractical, the lack of generalization makes them inefficient. What
I mean by this is that we could find ways to use tables in environment with continuous-
variable states, but we would be paying a price by doing so. Discretizing values could indeed
make tables possible, for instance. But, even if we could engineer a way to use tables and
store value functions, by doing so, we'd be missing out on the advantages of generalization.

For example, in the cart-pole environment, function approximation would help our agents
learn a relationship in the x distance. Agents would likely learn that being 2.35 units away
from the center is a bit more dangerous than being 2.2 away. We know that 2.4 is the x
boundary. This additional reason for using generalization is not to be understated. Value
functions often have underlying relationships that agents can learn and exploit. Function
approximators, such as neural networks, can discover these underlying relationships.

NFQ: The first attempt to value-based
deep reinforcement learning
The following algorithm is called Neural Fitted Q Iteration (NFQ), and it is probably one
of the first algorithms to successfully use neural networks as a function approximation to
solve reinforcement learning problems.

For the rest of this chapter, I discuss several components most value-based deep
reinforcement learning algorithms have. I want you to see it as an opportunity to decide on
different parts that we could've used. For instance, when I introduce using a loss function
with NFQ, I discuss a few alternatives. My choices are not necessarily the choices that
were made when the algorithm was originally introduced. Likewise, when I choose an
optimization method, whether RMSprop or Adam, I give some reason why I use what I use,
but more importantly, I give you context so you can pick and choose as you see fit.

What I hope you notice is that my goal is not only to teach you this specific algorithm but,
more importantly, to show you the different places where you could try different things.
Many RL algorithms feel this "plug-and-play" way, so pay attention.

Boil it Down

Reasons for using function approximation

Our motivation to using function approximation is not only to solve problems that are not
solvable otherwise, but also to solve problems more efficiently.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

242

Chapter 8 I introduction to value-based deep reinforcement learning16

First decision point: Selecting a value function to approximate
Using neural networks to approximate value functions can be done in many different ways.
To begin with, there are many different value functions we could approximate.

We'll study how to use the v(s) and a(s) functions in a few chapters. For now, let's settle
on estimating the action-value function q(s,a), just like in Q-learning. We refer to the
approximate action-value function estimate as Q(s,a; θ); that means the Q estimates are
parameterized by θ, the weights of a neural network, a state s and an action a.

F5 refresh my memory

Value functions

You've learned about the following value functions:

• The state-value function v(s)
• The action-value function q(s,a)
• The action-advantage function a(s,a)

You probably remember that the state-value function v(s), though useful for many purposes,
is not sufficient on its own to solve the control problem. Finding v(s) helps you know how
much expected total discounted reward you can obtain from state s and using policy
π thereafter. But, in other to determine which action to take with a V-function, you also
need the MDP of the environment so that you can do a one-step lookahead and take into
account all possible next states after selecting each action.

You likely also remember that the action-value function q(s,a) allows us to solve the control
problem, so it is more like what we need in order to solve the cart-pole environment: in the
cart-pole environment we are looking to learn the values of actions for all states in order to
balance the pole by controlling the cart. If we had the values of state-action pairs, we could
differentiate the actions that would lead us to, either gain information, in the case of an
exploratory action, or maximize the expected return, in the case of a greedy action.

I want you to notice too, that what we want to estimate the optimal action-value function
and not just simply an action-value function. However, as we learned in the generalized
policy iteration pattern, we can do on-policy learning using an epsilon-greedy policy and
estimating its values directly, or we can do off-policy learning and always estimate the
policy greedy with respect to the current estimates, which then becomes an optimal policy.

Lastly, we also learned about the action-advantage function a(s,a), which can help us
differentiate between values of different actions, and it also lets us easily see how much
better than average an action is.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

243

17NFQ: The first attempt to value-based deep reinforcement learning

Second decision point: Selecting a neural network architecture
We settled on learning the approximate the action-value function Q(s,a; θ). But although I
suggested the function should be parameterized by θ, s, and a, that doesn't have to be the
case. The next component we discuss is the neural network architecture.

When we implemented the Q-learning agent, you noticed how the matrix holding the
action-value function
was indexed by state
and action pairs. A
straightforward neural
network architecture is
to input the state (the
4 state variables in the
cart-pole environment),
and the action to
evaluate. The output
would then be one node
representing the Q-value
for that state-action pair.

This architecture would work just fine for the cart-pole environment. But, a more efficient
architecture consists
of only inputting the
state (4 for the cart-
pole environment) to
the neural network and
outputting the Q-values
for all the actions in that
state (2 for the cart-pole
environment). This is
clearly advantageous
when using exploration
strategies such as
epsilon-greedy or
SoftMax, because having
to do only one pass forward to get the values of all actions for any given state yields a high-
performance implementation, more so in environments with a large number of actions.

For our NFQ implementation, we use the state-in-values-out architecture: that is 4 input
nodes and 2 output nodes for the cart-pole environment.

State-in-values-out architecture

State Variables In
 • Cart position
 • Cart velocity
 • Pole angle
 • Pole velocity at tip

Vector of values out
 • Action 0 (left)
 • Action 1 (right)

Q(s) E.g:

[1.44, -3.5]
State s. E.g:

[-0.1, 1.1, 2.3, 1.1]

State-action-in-value-out architecture

Action In

Value out
Q(s,a) E.g.:

1.44

State Variables In
 • Cart position
 • Cart velocity
 • Pole angle
 • Pole velocity at tip
State s. E.g:

[-0.1, 1.1, 2.3, 1.1]

Action a. E.g.:

0

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

244

Chapter 8 I introduction to value-based deep reinforcement learning18

i speak python

Fully-Connected Q-function (state-in-values-out)

class FCQ(nn.Module):
 def __init__(self,
 input_dim,
 output_dim,
 hidden_dims=(32,32),
 activation_fc=F.relu):
 super(FCQ, self).__init__()
 self.activation_fc = activation_fc

 self.input_layer = nn.Linear(input_dim,
 hidden_dims[0])
 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(
 hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.output_layer = nn.Linear(
 hidden_dims[-1], output_dim)

 def forward(self, state):
 x = state
 if not isinstance(x, torch.Tensor):
 x = torch.tensor(x,
 device=self.device,
 dtype=torch.float32)
 x = x.unsqueeze(0)

 x = self.activation_fc(self.input_layer(x))
 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))
 x = self.output_layer(x)
 return x

(1) Here you are just defining the
input layer. See how we take in 'input_
dim' and output the first element of
the 'hidden_dims' vector.

(2) We then create the hidden layers. Notice how flexible this class is that
allows you to change the number of layers and units per layer. Just pass
a different tuple, say (64,32,16), to the 'hidden_dims' variable, and it will
create a network with 3 hidden layers of 64, 32 and 16 units respectively.

(3) We then connect
the last hidden layer
to the output layer.

(4) In the forward function, we first take in
the raw state and convert it into a tensor.

(5) We pass it through
the input layer and
then through the
activation function.

(6) Then we do
the same for all
hidden layers.

(7) And finally for the output layer. Notice that
we do not apply the activation function to the
output but return it directly instead.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

245

19NFQ: The first attempt to value-based deep reinforcement learning

Third decision point: Selecting what to optimize
Let's pretend for a second that the cart-pole environment is a supervised learning problem.
Say you have a dataset with states as inputs and a value function as labels. Which value
function would you wish to have for labels?

Of course, the dream labels for learning the optimal action-value function are the
corresponding optimal q-values for the state-action input pair. That is exactly what the
optimal action-value function q*(s,a) represents, as you know.

If we had access to the optimal action-value function, we would just use that, but if we had
access to sampling the optimal action-value function, we could then minimize the loss
between the approximate and optimal action-value functions, and that'd be it.

The optimal action-value function is what we are after.

show me the math

Ideal objective

(1) An ideal objective in value-
based deep reinforcement
learning would be to minimize
the loss with respect to the
optimal action-value function q*.

(3) If we had a solid estimate of q*, we
then could use a greedy action with
respect to these estimates to get near-
optimal behavior. Only if we had that q*.

(2) Because we
would like to have an
estimate of q*, Q,
that tracks exactly
that optimal function.

(4) Obviously, I'm not talking about
having access to q* so that we can use it,
otherwise, there is no need for learning.
I'm talking about access to sampling the
q* some way. Regression-style ML.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

246

Chapter 8 I introduction to value-based deep reinforcement learning20

But why is this an impossible dream? Well, the visible part is we don't have the optimal
action-value function q*(s,a), but to top that off, we cannot even sample these optimal
q-values because we do not have the optimal policy either.

Fortunately, we can use the same principles learned in generalized policy iteration in which
we alternate between policy-evaluation and policy-improvement processes to find good
policies. But so that you know, because we are using non-linear function approximation,
convergence guarantees no longer exist. It's the wild west in the "deep" world.

For our NFQ implementation, we do just that. We start with a randomly initialized
action-value function (and implicit policy.) Then, evaluate the policy by sampling actions
from it, as we learned in chapter 5. Then, improve it with an exploration strategy such as
epsilon-greedy, as we learned in chapter 4. Finally, keep iterating until we reach the desired
performance, as we learned in chapters 6 and 7.

Boil it Down

We can't use the ideal objective

We can't use the ideal objective because we don't have access to the optimal action-value
function and don't even have an optimal policy to sample from. Instead, we must alternate
between evaluating a policy (by sampling actions from it), and improving it (using an
exploration strategy, such as epsilon-greedy). Just like you learned in chapter 6, in the
generalized policy iteration pattern.

F5 refresh my memory

Optimal action-value function

(1) As a reminder, here is the definition of the optimal action-value function.

(2) This is just telling us that the
optimal action-value function...

(3) ... is the
policy that
gives...

(4) ... the
maximum
expected
return...

(5) ... from
each and every
action in each
and every state.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

247

21NFQ: The first attempt to value-based deep reinforcement learning

Fourth decision point: Selecting the targets for policy evaluation
There are multiple ways we can evaluate a policy. More specifically, there are different targets
we can use for estimating the action-value function of a policy π. The core targets you
learned about are the Monte-Carlo (MC) target, the Temporal-Difference (TD) target, the
N-step target, and Lambda target.

We could use any of these targets and get solid results, but this time our NFQ
implementation, we keep it simple and use the TD target for our experiments.

Hopefully you remember that the TD targets can be either on-policy or off-policy
depending on the way you bootstrap the target. The two main ways for bootstrapping the
TD target are to either use the action-value function of the action the agent will take at the
landing state, or alternatively, to use the value of the best action at the next state.

Often in the literature, these are called Sarsa target for the on-policy bootstrapping, and
Q-learning target for the off-policy bootstrapping.

MC, TD, N-step and Lambda targets

MC TD LambdaN-Step
(n=2)

1 MC you use
all reward found
in a trajectory
from a start state
to the terminal state.

2 TD you use the value
of the next state as an
estimate
of all reward to go.

4 Lambda target mixes
in an exponentially
decaying fashion all
n-step
targets into one.

3 N-step is like TD, but
instead of
bootstrapping
after 1 step,
you use “n” steps.

We will be using the TD target 5

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

248

Chapter 8 I introduction to value-based deep reinforcement learning22

In our NFQ implementation, we use the same off-policy TD target we used in the
Q-learning algorithm. At this point, to get an objective function, we need to substitute the
optimal action-value function q*(s,a), that we had as the ideal objective equation, by the
Q-learning target.

show me the math

The Q-learning target, an off-policy TD target

(1) In practice, an online Q-learning target would look something like this.
(2) Bottom line is we use the
experienced reward, and the
next state to form the target.

(3) We can plug in a more general
form of this Q-learning target here.(4) But it is basically

the same. We are
using the expectation
of experience tuples. (5) To minimize the loss.
(6) Now, when differentiating
through this equation, it is
important you notice the gradient
doesn't involve the target.

(7) The gradient must only go
through the predicted value. This
is one common source of error.

show me the math

On-policy and off-policy TD targets

(1) Notice that both on-policy and off-policy targets estimate an action-value function.
(2) However, if we were to use the on-policy target, the target would
be approximating the behavioral policy. In other words, the policy
generating behavior and the policy being learned would be the same.

(3) This is not true for the off-policy target in which
we always approximate the greedy policy, even if
the policy generating behavior is not totally greedy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

249

23NFQ: The first attempt to value-based deep reinforcement learning

I want to bring to your attention two issues that I, unfortunately, see very often in DRL
implementations of algorithms that use TD targets.

First, you need to make sure that you only back-propagate through the "predicted" values.
Let me explain. You know that in supervised learning, you have predicted values, which
come from the learning model, and true values, which are commonly constants provided in
advance. In RL, often the "true values" depend on predicted values themselves, they come
from the model.

For instance, when you form a TD target, you use a reward, which is a constant, and the
discounted value of the next state, which comes from the model. Notice, this value is also
not a true value, which is going to cause all sorts of problems that we address in the next
chapter. But what I also want you to notice now, is that the predicted value comes from the
neural network. You have to make this predicted value a constant. In PyTorch, you do this
only by calling the `detach` method. Please, look at the two previous boxes and understand
these points. They are vital for the reliable implementation of DRL algorithms.

i speak python

Q-learning target

q_sp = self.online_model(next_states).detach()

max_a_q_sp = q_sp.max(1)[0].unsqueeze(1)

max_a_q_sp =* (1 - is_terminals)

target_q_s = rewards + self.gamma * max_a_q_sp

q_sa = self.online_model(states).gather(1, actions)

(1) First, we get the
values of the Q-function
at s prime (next state).
The "s" in `next_states`
means that this is a
batch of `next_state`.

(4) The 'unsqueeze' just adds a dimension
to the vector so the operations that
follow work on the correct elements.

(2) The 'detach' here is important. We
should not be propagating values through
this. We are only calculating targets.

(3) Then, we get the max value
of the next state 'max_a'.

(5) One important step, often overlooked, is to
ensure terminal states are grounded to zero.
(6) Also, notice the name "is_terminals" are
batches of "is_terminal" flags, which are merely
flags indicating whether the "next_state" is a
terminal state or not.

(7) We now calculate the target.

(8) Finally, we get the current estimate of Q(s,a).
At this point, we are ready to create our loss function.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

250

Chapter 8 I introduction to value-based deep reinforcement learning24

The second issue that I want to raise before we move on is the way terminal states are handle
when using OpenAI Gym environments. The OpenAI Gym `step`, which is used to interact
with the environment, returns after every step a handy flag indicating whether the agent just
landed on a terminal state. This flag helps make the value of terminal states zero, which, as
you remember from chapter 2, is a requirement to keep the value functions from diverging.
You know the value of life after death is nil.

The tricky part is that some OpenAI
Gym environments, such as the
cart-pole, have a wrapper code that
artificially terminates an episode
after some time steps. In CartPole-v0,
the time step limit is 200, and in
CartPole-v1 is 500. Now, this wrapper
code helps to prevent agents from
taking too long to complete an episode,
which can be useful, but it can get you
in trouble. Think about it, what do
you think the value of having the pole
straight up in time step 500 be? I mean,
if the pole is straight up, and you get +1 for every step, then straight-up is infinite. Yet since
your agent landed in a terminal time, and you got a done flag, will you bootstrap on zero,
then? This is bad. I cannot stress this enough. There are a handful of ways you can handle
this issue. You can either (1) use the 'unwrapped' property of the 'env' instance to get an
environment that doesn't time out, you can (2) keep a time step count and bootstrap when
you reach it, or you can (3) check the return value of the '_past_limit' function of the 'env'
instance and bootstrap on failure. (2) is the most common, but I'll use (3).

Can you guess what the value of this state is?1

HINT: This state looks pretty good to me! The cart pole
seems to be “under control” in a straight-up position.
Perhaps the best action is to push right, but it doesn’t
seem like a critical state. Both actions are probably
similarly valued.

2

i speak python

Properly handling terminal states

new_state, reward, is_terminal, _ = env.step(action)
past_limit = hasattr(env, '_past_limit') and env._past_limit()

is_failure = is_terminal and not past_limit

experience = (state, action, reward, new_state, float(is_failure))

(1) We collect a experience tuple as usual

(2) Then check if the '_past_limit' function exists and it returns True.

(3) A failure is defined
as follows.

(4) Finally, we add the "terminal" flag if the episode ended in failure.
If it is not a failure we want to bootstrap on the value of the "new_state".

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

251

25NFQ: The first attempt to value-based deep reinforcement learning

Fifth decision point: Selecting an exploration strategy
Another thing we need to decide is on which policy improvement step to use for our
generalized policy iteration needs. You know this from chapters 6 and 7 in which we
interleave a policy evaluation method, such as MC or TD, and a policy improvement
method that accounts for exploration, such as decaying e-greedy.

In chapter 4, we surveyed many different ways to balance the exploration-exploitation
tradeoff, and almost any of those techniques would work just fine. But in an attempt to keep
it simple, we are going to use an epsilon-greedy strategy on our NFQ implementation.

But, I want to highlight the implication of the fact that we are training an off-policy learning
algorithm here. What that means is that there are two policies: a policy that generates
behavior, which in this case is an e-greedy policy, and a policy that we are learning about,
which is the greedy (an ultimately optimal) policy.

One interesting fact of off-policy learning algorithms you studied in chapter 6 is that the
policy generating behavior can be virtually anything. That is, it can be anything as long as
it has broad support, which means it must ensure enough exploration of all state-action
pairs. In our NFQ implementation, I use an epsilon-greedy strategy that selects an action
randomly 50% of the time during training. However, when evaluating the agent, I use the
action greedy with respect to the learned action-value function.

i speak python

Epsilon-greedy exploration strategy

class EGreedyStrategy():
 <...>
 def select_action(self, model, state):
 with torch.no_grad():
 q_values = model(state).cpu().detach()
 q_values = q_values.data.numpy().squeeze()

 if np.random.rand() > self.epsilon:
 action = np.argmax(q_values)
 else:
 action = np.random.randint(len(q_values))

 <...>
 return action

(1) The 'select_action' function of the 'EGreedy
Strategy' starts by pulling out the q-values for state s.

(2) I make the values "numpy friendly" and remove an extra dimension.

(3) Then, get a random
number and if greater
than epsilon act greedily.

(4) Otherwise, act randomly in the number of actions.

(5) NOTE: I always query the model in order to calculate stats.
But, you should not do that if your goal is performance!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

252

Chapter 8 I introduction to value-based deep reinforcement learning26

Sixth decision point: Selecting a loss function
A loss function is a measure of how well our neural network predictions are. In supervised
learning, it is more straightforward to interpret the loss function: given a batch of
predictions and their corresponding true values, the loss function computes a distance score
indicating how well the network has done in this batch.

There are many different ways for calculating this distance score, but I continue to keep it
simple in this chapter and use one of the most common ones: MSE (mean squared error, or
L2 loss).

Still, let me restate that one challenge in reinforcement learning, as compared to supervised
learning, is that our "true values" use predictions that come from the network.

MSE (or L2 loss) is defined as the average squared difference between the predicted and
true values; in our case, the "predicted values" are the predicted values of the action-value
function that come straight from the neural network, all good. But the "true values" are, yes,
the TD targets, which depend on a prediction also coming from the network, the value of
the next state.

As you may be thinking, this circular dependency is bad. It is not well-behaved as it doesn't
respect some of the assumptions made in supervised learning problems. We'll cover what
these assumptions are later in this chapter and the problems that arise when we violate them
in the next chapter.

Circular dependency of the action-value function
Policy

Data

Is used to
calculate the

are used to
calculate the

Is used to
calculate the

Produces

Targets Action-Value
Function

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

253

27NFQ: The first attempt to value-based deep reinforcement learning

Seventh decision point: Selecting an optimization method
Gradient descent is a stable optimization method given a couple of assumptions: one,
referred to as the IID assumption, which stands for Independent and Identically Distributed,
and another that targets are stationary. In reinforcement learning, however, we cannot
ensure any of these assumptions hold, so choosing a robust optimization method to
minimize the loss function can often make the difference between convergence and
divergence.

If you visualize a loss function as a landscape with valleys, peaks, and planes, an
optimization method is the hiking strategy for finding areas of interest, usually the lowest or
highest point in that landscape.

A classic optimization method in supervised learning is called batch gradient descent. The
batch gradient descent algorithm takes the entire dataset at once, calculates the gradient
of given the dataset, and steps towards this gradient a little bit at a time. Then, it repeats
this cycle until convergence. In the landscape analogy, this gradient represents a signal
telling us the direction we need to move. Batch gradient descent is not the first choice of
researchers because it is not practical to process massive datasets at once. When you have
a considerable dataset with millions of samples, batch gradient descent is too slow to be
practical. Moreover, in reinforcement learning, we don't even have a dataset in advance, so
batch gradient descent is not a practical method for our purpose either.

Batch gradient descent

1 Batch gradient descent goes smoothly
towards the target because it uses the
entire dataset at once, so lower variance
is expected.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

254

Chapter 8 I introduction to value-based deep reinforcement learning28

An optimization method capable of handling smaller batches of data is called mini-batch
gradient descent. In mini-batch gradient descent, we use only a fraction of the data at a
time. We process a mini-batch of samples to find its loss, then back-propagate to compute
the gradient of this loss, and then adjust the weights of the network to make the network
better at predicting the values of that mini-batch. With mini-batch gradient descent, you can
control size of the mini-batches, which allows the processing of large datasets.

As one extreme, you can set the size of your mini-batch to the size of your dataset, in which
case, you are back at batch gradient descent. On the other hand, you can set the mini-batch
size to a single sample per step; in this case, you are using an algorithm called stochastic
gradient descent.

Stochastic gradient descent

1 With stochastic gradient descent every
iteration we step only through one
sample. This makes it a very noisy
algorithm. It wouldn't be surprising to see
some steps taking us further away from
the target, and later back towards the
target.

Mini-batch gradient descent

1 In mini-batch gradient descent we use a
uniformly sampled mini batch. This result
in noisier updates, but also faster
processing of the data.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

255

29NFQ: The first attempt to value-based deep reinforcement learning

The larger the batch, the lower the variance the steps of the optimization method have.
But a batch too large, and learning slows down considerably. Both extremes are too slow in
practice. For these reasons, it is common to see mini-batch sizes ranging from 32 to 1024.

An improved gradient descent algorithm is called gradient descent with momentum, or just
momentum for short. This method is a mini-batch gradient descent algorithm that updates
the network's weights in the direction of the moving average of the gradients, instead of the
gradient itself.

An alternative to using momentum is called root mean square propagation (RMSprop).
Both RMSprop and momentum do the same thing of dampening the oscillations and
moving more directly towards the goal, but they do so in different ways.

Mini-batch gradient Descent vs Momentum

Mini-batch gradient
descent

Momentum

Zig-zag pattern of mini-batch
gradient descent

1 It is not uncommon to see mini-batch gradient descent develop
a zig-zag pattern towards the target.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

256

Chapter 8 I introduction to value-based deep reinforcement learning30

While momentum takes steps in the direction of the moving average of the gradients,
RMSprop takes the safer bet of scaling the gradient in proportion to a moving average of the
magnitude of gradients. It reduces oscillations by merely scaling the gradient in proportion
to the square root of the moving average of the square of the gradients or, more simply put,
in proportion to the average magnitude of recent gradients.

A final optimization method I'd like to introduce is called adaptive moment estimation
(Adam). Adam is a combination of RMSprop and momentum. The Adam method steps
in the direction of the velocity of the gradients, as in momentum. But, it scales updates in
proportion to the moving average of the magnitude of the gradients, as in RMSprop. These
properties make Adam an optimization method a bit more aggressive than RMSprop, yet
not as aggressive as momentum.

In practice, both Adam and RMSprop are sensible choices for value-based deep
reinforcement learning methods. I make extensive use of both in the chapters ahead.
However, I do prefer RMSprop for value-based methods, as you'll soon notice. RMSprop
is stable and less sensitive to hyperparameters, and this is particularly important in value-
based deep reinforcement learning.

! miguel's analogy

Optimization methods in value-based deep reinforcement learning

To visualize RMSprop, think of the steepness change of the surface of your loss function. If
gradients are high, such as when going downhill, and the surface changes to a flat valley,
where gradients are small, the moving average magnitude of gradients is higher than the
most recent gradient, therefore, the size of the step is reduced, preventing oscillations or
overshooting.

If gradients are small, such as in a near-flat surface, and they change to a significant
gradient, as when going downhill, the average magnitude of gradients is small, and the new
gradient large, therefore increasing the step size and speeding up learning.

0001 a Bit of history

Introduction of the NFQ Algorithm

NFQ was introduced in 2005 by Martin Reidmiller on a paper called "Neural Fitted Q
Iteration − First Experiences with a Data Efficient Neural Reinforcement Learning Method".
After 13 years working as a Professor on a number of European Universities, Martin took a
job as a Research Scientist at Google DeepMind.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

257

31NFQ: The first attempt to value-based deep reinforcement learning

it's in the Details

The full Neural Fitted Q-Iteration (NFQ) algorithm

Currently, we have made the following selections, we:

• Approximate the action-value function Q(s,a; θ).
• Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
• Optimize the action-value function to approximate the optimal action-

value function q*(s,a).
• Use off-policy TD targets (r + γ*max_a'Q(s',a'; θ)) to evaluate policies.
• Use an epsilon-greedy strategy (epsilon set to 0.5) to improve policies.
• Use mean squared error (MSE) for our loss function.
• Use RMSprop as our optimizer with a learning rate of 0.0005.

NFQ has three main steps:

1. Collect E experiences: (s, a, r, s', d) tuples. We use 1024 samples.

2. Calculate the off-policy TD targets: r + γ*max_a'Q(s',a'; θ).
3. Fit the action-value function Q(s,a; θ): Using MSE and RMSprop.

Now, this algorithm repeats steps 2 and 3 K number of times before going back to step 1.
That's what makes it "fitted"; the nested loop. We'll use 40 fitting steps K.

NFQ

Collect
E experience

samples

Calculate
the off-policy
TD targets:

r + γ max_a’ Q (s‘, a’, θ)

Fit the action-value
function Q(s, a; θ)

with RMSprop and MSE

Repeat
K

Times

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

258

Chapter 8 I introduction to value-based deep reinforcement learning32

tally it up

NFQ passes the cart-pole environment

Although NFQ is far from a state-of-the-art value-based deep reinforcement learning
method, in a somewhat simple environment, such as the cart pole, NFQ shows a decent
performance.

(1) One interesting point is, you
can see the 'training' reward never
reaches the max of 500-reward per
episode. The reason is we are using
an epsilon of 0.5. Having such high
exploration rate helps with finding
more accurate value functions but
it shows worse performance during
training.

(2) Now on the second figure
we plot the mean reward during
'evaluation' steps. The 'evaluation'
steps are the best performance we
can obtain from the agent.

(3) The main issue with NFQ is
that it takes too many steps
to get decent performance. In
other words, in terms of sample
efficiency, NFQ does poorly. It needs
many samples before it gets decent
results. It doesn't get the most out
of each sample.

(4) The next two plots are related
to time. You can see how NFQ takes
approximately 80 seconds on
average to pass the environment.
'Training time' is the time excluding
evaluation steps, statistics, etc.

(5) Wall-clock time is how long it
takes to run from beginning to end.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

259

33NFQ: The first attempt to value-based deep reinforcement learning

Things that could (and do) go wrong
There are two issues with our algorithm. First, because we are using a powerful function
approximator, we can generalize across state-action pairs, which is excellent, but that also
means that the neural network adjusts the values of all similar states at once.

Now, think about this for a second, our target values depend on the values for the next state,
which we can safely assume are similar to the states we are adjusting the values of in the first
place.

In other words, we are creating a non-stationary target for our learning updates. As we
update the weights of the approximate Q-function, the targets also move and make our most
recent update outdated. Thus, training becomes unstable very quickly.

Second, in NFQ, we batched 1024 experience samples collected online, and update the
network from that mini-batch. As you can imagine, these samples are correlated, given that
most of these samples come from the same trajectory and policy. That means the network
learns from mini-batches of samples that are very similar, and later using different mini-
batches that are also internally correlated, but likely different from previous mini-batches,
mainly if a different, older policy collected the samples.

Non-stationary target

1 At first our optimization
will behave as expected
going after the target.

2 The problem is that as predictions improve,
our target will improve too, and change.

3 Now, our optimization
method can get in
trouble.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

260

Chapter 8 I introduction to value-based deep reinforcement learning34

All this means that we are not holding the IID assumption, and this is a problem because
optimization methods assume the data samples they use for training are independent and
identically distributed (IID). But we are training on almost the exact opposite: samples on
our distribution are not independent because the outcome of a new state "s'" is dependent on
our current state "s."

And, also, our samples are not identically distributed because the underlying data generating
process, which is our policy, is changing over time. That means we do not have a fixed data
distribution. Instead, our policy, which is responsible for generating the data, is changing
and hopefully improving periodically. So, every time our policy changes, we receive new
and likely different experiences. Optimization methods allow us to relax the IID assumption
to a certain degree, but reinforcement learning problems go all the way, so we need to do
something about this, too.

In the next chapter, we look at ways of mitigating these two issues. We start by improving
NFQ with the algorithm that arguably started the deep reinforcement learning 'revolution,'
DQN. We then follow by exploring many of the several improvements proposed to the
original DQN algorithm over the years. We look at Double DQN also in the next chapter,
and then in chapter 10, we look at Dueling DQN and PER.

Data correlated with time

1 Imagine we generate these data points in a single trajectory. Say
the y axis is the position of the cart along the track, and the x axis
is the step of the trajectory. You can see how likely it is data points
at adjacent time steps will be similar making our function
approximator likely to overfit to that local region.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

261

35Summary

Summary
In this chapter, you learned about value-based deep reinforcement learning methods. You
had an in-depth overview of different components commonly used when building deep
reinforcement learning agents. You learned you could approximate different kinds of value
functions, from the state-value function v(s) to the action-value q(s, a). Also, you learned
different neural network architectures to approximate action-value functions; from the
state-action pair in, value out, to the more efficient state-in, values out.

You know there are many different targets you can use to train your network. You surveyed
exploration strategies, loss functions, and optimization methods. You learned that deep
reinforcement learning agents are susceptible to the loss and optimization methods we
select. You learned about RMSprop and Adam as the stable options for optimization
methods.

You learned to combine all of these components into an algorithm called Neural Fitted
Q-iteration. You learned about the issues commonly occurring in value-based deep
reinforcement learning methods. You learned about the IID assumption and the stationarity
of the targets. You also learned that not being careful with these two issues can get us in
trouble.

By now you:

• Can solve reinforcement learning problems with continuous state-spaces.
• Have an in-depth understanding of the components and issues in value-based deep

reinforcement learning methods.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

262

more stable
value-based methods 9

In this chapter

• You improve on the methods you learned in the
previous chapter by making them more stable and
therefore less prone to divergence.

• You explore advanced value-based deep reinforcement
learning methods, and the many components that
make value-based methods better.

• You solve the cart-pole environment in a fewer number
of samples, and with more reliable and consistent
results.

Let thy step be slow and steady, that thou stumble not.

— Tokugawa Ieyasu
Founder and first shōgun of the Tokugawa shogunate of Japan

and one of the three unifiers of Japan.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

263

2 Chapter 9 I More stable value-based methods

In the last chapter, you learned about value-based deep reinforcement learning. NFQ, the
algorithm we developed, is a simple solution to the two most common issues value-based
methods face: first, the issue that data in RL is not independent and identically distributed.
It is probably the exact opposite. The experiences are dependent on the policy that generates
them. And, they are not identically distributed since the policy changes throughout the
training process. Second, the targets we use are not stationary, either. Optimization methods
require fixed targets for robust performance. In supervised learning, this is easy to see. We
have a dataset with pre-made labels as constants, and our optimization method uses these
fixed targets for stochastically approximating the underlying data-generating function. In
RL, on the other hand, targets such as the TD target, use the reward, and the discounted
predicted return from the landing state as a target. But this predicted return comes from the
network we are optimizing, which changes every time we execute the optimization steps.
This issue creates a moving target that creates instabilities in the training process.

The way NFQ addresses these issues is through the use of batch. By growing a batch, we
have the opportunity of optimizing several samples at the same time. The larger the batch,
the more the opportunity for collecting a diverse set of experience samples. This somewhat
addresses the IID assumption. NFQ addresses the stationarity of target requirements by
using the same mini-batch in multiple sequential optimization steps. Remember that in
NFQ, every E episodes, we “fit” the neural network to the same mini-batch K times. That K
in there allows the optimization method to move toward the target more stably. Gathering a
batch, and fitting the model for multiple iterations is similar to the way we train supervised
learning methods, in which we gather a dataset and train for multiple epochs.

NFQ does OK job, but we can do better. Now that we know the issues, we can address them
using better techniques. In this chapter, we explore algorithms that address not only these
issues, but other issues that you learn about making value-based methods more stable.

DQN: Making reinforcement learning
more like supervised learning
The first algorithm that we discuss in this chapter is called Deep Q-Network (DQN). DQN
is one of the most popular DRL algorithms because it started a series of research innovations
that mark the history of RL. DQN claimed for the first time super-human level performance
on an ATARI benchmark in which agents learned from raw pixel data, from mere images.

Throughout the year, there have been many improvements proposed to DQN. And while
these days, DQN in its original form is not a go-to algorithm, with the improvements,
many of which you learn about in this book, the algorithm still has a spot among the best
performing DRL agents.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

264

3DQN: Making reinforcement learning more like supervised learning

Common problems in value-based deep reinforcement learning
We must be clear and understand the two most common problems that consistently show
up in value-based deep reinforcement learning: the violations of the IID assumption, and
the stationary of targets.

In supervised learning, we obtain a full dataset in advance. We pre-process it, shuffle it,
and then split it into sets for training. One crucial step in this process is the shuffling of
the dataset. By doing so, we allow our optimization method to avoid developing overfitting
biases, to reduce the variance of the training process and speed up convergence, and
overall learn a more general representation of the underlying data-generating process.
In reinforcement learning, unfortunately, data is often gathered online, which as a result,
the experience sample generated at time step t+1 correlates with the experience sample
generated at time step t. Moreover, as the policy is to improve, and it changes the underlying
data-generating process changes, too, which means that new data is locally correlated and
not evenly distributed.

Also, in supervised learning, the targets used for training are fixed values on your dataset;
they are fixed throughout the training process. In reinforcement learning in general, and
even more so in the extreme case of online learning, targets move with every training step
of the network. At every training update step, we optimize the approximate value function
and therefore change the shape of the function, that is, of possibly the entire value function.
Changing the value function means that the target values change as well. Which in turn

Boil it Down

Data is not Independent and Identically distributed (IID)

The second problem is the non-compliance with the IID assumption of the data.
Optimization methods have been developed with the assumption that samples in the
dataset we train with are independent and identically distributed.

We know, however, our samples are not independent, but instead, they come from a
sequence, a time series, a trajectory. The sample at time step t+1, is dependent on sample at
time step t. Samples are correlated and we can’t prevent that from happening, it is a natural
consequence of online learning.

But samples are also not identically distributed as they depend on the policy that generates
the actions. We know the policy is changing through time, and for us that’s a good thing.
We want policies to improve. But that also means the distribution of samples (state-action
pairs visited) will change as we keep improving.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

265

4 Chapter 9 I More stable value-based methods

means, the targets used are no longer valid. Even more, because the target come from
the network, even before we use them, we can assume targets are invalid or biased at a
minimum.

In NFQ, we lessen this problem by using a batch and fitting the network to a small fixed
dataset for multiple iterations. In NFQ, we collect a small dataset, calculating targets,
optimize the network several times before going out to collect more samples. By doing this
on a large batch of samples, the updates to the neural network are composed of many points
across the function, additionally making changes even more stable.

DQN is an algorithm that addresses the question: How do we make reinforcement learning
look more like supervised learning? Consider this question for a second, and think about
the tweaks you would make to make the data look IID and the targets fixed.

Boil it Down

Non-stationarity of targets

The problem of the non-stationarity of the targets is depicted. These are the targets we use
to train our network, but these targets are calculated using the network itself.

As a result, the function changes with every update, changing in turn the targets.

Q(s,a;θ)

(s, a)

Non-stationarity of targets

Value of next
state-action pair

(s,a)

4

Value of next
state-action pair
changed.
Which means the
target in not stationary,
it changed!

7

Sample state-action pairs at t and t+12

estimate
Current3

function
Old value1

Q(s,a;θ)

New
estimate of 6

New
action-value
function

5

(s’,a’)

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

266

5DQN: Making reinforcement learning more like supervised learning

Using target networks
A very straightforward way to make target values more stationary is to have a separate
network that we can fix for multiple steps and reserve it for calculating more stationary
targets. The network with this purpose in DQN is called the target network.

3 we update it, and change it again.
This stabilizes the process

Q-function approximation with a target network

And allows the algorithm
to converge

4

1 By freezing the target 2 We make stable progress
towards it before

Q-function optimization without a target network

1 At first everything will look
normal. We just chase the target.

2 But the target will move as
our Q-function improves.

3 Then, things go bad. 4 And the moving targets
could create divergence.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

267

6 Chapter 9 I More stable value-based methods

By using a target network to fix targets, we mitigate the issue of “chasing your own tail” by
artificially creating several small supervised learning problems presented sequentially to the
agent. Our targets are fixed for as many steps as we fix our target network. This improves
our chances of convergence, not to the optimal values because such things don’t exist with
non-linear function approximation, but convergence in general. But, more importantly, it
substantially reduces the chances of divergence, which are not uncommon in value-based
deep reinforcement learning methods.

It is important to note that in practice, we don’t have two “networks,” but instead, we have
two instances of the neural network weights. We use the same model architecture and
frequently update the weights of the target network to match the weights of the online
network, which is the network we optimize on every step. “Frequently” here means
something different depending on the problem, unfortunately. It is common to freeze these
target network weights for 10 to 10,000 steps at a time, again depending on the problem
(that’s time steps, not episodes. Be careful there!). If you are using a convolutional neural
network, such as what you’d use for learning in ATARI games, then a 10,000-step frequency
is the norm. But for more straightforward problems such as the cart-pole environment, 10-
20 steps is more appropriate.

By using target networks, we prevent the training process from spiraling around because we
are fixing the targets for multiple time steps, thus allowing the online network weights to
move consistently towards the targets before an update changes the optimization problem,
and a new one is set. By using target networks, we stabilize training, but we also slow down
learning because you are no longer training on up-to-date values; the frozen weights of the
target network can be lagging for up-to 10,000 steps at a time. It’s is essential to balance
stability and speed and tune this hyperparameter.

Show Me the Math

Target network gradient update

(1) The only difference between these two
equations is the age of the neural network weights.

(2) A target network is an previous instance of the neural network that we freeze
for a number of steps. The gradient update has now time to catch up to the
target, which is much more stable when froze. This adds stability to the updates.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

268

7DQN: Making reinforcement learning more like supervised learning

i Speak python

Use of the target and online networks in DQN

 def optimize_model(self, experiences):
 states, actions, rewards, \
 next_states, is_terminals = experiences
 batch_size = len(is_terminals)

 q_sp = self.target_model(next_states).detach()

 max_a_q_sp = q_sp.max(1)[0].unsqueeze(1)
 max_a_q_sp *= (1 - is_terminals)

 target_q_sa = rewards + self.gamma * max_a_q_sp

 q_sa = self.online_model(states).gather(1, actions)

 td_error = q_sa - target_q_sa
 value_loss = td_error.pow(2).mul(0.5).mean()
 self.value_optimizer.zero_grad()
 value_loss.backward()
 self.value_optimizer.step()

 def interaction_step(self, state, env):
 action = self.training_strategy.select_action(
 self.online_model, state)

 new_state, reward, is_terminal, _ = env.step(action)
 <...>
 return new_state, is_terminal

 def update_network(self):
 for target, online in zip(
 self.target_model.parameters(),
 self.online_model.parameters()):
 target.data.copy_(online.data)

(1) Notice how we now query a target network
to get the estimate of the next state.

(2) We grab the maximum of those values, and
make sure to treat terminal states appropriately.

(3) Finally, we create the TD targets.

(5) Use those values to create the errors.

(4) Query the current “online” estimate.

(6) Calculate the
loss, and optimize
the online network.

(7) Notice how we use the online
model for selecting actions.

(8) This is how the target network
(lagging network) gets updated with the
online network (up-to-date network).

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

269

8 Chapter 9 I More stable value-based methods

Using larger networks
Another way you can lessen the non-stationarity issue, to some degree, is to use larger
networks. With more powerful networks, subtle differences between states are more likely
detected. Larger networks reduce the aliasing of state-action pairs; the more powerful the
network, the lower the aliasing, the lower the aliasing, the less apparent correlation between
consecutive samples. And all of this can make target values and current estimates look more
independent of each other.

By “aliasing” here I refer to the fact that two states can look like the same (or very similar)
state to the neural network, but still possibly require different actions. State aliasing can
occur when networks lack representational power. After all, neural networks are trying
to find similarities to generalize; their job is to find these similarities. But, too small of a
network and the generalization can go wrong. The network could get fixated with simple,
easy to find patterns.

One of the motivations for using a target network is that they allow you to differentiate
between correlated states more easily. Using a more capable network helps your network
learn subtle differences, too.

But, a more powerful neural network takes longer to train. It needs not only more data
(interaction time) but also more compute (processing time). Using a target network is a
more robust approach to mitigating the non-stationary problem, but I want you to know all
the tricks. It is favorable for you to know how these two properties of your agent (the size of
your networks, and the use of target networks, along with the update frequency), interact
and affect final performance in similar ways.

Boil it Down

Ways to mitigate the fact that targets in reinforcement learning are non-stationary

Allow me to restate that to mitigate the non-stationarity issue we can:

1. Create a target network that provides us with a temporarily stationary target value.
2. Create large-enough networks so that they can “see” the small differences between
similar states (like those temporally correlated).

Now, target networks work and work well, have been proven to work multiple times.
The technique of “Larger networks” is more of a hand-wavy solution than something
scientifically proven to work every time. Though, feel free to experiment with this chapter’s
Notebook. You’ll find it very easy to change values and test hypotheses.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

270

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb

9DQN: Making reinforcement learning more like supervised learning

Using experience replay
In our NFQ experiments, we use a mini-batch of 1,024 samples, and train with it for 40
iterations, alternating between calculating new targets and optimizing the network. These
1,024 samples are temporally correlated since most of them belong to the same trajectory
since the maximum number of steps in a cart-pole episode is 500. One way to improve
on this is to use a technique called experience replay. Experience replay consists of a data
structure, often referred to as a replay buffer or a replay memory, that holds experience
samples for several steps (much more than 1,024 steps), allowing the sampling of mini-
batches from a broad set of past experiences. Having a replay buffer allows the agent two
critical things. First, the training process can use a more diverse mini-batch for performing
updates. Second, the agent no longer has to fit the model to the same small mini-batch for
multiple iterations. Adequately sampling a sufficiently large replay buffer yields a slow-
moving target, so the agent can now sample and train on every time step with a lower risk of
divergence.

There are multiple benefits to using experience replay. By sampling at random, we increase
the probability that our updates to the neural network have low variance. When we use
the batch in NFQ, most of the samples in that batch were correlated and similar. Updating
with similar samples concentrates the changes on a limited area of the function, and
that potentially over-emphasizes the magnitude of the updates. If we sample uniformly
at random from a substantial buffer, on the other hand, chances are, our updates to the
network are better distributed all across, and therefore more representative of the true value
function.

0001 a Bit of hiStory

Introduction of experience replay

Experience replay was introduced by Long-Ji Lin on a paper titled “Self-Improving Reactive
Agents Based On Reinforcement Learning, Planning and Teaching”, believe it or not,
published in 1992!

That’s right, 1992! Again, that’s when neural networks were referred to as “connectionism”...
Sad times!

After getting his Ph.D. from CMU, Dr. Lin has moved through several technical roles in many
different companies. Currently, he’s the Chief Scientist at Signifyd, leading a team that works
on a system to predict and prevent online fraud.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

271

10 Chapter 9 I More stable value-based methods

Using a replay buffer also gives the impression our data is IID so that the optimization
method is stable. Samples appear independent and identically distributed because of the
sampling from multiple trajectories and even policies at once.

By storing experiences and later sampling them uniformly, we make the data entering the
optimization method look independent and identically distributed. In practice, the replay
buffer needs to have a considerable capacity to perform optimally, from 10,000 to 1,000,000
experiences depending on the problem. Once you hit the maximum size, you evict the
oldest experience before inserting the new one.

Unfortunately, the implementation becomes a little bit of a challenge when working with
high-dimensional observations, because poorly implemented replay buffers hit a hardware
memory limit quickly in high-dimensional environments. In image-based environments,
for instance, where each state representation is a stack of the 4 latest image frames, as it is
common for ATARI games, you probably don’t have enough memory on your personal
computer to naively store 1,000,000 experience samples. For the cart-pole environment, this
is not much of a problem. First, we don’t need 1,000,000 samples, and we use a buffer of size
50,000 instead. But also, states are represented by 4-element vectors, so there is not much of
an implementation performance challenge.

DQN with Replay Buffer

Environment

State

 Action

DQN Agent

Replay buffer

Mini batch

Train

Store

Experience

Select

Action

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

272

11DQN: Making reinforcement learning more like supervised learning

Nevertheless, by using a replay buffer, your data looks more IID and targets stationary than
in reality. By training from uniformly sampled mini-batches, you make the RL experiences
gathered online look more like a traditional supervised learning dataset with IID data and
fixed targets. Sure, data is still changing as you add new and discard old samples, but these
changes are happening slowly, and so they go somewhat unnoticed by the neural network
and optimizer.

Boil it Down

Experience replay makes the data look IID, and targets somewhat stationary

The best solution to the problem of data not being IID is called experience replay.

The technique is very simple and it’s been around for decades: As your agent collects
experiences tuples et=(St,At,Rt+1,St+1) online, we insert them into a data structure, commonly
referred to as the replay buffer D, such that D={e1, e2 , ... , eM}. M, the size of the replay buffer, is
a value often between 10,000 to 1,000,000, depending on the problem.

We then train the agent on mini-batches sampled, usually uniformly at random, from the
buffer, so that each sample has equal probability of being selected. Though, as you learn on
the next chapter, you could possibly sample with some other distribution. Just beware, it is
not that straightforward, we’ll discuss details in the next chapter.

Show Me the Math

Replay buffer gradient update

(1) The only difference between these two equations is
that we are now obtaining the experiences we use for
training by sampling uniformly at random the replay buffer
D, instead of using the online experiences as before.

(2) This is the full gradient update for DQN. More precisely the one referred
to as Nature DQN, which is DQN with a target network and a replay buffer.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

273

12 Chapter 9 I More stable value-based methods

i Speak python

A simple replay buffer

class ReplayBuffer():
 def __init__(self,
 m_size=50000,
 batch_size=64):
 self.ss_mem = np.empty(shape=(m_size), dtype=np.ndarray)
 self.as_mem = np.empty(shape=(m_size), dtype=np.ndarray)
 <...>

 self.m_size, self.batch_size = m_size, batch_size
 self._idx, self.size = 0, 0

 def store(self, sample):
 s, a, r, p, d = sample
 self.ss_mem[self._idx] = s
 self.as_mem[self._idx] = a
 <...>

 self._idx += 1
 self._idx = self._idx % self.m_size

 self.size += 1
 self.size = min(self.size, self.m_size)

 def sample(self, batch_size=None):
 if batch_size == None:
 batch_size = self.batch_size
 idxs = np.random.choice(
 self.size, batch_size, replace=False)
 experiences = np.vstack(self.ss_mem[idxs]), \
 np.vstack(self.as_mem[idxs]), \
 np.vstack(self.rs_mem[idxs]), \
 np.vstack(self.ps_mem[idxs]), \
 np.vstack(self.ds_mem[idxs])
 return experiences

 def __len__(self):
 return self.size

(1) This is a simple replay buffer with a
default maximum size of 50,000, and
a default batch size of 64 samples.

(2) We initialize 5 arrays to hold states, actions,
reward, next states and done flags. Shorten for brevity.

(3) We initialize several variables to do storage and sampling.

(4) When we store a new sample, we
begin by unwrapping the sample variable,
and then setting each array’s element
to its corresponding value.(5) Again

removed
for
brevity.

(6) _idx points to the next index to modify, so we
increase it, and also make sure it loops back after
reaching the maximum size (the end of the buffer).

(7) Size also increases with every new sample stored, but
it doesn’t loop back to 0, it stops growing instead.

(8) In the sample function, we begin by
determining the batch size. We use the
default of 64 if nothing else was passed.

(9) Sample batch_size
ids from 0 to size.

(12) This is a handy function to return the correct
size of the buffer when ‘len(buffer)’ is called.

(10) Then, extract the
experiences from the buffer
using the sampled ids.

(11) And return those experiences.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

274

13DQN: Making reinforcement learning more like supervised learning

Using other exploration strategies
Exploration is a vital component of reinforcement learning. In the NFQ algorithm, we use
an epsilon-greedy exploration strategy, which consists of acting randomly with epsilon
probability. We sample a number from a uniform distribution [0, 1). If the number is less
than the hyperparameter constant, called epsilon, your agent selects an action uniformly at
random (that’s including the greedy action), otherwise, it acts greedily.

For the DQN experiments, I added to chapter 9’s Notebook some of the other exploration
strategies introduced in chapter 4. I adapted them to use them with neural networks, and
the are re-introduced next. Make sure to checkout all Notebooks and play around.

i Speak python

Linearly decaying epsilon-greedy exploration strategy

class EGreedyLinearStrategy():
 <...>
 def _epsilon_update(self):
 self.epsilon = 1 - self.t / self.max_steps
 self.epsilon = (self.init_epsilon - self.min_epsilon) * \
 self.epsilon + self.min_epsilon
 self.epsilon = np.clip(self.epsilon,
 self.min_epsilon,
 self.init_epsilon)
 self.t += 1
 return self.epsilon

 def select_action(self, model, state):
 self.exploratory_action = False
 with torch.no_grad():
 q_values = model(state).cpu().detach()
 q_values = q_values.data.numpy().squeeze()

 if np.random.rand() > self.epsilon:
 action = np.argmax(q_values)
 else:
 action = np.random.randint(len(q_values))

 self._epsilon_update()
 self.exploratory_action = action != np.argmax(q_values)
 return action

(1) In an linearly decaying epsilon-greedy
strategy we start with a high epsilon value
and decay its value in a linear fashion.

(2) We clip epsilon
to be between
the initial and the
minimum value.

(3) This is a variable holding
the number of times
epsilon has been updated. (4) In the ‘select_action’

method, we use a model
and a state.

(5) For logging
purposes, I
always extract
the q_values.

(6) We draw the random number
from a uniform distribution and
compare it to epsilon.

(7) If higher, we use the argmax of the
q_values, otherwise a random action.

(8) Finally, we update epsilon, set a variable for logging
purposes, and return the action selected.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

275

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/

14 Chapter 9 I More stable value-based methods

i Speak python

Exponentially decaying epsilon-greedy exploration strategy

class EGreedyExpStrategy():
 <...>

 def _epsilon_update(self):

 self.epsilon = max(self.min_epsilon,
 self.decay_rate * self.epsilon)
 return self.epsilon

 # def _epsilon_update(self):
 # self.decay_rate = 0.0001
 # epsilon = self.init_epsilon * np.exp(\
 # -self.decay_rate * self.t)
 # epsilon = max(epsilon, self.min_epsilon)
 # self.t += 1
 # return epsilon

 def select_action(self, model, state):
 self.exploratory_action = False
 with torch.no_grad():
 q_values = model(state).cpu().detach()
 q_values = q_values.data.numpy().squeeze()

 if np.random.rand() > self.epsilon:
 action = np.argmax(q_values)
 else:
 action = np.random.randint(len(q_values))
 self._epsilon_update()

 self.exploratory_action = action != np.argmax(q_values)
 return action

(1) In the exponentially decaying strategy, the only difference
is now epsilon is decaying in an exponential curve.

(2) This is yet another way to exponentially decay epsilon, this one
actually uses the exponential function. The epsilon values will be pretty
much the same, but the decay rate will have to be a different scale.

(4) ‘exploratory_action’ here is a variable used to calculate the percentage of
exploratory actions taken per episode. Only used for logging information.

(3) This ‘select_action’ function is identical to the previous strategy. One thing I want to
highlight is, I’m querying the q_values every time only because I’m collecting information to
show to you. But if you care about performance, this is a bad idea. A faster implementation
would only query the network after determining a greedy action is being called for.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

276

15DQN: Making reinforcement learning more like supervised learning

i Speak python

SoftMax exploration strategy

class SoftMaxStrategy():
 <...>
 def _update_temp(self):
 temp = 1 - self.t / (self.max_steps * self.explore_ratio)
 temp = (self.init_temp - self.min_temp) * \
 temp + self.min_temp

 temp = np.clip(temp, self.min_temp, self.init_temp)
 self.t += 1
 return temp

 def select_action(self, model, state):
 self.exploratory_action = False
 temp = self._update_temp()
 with torch.no_grad():

 q_values = model(state).cpu().detach()
 q_values = q_values.data.numpy().squeeze()

 scaled_qs = q_values/temp

 norm_qs = scaled_qs - scaled_qs.max()
 e = np.exp(norm_qs)
 probs = e / np.sum(e)
 assert np.isclose(probs.sum(), 1.0)

 action = np.random.choice(np.arange(len(probs)),
 size=1, p=probs)[0]

 self.exploratory_action = action != np.argmax(q_values)
 return action

(1) In the SoftMax strategy, we use a “temperature” parameter
which, the closer the value to 0, the more pronounced the
differences in the values will become, making action selection
more “greedy”. The temperature is decayed linearly.

(2) Here, after decaying the temperature
linearly we clip its value to make sure it is
in an acceptable range.

(3) Notice that in the SoftMax strategy we really have no
chance of going without extracting the q_values from the
model. After all, actions depend directly on the values.

(4) After extracting the values, we want to accentuate their
differences (unless temp equals 1).

(5) We normalize them to avoid an overflow in the ‘exp’ operation below.

(6) Calculate the exponential.
(7) Finally, convert to probabilities.

(8) Finally, we use the probabilities to select an action. Notice
how we pass the probs variable to the p function argument.

(9) And just as before: Was the action the greedy or exploratory?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

277

16 Chapter 9 I More stable value-based methods

it'S in the DetailS

Exploration strategies have an impactful effect on performance

(1) In NFQ, we used epsilon greedy with a constant value of 0.5. Yes! That is 50% of the
time we acted greedily, and 50% of the time, we chose uniformly at random. Given that
there are only two actions in this environment, the actual probability of choosing the
greedy action is 75%, and the chance of selecting the non-greedy action is 25%. Notice
that in large action space, the probability of selecting the greedy action would be smaller.
In the Notebook, I output this effective probability value under ‘ex 100’. That means “ratio
of exploratory action over the last 100 steps”.

(2) In DQN and all remaining value-based algorithms in this and the following
chapter, I use the exponentially decaying epsilon-greedy strategy. I prefer this
one because it is simple and it works well. But other, more advanced strategies
may be worth trying. I noticed even a small difference in hyperparameters
makes a significant difference in performance. Make sure to test that yourself.

(3) The plots in this box are the decaying schedules of all the different exploration
strategies available in chapter 9’s Notebook. I highly encourage you to go through it
and play with the many different hyperparameters and exploration strategies. There is
a lot more to deep reinforcement learning than just the algorithms.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

278

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb

17DQN: Making reinforcement learning more like supervised learning

it'S in the DetailS

The full Deep Q-Network (DQN) algorithm

Our DQN implementation has very similar components and settings to our NFQ, we:

• Approximate the action-value function Q(s,a; θ).
• Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
• Optimize the action-value function to approximate the optimal action-

value function q*(s,a).
• Use off-policy TD targets (r + gamma*max_a’Q(s’,a’; θ)) to evaluate policies.
• Use mean squared error (MSE) for our loss function.
• Use RMSprop as our optimizer with a learning rate of 0.0005.

Some of the differences are that in the DQN implementation we now:

• Use an exponentially decaying epsilon-greedy strategy to improve policies, decay-
ing from 1.0 to 0.3 in roughly 20,000 steps.

• Use a replay buffer with 320 samples min, 50,000 max, and a mini-batches of 64.
• Use a target network that updates every 15 steps.

DQN has 3 main steps:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert it into the replay buffer.

2. Randomly sample a mini-batch from the buffer and calculate the off-policy TD
targets for the whole batch: r + gamma*max_a’Q(s’,a’; θ).
3. Fit the action-value function Q(s,a; θ): Using MSE and RMSprop.

0001 a Bit of hiStory

Introduction of the DQN Algorithm

DQN was introduced in 2013 by Volodymyr “Vlad” Mnih in a paper called “Playing Atari with
Deep Reinforcement Learning”. This paper introduced DQN with experience replay. In 2015,
another paper came out: “Human-level control through deep reinforcement learning”. This
second paper introduced DQN with the addition of target networks; the full DQN version
you just learned about.

Vlad got his Ph.D. under Geoffrey Hinton (one of the fathers of deep learning), and works as
a Research Scientist at Google DeepMind. He’s been recognized for his DQN contributions,
and has been included in the 2017 MIT Technology Review 35 Innovators under 35 list.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

279

18 Chapter 9 I More stable value-based methods

tally it Up

DQN passes the cart-pole environment

The most remarkable part of the results is that NFQ needs far more samples than DQN to
solve the environment; DQN is more sample efficient. However, they take about the same
time, both training (compute) and wall-clock time.

(1) The most obvious conclusion
we can draw from this first
graph is the DQN is more sample
efficient than NFQ. But, if you
pay attention to the curves, you
notice how NFQ is also noisier
than DQN. This is one of the
most important improvements
we accomplished so far.
(2) As you can see, they both
pass the cart-pole environment,
but DQN takes about 250
episodes while NFQ takes
almost 2,500 episodes. That’s a
tenfold reduction in samples.
(3) Here you can see the same
trend in sample efficiency, but
with time steps instead of
episodes: DQN takes about
50,000 experience tuples while
NFQ uses about 250,000.
(4) But, DQN takes more
training time than NFQ to
pass the environment. Now, by
training time here I mean the
time from the beginning to the
end of all episodes, not just
computation.
(5) In terms of wall-clock time
(that is training time, and
statistics calculation, evaluation
steps, etc) they are both about
5 minutes.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

280

19Double DQN: Mitigating the overestimation of action-value functions

Double DQN: Mitigating the overestimation
of action-value functions
In this section, we introduce one of the main improvements that have proposed to
DQN throughout the year, called Double Deep Q-Networks (Double DQN, or DDQN).
This improvement consists of adding Double learning to our DQN agent. It’s very
straightforward to implement, and it yields agents with consistently better performance than
DQN. The changes required are very similar to the changes applied to Q-learning to develop
Double Q-learning; however, there are some differences that we need to discuss.

The problem of overestimation, take two
As you can probably remember from chapter 6, Q-learning tends to overestimate action-
value functions. Our DQN agent is no different; we are using the same off-policy TD target
after all with that max operator. The crux of the problem is very simple: We are taking the
max of estimated values. Estimated values are often off-center, some higher than the true
values, some lower, but the bottom line is they are off. Now, the problem is that we are
always taking the max of these values. So, we have a preference for higher values, even if
they are not correct. So our algorithms show a positive bias, and performance suffers.

! MigUel'S analogy

The issue with over-optimistic agents, and people

I used to like super positive people until I learned about Double DQN. No, seriously,
imagine you meet a very optimistic person, let’s call her DQN. DQN is very optimistic. She’s
experienced many things in life, from the toughest defeat to the highest success. The
problem with DQN, though, is she expects the sweetest possible outcome from every single
thing she does, regardless of what she actually does. Is that a problem?

One day, DQN went to a local casino. It was the first time, but lucky DQN got the jackpot at
the slot machines. Optimistic as she is, DQN immediately adjusted her value function. She
thought, “Going to the casino is very rewarding (the value of Q(s,a) should be very high)
because at the casino you can go to the slot machines (next state s’) and by playing the slot
machines, you get the jackpot [max_a’ Q(s’, a’)]”.

But, there are multiple issues with this thinking. To begin with, not every time DQN goes to
the casino, she plays the slot machines. She likes to try new things too (she explores), and
sometimes she tries the roulette, poker, or blackjack (tries a different action). Sometimes the
slot machines area is under maintenance and not accessible (the environment transitions
her somewhere else.) Additionally, most of the time DQN plays the slot machines, she
doesn’t get the jackpot (the environment is stochastic.) After all, slot machines are called
bandits for a reason, not those bandits, the other – never mind.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

281

20 Chapter 9 I More stable value-based methods

Separating action selection and action evaluation
One way to better understand the positive bias and how we can address it when using
function approximation is by unwrapping the max operator in the target calculations. The
max of a Q-function is the same as the Q-function of the argmax action.

So, let’s unpack the previous sentence with the max and argmax. Notice that we made pretty
much the same changes when we went from Q-learning to Double Q-learning, but given we
are using function approximation, we need to be cautious. At first, this unwrapping might
seem like a silly step, but it actually helps me understand how to mitigate this problem.

F5 refreSh My MeMory

What’s an argmax, again?

The argmax function is defined as the arguments of the maxima. The argmax action-
value function, argmax Q-function, “argmaxaQ(s,a)” is just the index of the action with the
maximum value at the given state s.

So, for example, if you have a Q(s) with values [-1, 0 , -4, -9] for actions 0-3, the maxaQ(s,
a) is 0, which is the maximum value, and the argmaxaQ(s, a) is 1 which is the index of the
maximum value.

Show Me the Math

Unwrapping the argmax

(1) What we are doing here is something
silly. Take a look at the equations at the top
and bottom of the box and compare them.

(2) There is no real difference between the
two equations since both are using the same
Q-values for the target. Bottom line is these
two bits are the same thing written differently.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

282

21Double DQN: Mitigating the overestimation of action-value functions

All we are saying here is that taking the max is like asking the network:

“What’s the value of the highest-valued action in state s?”

But, we are really asking two questions with a single question. First, we do an argmax, which
is equivalent to asking:

“Which action is the highest-valued action in state s?”

And then, we use that action to get its value. Equivalent to asking:

“What’s the value of this action (which happens to be the highest-valued action) in state s?”

One of the problems is that we are asking both questions to the same Q-function, which
shows bias in the same direction in both answers.

In other words, the function approximator will answer:

“I think this one is the highest-valued action in state s, and this is its value.”

i Speak python

Unwrapping the max in DQN

 q_sp = self.target_model(next_states).detach()
 max_a_q_sp = q_sp.max(1)[0].unsqueeze(1)

 max_a_q_sp *= (1 - is_terminals)
 target_q_sa = rewards + self.gamma * max_a_q_sp

 argmax_a_q_sp = self.target_model(next_states).max(1)[1]

 q_sp = self.target_model(next_states).detach()

 max_a_q_sp = q_sp[np.arange(batch_size), argmax_a_q_sp]
 max_a_q_sp = max_a_q_sp.unsqueeze(1)
 max_a_q_sp *= (1 - is_terminals)
 target_q_sa = rewards + self.gamma * max_a_q_sp

(1) This is the original DQN-way of calculating targets.

(3) We pull the q-values of the next state and get their max.

(4) Set the value of terminal states to 0, and calculate the targets.

(5) This is an equivalent way to calculating targets, “unwrapping the max”.

(6) First, get the argmax action of the next state.

(7) Then, get the q-values of the next state, just as before.
(8) Now, we use the indices to get the max values of the next states.

(9) And proceed as before.

(2) It’s
important that
we ‘detach’
the target so
that we do
not back-
propagate
through it.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

283

22 Chapter 9 I More stable value-based methods

A solution
A way to reduce the chance of positive bias is to have two instances of the action-value
function, just like we did in chapter 6.

If you had another source of the estimates, you could then ask one of the questions to one
and the other question to the other. It’s somewhat like taking votes, or like an “I cut, you
choose first” procedure, or just like getting a second doctor’s opinion on health matters.

In double learning, one estimator selects the index of what it believes to be the highest-
valued action, and the other estimator gives the value of this action.

However, implementing this double learning procedure exactly as described when using
function approximation (for DQN) creates unnecessary overhead. If we did so, we would
end-up with four networks: two networks for training (QA, QB) and two target networks, one
for each online network.

Additionally, it creates a slowdown in the training process, since we would be training only
one of these networks at a time. Therefore, only one network would improve per step. This
is certainly a waste.

Doing this double learning procedure with function approximators may still be better
than not doing it at all, despite the extra overhead. Fortunately for us, there is a simple
modification to the original double learning procedure that adapts it to DQN and give us
substantial improvements without the extra overhead.

F5 refreSh My MeMory

Double learning procedure

We did this procedure with tabular reinforcement learning in Chapter 6 under the Double
Q-learning algorithm. It goes like this:

You create two action-value functions, QA and QB.

You flip a coin to decide which action-value function to update. E.g.: QA on heads, QB on tails.

If you got a heads and thus get to update QA: You select the action index to evaluate from
QB, and evaluate it using the estimate QA predicts. Then, you proceed to update QA as usual,
and leave QB alone.

If you got a tails and thus get to update QB, you do it the other way around: Get the index
from QA, and get the value estimate from QB. QB gets updated, and QA is left alone.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

284

23Double DQN: Mitigating the overestimation of action-value functions

A more practical solution
Instead of adding this overhead that is a detriment to training speed, we can perform double
learning with the other network we already have, which is the target network.

However, instead of training both the online and target networks, we continue training
only the online network, but use the target network to help us, in a sense, cross-validate the
estimates.

We want to be cautious as to which network to use for action selection and which network
to use for action evaluation. Initially, we added the target network to stabilize training by
preventing chasing a moving target. To continue on this path, we want to make sure we use
the network we are training, the online network, for answering the first question. In other
words, we use the online network to find the index of the best action. Then, use the target
network to ask the second question, that is, to evaluate the previously selected action.

This is the ordering that works best in practice, and it makes sense why it works. By using
the target network for value estimates, we make sure the target values are frozen as needed
for stability. If we were to implement it the other way around, the values would come from
the online network, which is getting updated at every time step, and therefore changing
continuously.

Q(s,0) = 3.5

“I think action 3 is
the best action”

“Great! the value of action
3 in states s is 3.6”

Q(s,1) = 1.2

Q(s,2) = -2

Q(s,3) = 3.9

Online
Network

Q(s,0) = 3.8

Q(s,1) = 1.0

Q(s,2) = -1.5

Q(s,3) = 3.6

Target
Network

Selecting action, evaluating action

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

285

24 Chapter 9 I More stable value-based methods

0001 a Bit of hiStory

Introduction of the Double DQN Algorithm

Double DQN was introduced in 2015 by Hado van Hasselt, shortly after the release of the
2015 version of DQN (The 2015 version of DQN is sometimes referred to as ‘Nature’ DQN —
because it was published in the Nature scientific journal, and sometimes as ‘Vanilla’ DQN —
because it is the first of many other improvements over the years).

In 2010, Hado also authored the Double Q-learning algorithm (double learning for the
tabular case), as an improvement to the Q-learning algorithm. This is the algorithm you
learned about and implemented in chapter 6.

Double DQN, also referred to as DDQN, was the first of many improvements proposed over
the years for DQN. Back in 2015 when it was first introduced, DDQN obtained state-of-the-
art (best at the moment) results in the ATARI domain.

Hado obtained his Ph.D. from the University of Utrecht in the Netherlands in Artificial
Intelligence (Reinforcement Learning). After a couple of years as a postdoctoral researcher,
he got a job at Google DeepMind as a Research Scientist.

Show Me the Math

DDQN gradient update

(1) The only difference in DDQN is now we
use the online weights to select the action,
but still use the frozen weights to get the
estimate.

(1) So far the gradient updates look as follows.
(2) We sample uniformly at random from
the replay buffer a experience tuple (s, a, r,s’).

(3) We then calculate the TD target
and error using the target network. (4) Finally calculate the

gradients only through the
predicted values.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

286

25Double DQN: Mitigating the overestimation of action-value functions

i Speak python

Double DQN

 def optimize_model(self, experiences):
 states, actions, rewards, \
 next_states, is_terminals = experiences
 batch_size = len(is_terminals)

 #argmax_a_q_sp = self.target_model(next_states).max(1)[1]
 argmax_a_q_sp = self.online_model(next_states).max(1)[1]

 q_sp = self.target_model(next_states).detach()

 max_a_q_sp = q_sp[np.arange(batch_size), argmax_a_q_sp]

 max_a_q_sp = max_a_q_sp.unsqueeze(1)
 max_a_q_sp *= (1 - is_terminals)
 target_q_sa = rewards + (self.gamma * max_a_q_sp)

 q_sa = self.online_model(states).gather(1, actions)
 td_error = q_sa - target_q_sa
 value_loss = td_error.pow(2).mul(0.5).mean()
 self.value_optimizer.zero_grad()
 value_loss.backward()
 self.value_optimizer.step()

 def interaction_step(self, state, env):
 action = self.training_strategy.select_action(
 self.online_model, state)

 new_state, reward, is_terminal, _ = env.step(action)
 return new_state, is_terminal

 def update_network(self):
 for target, online in zip(
 self.target_model.parameters(),
 self.online_model.parameters()):
 target.data.copy_(online.data)

(1) In Double DQN, we use the online network to get the index of the
highest-valued action of the next state, the ‘argmax’.

(2) Then, extract the q-values of the next state according to the target network.

(3) We then index the q-values provided by the target network
with the action indices provided by the online network.

(4) Then setup the targets as usual.

(5) Get the current estimates. Note this is where the gradients are flowing through.

(6) Calculate the loss, and
step the optimizer.

(7) Here we keep using the online network for action selection.

(8) Updating the target network
is still the same as before.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

287

26 Chapter 9 I More stable value-based methods

A more forgiving loss function
In the previous chapter, we selected the L2 loss, also known as Mean Square Error (MSE), as
our loss function mostly for its widespread use and simplicity. And, in reality, in a problem
such as the cart-pole environment, there might not be a good reason to look any further.
However, because I’m teaching you the ins and outs of the algorithms and not just “how to
hammer the nail,” I’d also like to make you aware of the different knobs available so you can
play around when tackling more challenging problems.

MSE is a ubiquitous loss function because
it is simple, it makes sense, and it works
well. But, one of the issues with using
MSE for reinforcement learning is that
it penalizes large errors more than small
errors. This makes sense when doing
supervised learning because our targets
are the true value from the get-go, and are
fixed throughout the training process. That
means we are confident that, if the model
is very wrong, then it should be penalized
more heavily than if it is just wrong.

But as stated now several times, in reinforcement learning, we do not have these true values,
and the values we use to train our network are dependent on the agent itself. That’s a mind
shift. Besides, targets are constantly changing; even when using target networks, they still
change often. In reinforcement learning, being very wrong is something we expect and
welcome. At the end of the day, if you think about it, we are not really “training” agents, our
agents learn on their own. Think about that for a second.

A loss function not as unforgiving, and also more robust to outliers, is the Mean Absolute
Error, also known as MAE or L1 loss. MAE is defined as the average absolute difference
between the predicted and true values, that
is, the predicted action-value function and
the TD target. Given that MAE is a linear
function as opposed to quadratic like MSE,
we can expect MAE to be more successful
at treating large errors the same way as
small errors. This can come in handy in
our case because we expect our action-
value function to give wrong values at some
point during training, particularly at the

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

288

27Double DQN: Mitigating the overestimation of action-value functions

beginning. Being more resilient to outliers often implies errors have less effect, as compared
to MSE, in terms of changes to our network, which means more stable learning.

Now, on the flip side, one of the helpful things of MSE that MAE does not have is the fact
that its gradients decrease as the loss goes to zero. This feature is helpful for optimization
methods as it makes it easier to reach the optima because lower gradients mean small
changes to the network. But luckily for us, there is a loss function that is somewhat a mix of
MSE and MAE, called the Huber loss.

The Huber loss has the same useful
property as MSE of quadratically penalizing
the errors near zero, but it is not quadratic
all the way out for huge errors. Instead, the
Huber loss is quadratic (curved) near-
zero error, and it becomes linear (straight)
for errors larger than a pre-set threshold.
Having the best of both worlds makes
the Huber loss robust to outliers, just like
MAE, and differentiable at 0, just like MSE.

The Huber loss uses a hyperparameter,
δ, to set this threshold in which the loss
goes from quadratic to linear, basically,
from MSE to MAE. If δ is zero, you are left
precisely with MAE, and if δ is infinite,
then you are left precisely with MSE. A
typical value for δ is 1, but be aware that
your loss function, optimization, and
learning rate interaction in complex ways.
So, if you change one, you may need to
tune some of the others. Check out the
Notebook for this chapter so you can play around.

Interestingly, there are at least two different ways of implementing the Huber loss function.
You could either compute the Huber loss as defined, or compute the MSE loss instead,
and then set all gradients larger than a threshold to a fixed magnitude value. You clip the
magnitude of the gradients. The former depends on the deep learning framework you use,
but the problem is, some frameworks don’t give you access to the δ hyperparameter, so you
are stuck with δ set to 1, which doesn’t always work, and is not always the best. The latter
often referred to as “loss clipping,” or better yet “gradient clipping,” is more flexible and,
therefore, what I implement in the Notebook.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

289

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb

28 Chapter 9 I More stable value-based methods

Know that there is such a thing as “reward clipping,” which is different than “gradient
clipping.” These are two very different things, so beware. One works on the rewards and the
other on the errors (the loss). Now, above all is not to confuse either of these with “Q-value
clipping,” which is undoubtedly a mistake.

Remember, the goal in our case is to prevent gradients from becoming too large. For this, we
either make the loss linear outside a given absolute TD error threshold or make the gradient
constant outside a max gradient magnitude threshold.

In the cart-pole environment experiments that you find in the Notebook, I implemented the
Huber loss function by using the “gradient clipping” technique: That is, I calculate MSE and
then clip the gradients. However, as I mentioned before, I set the hyperparameter setting the
maximum gradient values to infinity. Therefore, it is effectively using good-old MSE. But,
please, experiment, play around, explore! The Notebooks I created should help you learn
almost as much as the book. So, set yourself free over there.

i Speak python

Double DQN with Huber Loss

 def optimize_model(self, experiences):
 states, actions, rewards, \
 next_states, is_terminals = experiences
 batch_size = len(is_terminals)

 <...>
 td_error = q_sa - target_q_sa

 value_loss = td_error.pow(2).mul(0.5).mean()

 self.value_optimizer.zero_grad()
 value_loss.backward()

 torch.nn.utils.clip_grad_norm_(
 self.online_model.parameters(),
 self.max_gradient_norm)

 self.value_optimizer.step()

(1) First, you calculate the targets and get the
current values just as before, using double learning.

(2) Then, calculate the loss function as Mean
Squared Error, just as before.

(3) Zero the optimizer and calculate the
gradients in a backward step.

(4) Now, clip the gradients to the max_gradient_norm, this
value can be virtually any value, but know that this interacts
with other hyperparameters, such as learning rate.

(5) Finally, step the optimizer.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

290

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_09/chapter-09.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/

29Double DQN: Mitigating the overestimation of action-value functions

it'S in the DetailS

The full Double Deep Q-Network (DDQN) algorithm

DDQN is almost identical to DQN, but there are still some differences. We still:

• Approximate the action-value function Q(s,a; θ).
• Use a state-in-values-out architecture (nodes: 4, 512,128, 2).
• Optimize the action-value function to approximate the optimal action-

value function q*(s,a).
• Use off-policy TD targets (r + gamma*max_a’Q(s’,a’; θ)) to evaluate policies.

Notice that we now:

• Use an adjustable Huber loss, which since we set the ‘max_gradient_norm’ variable
to ‘float(‘inf’)’, we are effectively just using mean squared error (MSE) for our loss
function.

• Use RMSprop as our optimizer with a learning rate of 0.0007. Note that before we
used 0.0005 because without double learning (vanilla DQN) some seeds fail if we
train with a learning rate of 0.0007. Perhaps stability? In DDQN, on the other hand,
training with a higher learning rate works best.

In DDQN we are still using:

• An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly
20,000 steps) to improve policies.

• A replay buffer with 320 samples min, 50,000 max, and a batch of 64.
• A target network that freezes for 15 steps and then updates fully.

DDQN, just like DQN has the same 3 main steps:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert it into the replay buffer.

2. Randomly sample a mini-batch from the buffer and calculate the off-policy TD
targets for the whole batch: r + gamma*max_a’Q(s’,a’; θ).
3. Fit the action-value function Q(s,a; θ): Using MSE and RMSprop.

The bottom line is the DDQN implementation and hyperparameters are identical to those
of DQN, except that we now use double learning and therefore train with a slightly higher
learning rate. The addition of the Huber loss does not change anything because we are
“clipping” gradients to a max value of infinite, which is equivalent to using MSE. However,
for many other environments you will find it useful, so tune this hyperparameter.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

291

30 Chapter 9 I More stable value-based methods

tally it Up

DDQN is more stable than NFQ or DQN

DQN and DDQN have very similar performance in the cart-pole environment. However, this
is a simple environment with a very smooth reward function. In reality, DDQN should always
give better performance.

(1) Pay attention, not just to
the mean lines in the middle, but
to the top and bottom bounds
representing the maximum and
minimum values obtained by
any of the 5 seeds during that
episode. DDQN shows tighter
bounds, basically, showing more
stability on performance.

(2) In the second plot, you see
the same pattern, DDQN has
narrower bounds. In terms of
performance, DQN reaches the
max in less number of episodes
on the cart-pole environment for
a seed, but DDQN reaches the
max in similar number of episodes
across all seeds: Stability.

(3) DQN goes through more
steps in fewer episodes in that
“lucky” seed and arguably related
to performance (remember the
cart-pole environment is about
“lasting”).

(4) In terms of time, DDQN
takes a bit longer than DQN
to successfully pass the
environment.

(5) For both, training and wall-
clock time.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

292

31Double DQN: Mitigating the overestimation of action-value functions

Things we can still improve on
Surely our current value-based deep reinforcement learning method is not perfect, but it
is pretty solid. DDQN can reach super-human performance in many of the ATARI games.
To replicate those results, you would have to change the network to take images as input (a
stack of 4 images to be able to infer things such as direction and velocity from the images),
and, of course, tune the hyperparameters.

Yet, we can still go a little further. There are at least a couple of other improvements to
consider that are easy to implement and impact performance in a very positive way.

The first improvement requires us to reconsider the current network architecture. As of
right now, we have a very naive representation of the Q-function on our neural network
architecture.

F5 refreSh My MeMory

Current neural network architecture

We are literately “making reinforcement learning look like supervised learning”. But, we can,
and should, break free from this constraint, and think out of the box.

Is there any better way of representing the Q-function? Think about this for a second while
you look at the images on the next page.

State-in-values-out architecture

State Variables In
 • Cart position
 • Cart velocity
 • Pole angle
 • Pole velocity at tip

Vector of values out
 • Action 0 (left)
 • Action 1 (right)

Q(s) E.g:

[1.44, -3.5]
State s. E.g:

[-0.1, 1.1, 2.3, 1.1]

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

293

32 Chapter 9 I More stable value-based methods

The images on the right are bar plots
representing the estimated action-value
function Q, state-value function V, and
action-advantage function A for the cart-pole
environment with a state in which the pole is
near vertical.

Notice the different functions and values and
start thinking about how to better architect
the neural network so that data is used more
efficiently. As a hint, let me remind you that
the Q-values of a state are related through the
V-function. That is, the action-value function
Q has an essential relationship with the state-
value function V, because of both actions in
Q(s) and indexed by the same state s (in the
example to the right s=[0.02, -0.01, -0.02,
-0.04]).

The question is, would you be able to learn
anything about Q(s, 0) if you are using a
Q(s, 1) sample? Look at the plot showing the
action-advantage function A(s) and notice
how much easier it is for you to eyeball the
greedy action with respect to these estimates
than when using the plot with the action-
value function Q(s). What can you do about this? In the next chapter, we look at a network
architecture called the Dueling network that helps us exploit these relationships.

The other thing to consider improving is the way we sample experiences from the replay
buffer. As of now, we pull samples from the buffer uniformly at random, and I’m sure your
intuition questions this approach and suggests we can do better, and we can.

Humans don’t go around the world, just remembering random things to learn from
at random times. There is a more systematic way in which intelligent agents “replay
memories.” I’m pretty sure my dog chases rabbits in her sleep. Some experiences are more
important than others to our goals. Humans often replay experiences that caused them
unexpected joy or pain. And it makes sense, and you need to learn from these experiences
to generate more or less of them. In the next chapter, we look at ways of prioritizing the
sampling of experiences to get the most out of each sample, when we learn about the
Prioritized Experience Replay (PER) method.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

294

33Summary

Summary
In this chapter, you learned about stabilizing value-based deep reinforcement learning
methods. You dug deep on the components that make value-based methods more stable.
You learned about replay buffers and target networks on an algorithm known as DQN
(‘Nature’ DQN, or ‘Vanilla’ DQN). You then improved on this by implementing a double
learning strategy that, when using function approximation in an algorithm called DDQN,
works efficiently.

In addition to these new algorithms, you learned about different exploration strategies
to use with value-based methods. You learned about linearly and exponentially decaying
epsilon-greedy and SoftMax exploration strategies, this time, in the context of function
approximation. Also, you learned about different loss functions and which ones make more
sense for reinforcement learning and why. You learned that the Huber loss function allows
you to tune between MSE and MAE with a single hyperparameter, and it is, therefore, one of
the preferred loss functions used in value-based deep reinforcement learning methods.

By now you:

• Can solve reinforcement learning problems with continuous state-spaces with algo-
rithms that are more stable and therefore give more consistent results.

• Have an understanding of state-of-the-art value-based deep reinforcement learning
methods and are able to solve complex problems.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

295

sample-efficient
value-based methods 10

In this chapter

• You implement a deep neural network architecture
that exploits some of the nuances that exist in value-
based deep reinforcement learning methods.

• You create a replay buffer that prioritizes experiences
by how surprising they are.

• You build an agent that trains to a near-optimal policy
in fewer number of episodes than all previous value-
based deep reinforcement learning agents.

Intelligence is based on how efficient a species became
at doing the things they need to survive.

— Charles Darwin
English naturalist, geologist, and biologist

Best known for his contributions to the science of evolution.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

296

WOW! eBook
www.wowebook.org

2 Chapter 10 I sample-efficient value-based methods

In the previous chapter, we improved on NFQ with the implementation of DQN and
DDQN. In this chapter, we continue on this line of improvements to previous algorithms
by presenting two additional techniques for improving value-based deep reinforcement
learning methods. This time, though, the improvements are not so much about stability,
although that could easily be a by-product. But more accurately, the techniques presented
in this chapter improve the sample-efficiency of DQN, and other value-based DRL methods.

First, we introduce a functional neural network architecture that splits the Q-function
representation into two streams. One stream approximates the V-function, and the other
stream approximates the A-function. V-functions are per-state values, while A-functions
express the distance of each action from their V-functions.

This is a handy fact for designing RL-specialized architectures that are capable of squeezing
information from samples coming from all action in a given state into the V-function for
that same state. What that means is that a single experience tuple can help improve the value
estimates of all the actions in that state. Thus, improving the sample-efficiency of the agent.

The second improvement we introduce in this chapter is related to the replay buffer. As
you remember from the previous chapter, the standard replay buffer in DQN samples
experiences uniformly at random. Now, it is crucial to understand that sampling uniformly
at random is a good thing for keeping gradients proportional to the true data-generating
underlying distribution, and therefore keeping the updates unbiased. The issue is, however,
that if we could devise a way for prioritizing experiences, we would be able to use the
samples that are the most promising for learning. Therefore, in this chapter, we introduce a
different technique for sampling experiences that allows us to draw samples that appear to
provide the most information to the agent for actually making improvements.

Dueling DDQN: A reinforcement-learning-aware
neural network architecture
Let's now dig into the details of this specialized neural network architecture called the
Dueling network architecture. The dueling network is an improvement that applies only to
the network architecture and not the algorithm. That is, we won't make any changes to the
algorithm, but the only modifications go into the network architecture. This property allows
dueling networks to be combined with virtually any of the improvements proposed over the
years to the original DQN algorithm. For instance, we could have a Dueling DQN agent,
and a Dueling Double DQN agent (or the way I'm referring to it - Dueling DDQN), and
more. Many of these improvements are just plug-and-play, which we take advantage of that
in this chapter. Let's now implement a dueling architecture to be used in our experiments
and learn about it while building it.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

297

WOW! eBook
www.wowebook.org

3Dueling DDQN: A reinforcement-learning-aware neural network architecture

Reinforcement learning is not a supervised learning problem
In the previous chapter, we concentrated our efforts into making reinforcement learning
look more like a supervised learning problem. By using a replay buffer, we made online data,
which is experienced and collected sequentially by the agent, look more like an independent
and identically distributed dataset, such as those commonly found in supervised learning.

We also made targets look more static, which also is a common trait of supervised learning
problems. This surely helps stabilize training, but ignoring the fact that reinforcement
learning problems are problems of their own is not the smartest approach to solving these
problems.

One of the subtleties value-based deep reinforcement learning agents have, and that we
will exploit in this chapter, is in the way the value functions relate to one another. More
specifically, we can use the fact that the state-value function V(s) and the action-value
function Q(s, a) are related to each other through the action-advantage function A(s, a).

F5 RefResh My MeMoRy

Value functions recap

(1) Recall the action-value function of a policy is its expectation of returns
given you take action a in state s and continue following that policy.

(2) The state-value function of state s for a policy is the expectation of
returns from that state, assuming you continue following that policy.

(3) The action-advantage function tells us the difference between
taking an action a in state s and of choosing the policy's default action.

(4) Infinitely sampling the policy for the state-action pair yields 0.
Why? Because there is no advantage for taking the default action.

(5) Finally, we wrap-up with this
re-write of the advantage equation
above. We will use it shortly.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

298

WOW! eBook
www.wowebook.org

4 Chapter 10 I sample-efficient value-based methods

Nuances of value-based deep reinforcement learning methods
The action-value function Q(s, a) can be defined as the sum of the state-value function V(s)
and the action-advantage function A(s, a). This means that we can decompose Q-function
into two components. One that is shared across all actions, and another that is unique to
each action. Or to say it another way, a component that is dependent on the action and
another that is not.

Currently, we are learning the action-value function Q(s, a) for each action separately,
but that's inefficient. Of course, there is some generalization happening because networks
internally connected. Therefore, the information is shared between the nodes of the
network. But, when learning about Q(s, a1), we are ignoring the fact that we could use the
same information to learn something about Q(s, a2), Q(s, a3), and all other actions available
in state s. The fact that V(s) is common to all actions a1, a2, a3, ..., aN.

Efficient use of experiences

Experience
tuple

Information

Q(s, left) Q(s, right) V(s) A(s, right)A(s, left)

By approximating Q-Functions directly we
squeeze information from each sample and
dump it all into the same bucket.

(technically these
buckets, are
connected through
the network, but
stay with me) Information in the

V(s) bucket gets used
by all A(s,a)

1 If we create two separate streams: one to
collect the common information (V(s)), and
the other to collect the differences
between the actions (A(s,a1) and A(s,a2)),
we would become more accurate faster.

2

Boil it Down

The action-value function Q(s, a) depends on the state-value function V(s)

The bottom line is, the values of actions depend on the values of states, and it would be
nice to leverage this fact. In the end, taking the worst action in a good state could be better
than taking the best action is a bad state. You see how "the values of actions depend on
values of states"?

The dueling network architecture uses this dependency of the action-value function Q(s, a)
on the state-value function V(s) such that every update improves the state-value function
V(s) estimate which is common to all actions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

299

WOW! eBook
www.wowebook.org

5Dueling DDQN: A reinforcement-learning-aware neural network architecture

Advantage of using advantages
Now, let me give you an example. In the cart-pole environment, when the pole is in the
upright position, the value of the left and right action are virtually the same. It doesn't
matter what you do when the pole is precisely upright (for the sake of argument, assume the
cart is precisely in the middle of the track and that all velocities are 0). Going either left or
right should have the same value in this perfect state.

However, it does matter what action you take when the pole is tilted 10 degrees to the right,
for instance. In this state, pushing the cart to the right to counter the tilt is the best action
the agent can take. Conversely, going left, and consequently pronouncing the tilt is probably
a bad idea.

Notice that this is what the action-advantage function A(s, a) represents: How much better
than average is taking this particular action a in the current state s?

Relationship between value functions

The state on the left is a pretty
good state because the pole is
almost in the upright position and the
cart somewhat in the middle of the
track. On the other hand, the state
on the right is not as good because
the pole is falling over to the right.

1

The state-value function captures
this “goodness” of the situation.
The state on the left is 10-times
more valuable than the one on
the right (at least according to a
highly-trained agent).

2

The action-value function doesn’t
capture this relationship directly,
but instead it helps determine what
are some favorable actions to take.
On the left, it is not clear what to do,
while on the right it is pretty obvious
you should move the cart right.

3

The action-advantage function also
captures this aspect of “favorability”,
but notice how it is much easier
to “see” the differences of
advantageous actions with it than
with the action-value function. The
state on the left helps illustrate
this property fairly well.

4

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

300

WOW! eBook
www.wowebook.org

6 Chapter 10 I sample-efficient value-based methods

A reinforcement-learning-aware architecture
The dueling network architecture consists of creating two separate estimators, one of the
state-value function V(s), and the other, of the action-advantage function A(s, a). Before
splitting up the network, though, you want to make sure your network shares internal
nodes. For instance, if you are using images as inputs, you want the convolutions to be
shared so that feature-extraction layers are shared. In the cart-pole environment, we share
the hidden layers.

After sharing most of the internal nodes and layers, the layer before the output layers splits
into two streams: a stream for the state-value function V(s), and another for the action-
advantage function A(s, a). The V-function output layer always ends in a single node
because the value of a state is always a single number. The output layer for the Q-function,
however, outputs a vector of the same size as the number of actions. In the cart-pole
environment, the output layer of the action-advantage function stream has two nodes, one
for the left action, and the other for the right action.

Dueling Architecture

The state-value
function node

The action-value
function output

The action-advantage
function nodes

Input the same
4 variables

Hidden
layers

The special module
merging the state-value
and the action-value functions

0001 A Bit of histoRy

Introduction of the Dueling network architecture

The Dueling neural network architecture was introduced in 2015 on a paper called "Dueling
Network Architectures for Deep Reinforcement Learning" by Ziyu Wang when he was a
Ph.D. student at the University of Oxford. This was arguably the first paper to introduce
a custom deep neural network architecture designed specifically for value-based deep
reinforcement learning methods.

Ziyu is now a Research Scientist at Google DeepMind where he continues to contribute to
the field of deep reinforcement learning.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

301

WOW! eBook
www.wowebook.org

7Dueling DDQN: A reinforcement-learning-aware neural network architecture

Building a dueling network
Building the dueling network is very straightforward. I noticed that you could split the
network anywhere after the input layer, and it'd work just fine. I can imagine you could
even have two separate networks, but I don't see the benefits of doing that. In general, my
recommendation is to share as many layers as possible and split only in two heads a layer
before the output layer.

i speAk python

Building the dueling network

class FCDuelingQ(nn.Module):
 def __init__(self,
 input_dim,
 output_dim,
 hidden_dims=(32,32),
 activation_fc=F.relu):
 super(FCDuelingQ, self).__init__()
 self.activation_fc = activation_fc

 self.input_layer = nn.Linear(input_dim,
 hidden_dims[0])

 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(
 hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.value_output = nn.Linear(hidden_dims[-1], 1)
 self.advantage_output = nn.Linear(
 hidden_dims[-1], output_dim)

(1) The dueling network is very similar to the
regular network. We need variables for the
number of nodes in the input and output
layers, the shape of the hidden layers, and the
activation function, just as before.

(2) Next, we create the input layer and "connect" it to the first hidden layer. Here the 'input_
dim' variable is the number of input nodes, and 'hidden_dims[0]' is the number of nodes of the
first hidden layer. 'nn.Linear' creates a layer with inputs and outputs.

(3) Here we create the hidden layers by creating layers as defined in the 'hidden_dims'
variable. For example, a value of '(64, 32, 16)' will create a layer with 64 input nodes and 32
output nodes, and then a layer with 32 input nodes and 16 output nodes.

(4) Finally, we build the two output layers, both "connected" to the last hidden
layer. The 'value_output' has a single node output, and the 'advantage_output' has
'output_dim' nodes. In the cart-pole environment, that number is two.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

302

WOW! eBook
www.wowebook.org

8 Chapter 10 I sample-efficient value-based methods

Reconstructing the action-value function
First, let me clarify that the motivation of the dueling architecture is to create a new network
that improves on the previous network, but without having to change the underlying control
method. We need changes that are not disruptive and that are compatible with previous
methods. We need to be able just to swap the neural network and be done with it.

For this, we need to find a way to aggregate the two outputs from the network and
reconstruct the action-value function Q(s, a), so that any of the previous methods could use
the dueling network model. This way, we create the Dueling DDQN agent when using the
dueling architecture with the DDQN agent. A dueling network and the DQN agent would
make the Dueling DQN agent.

So, how do we join the outputs? Some of you are thinking, add them up, right? I mean, that
is the definition that I provided, after all. Though, some of you may have noticed that there
is no way to recover V(s) and A(s, a) uniquely given only Q(s, a). Think about it; if you add
+10 to V(s) and remove it from A(s, a) you obtain the same Q(s, a) with two very different
values for V(s) and A(s, a).

The way we address this issue in the dueling architecture is by subtracting the mean of the
advantages from the aggregated action-value function Q(s, a) estimate. Doing this shifts
V(s) and A(s, a) off by a constant, but also stabilizes the optimization process.

While estimates are off by a constant, they do not change the relative rank of A(s, a), and
therefore Q(s, a) also has the appropriate rank. All of this, while still using the same control
algorithm. Big win.

show Me the MAth

Dueling architecture aggregating equations

(1) The Q-function is parameterized by theta, alpha, and beta. Theta represents the weights
of the shared layers, alpha the weights of the action-advantage function stream, and beta the
weights of the state-value function stream.

(2) But because we cannot uniquely recover the Q from V and A, we use the following
equation in practice. This removes one degree of freedom from the Q-function. The action-
advantage and state-value functions lose their true meaning by doing this. But in practice,
they are just off-centered by a constant and are now more stable when optimizing.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

303

WOW! eBook
www.wowebook.org

9Dueling DDQN: A reinforcement-learning-aware neural network architecture

i speAk python

The forward pass of a dueling network

class FCDuelingQ(nn.Module):
 <...>
 def forward(self, state):

 x = state
 if not isinstance(x, torch.Tensor):
 x = torch.tensor(x,
 device=self.device,
 dtype=torch.float32)
 x = x.unsqueeze(0)

 x = self.activation_fc(self.input_layer(x))

 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))

 a = self.advantage_output(x)
 v = self.value_output(x)
 v = v.expand_as(a)

 q = v + a - a.mean(1, keepdim=True).expand_as(a)
 return q

(1) Notice that this is the same class as
before. I just removed the code for building of
the network for brevity.

(2) In the forward pass, we start by making sure the input to the network, the 'state', is of
the expected type and shape. We do this because sometimes we input batches of states
(training), sometimes single states (interacting). Sometimes these are numpy vectors.

(3) At this point, we have prepped the input (again single or batch of states) variable x to what
the network expects. So, we pass the variable 'x' to the input layer, which remember takes in
'input_dim' variables and outputs 'hidden_dim[0]' variables, those will then pass through the
activation function.

(4) We use that output as the input for our first hidden layer. We pass the variable 'x', which
you can think of as the current state of a pulse wave that goes from the input to the output
of the network, sequentially to each hidden layer and the activation function.

(5) 'x' now contains the values that came out of the last hidden layer and its respective
activation. We use those as the input to the 'advantage_output' and the 'value_output'
layers. Since 'v' is a single value that will be added to 'a', we expand it.

(6) Finally, we add 'v' and 'a' and subtract the mean of 'a' from it. That is our Q(s, .) estimate,
containing the estimates of all actions for all states.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

304

WOW! eBook
www.wowebook.org

10 Chapter 10 I sample-efficient value-based methods

Continuously updating the target network
Currently, our agent is using a target network that can be outdated for several steps
before it gets a big weight update when syncing with the online network. In the cart-pole
environment, that is merely ~15 steps apart, but in more complex environments, that
number can rise to tens of thousands.

There are at least a couple of issues with this approach. On the one hand, we are freezing the
weights for several steps and calculating estimates with progressively increasing stale data.
As we reach the end of an update cycle, the likelihood of the estimates being of no benefit
to the training progress of the network is higher. On the other hand, every so often, a huge
update is made to the network. Making a big update likely changes the whole landscape of
the loss function all at once. This update-style seems to be both too conservative and too
aggressive at the same time if that's possible.

Now, we got into this issue because we wanted our network not to move too quickly and
therefore create instabilities, and we still want to preserve those desirable traits. But, can you
think of other ways we can accomplish something similar but in a smooth manner? How
about actually slowing down the target network, instead of freezing it?

We can do just that. The technique is called Polyak averaging, and it consists of mixing
in online network weights into the target network on every step. Another way of seeing
it, every step we create a new target network composed of a large percentage of the target
network weights and a small percentage of the online network weights. We add a ~1% of
new information every step to the network. Therefore, the network always lags, but by a
much smaller gap. Additionally, we can now update the network on each step.

Full target net work update

constant for a number of steps.
Target network weights are held 1

increasing lang.
Creating a progressively 2

target network weights.
Every n steps we update the 3

t+n t+n+1 t+n+2 t+n+3 t+n+4 t+n+5 t+n+6 t+2n t+2n+1 t+2n+2

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

305

WOW! eBook
www.wowebook.org

11Dueling DDQN: A reinforcement-learning-aware neural network architecture

i speAk python

Mixing in target and online network weights

class DuelingDDQN():
 <...>

 def update_network(self, tau=None):

 tau = self.tau if tau is None else tau
 for target, online in zip(
 self.target_model.parameters(),
 self.online_model.parameters()):

 target_ratio = (1.0 - self.tau) * target.data
 online_ratio = self.tau * online.data

 mixed_weights = target_ratio + online_ratio
 target.data.copy_(mixed_weights)

(1) This is the same DuelingDDQN class, but with
most of the code removed for brevity.

(2) 'tau' is a variable representing the ratio of the online network that will
be mixed into the target network. A value of 1 is equivalent to a full update.

(3) 'zip' takes
iterables and
returns an iterator
of tuples.

(4) Now, we calculate the ratios we are taking from the target and online weights.

(5) Finally, we mix the weights and copy the new values into the target network.

show Me the MAth

Polyak averaging
(1) Instead of making the target network equal to the online
network every N time steps, and keep it frozen in the mean time.

(2) Why not mixing the
target network with a tiny
bit of the online network
more frequently, perhaps
every time step? (3) Here tau is the mixing factor.

(4) Since we are doing this with a dueling
network, all parameters, including the ones for
the action-advantage and state-value stream
will be mixed in.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

306

WOW! eBook
www.wowebook.org

12 Chapter 10 I sample-efficient value-based methods

What does the dueling network bring to the table?
Action-advantages are particularly useful when you have many similarly-valued actions,
as you have been able to see by yourself. Technically speaking, the dueling architecture
improves policy evaluation, especially in the face of many actions with similar values. Using
a dueling network, our agent can more quickly and accurately compare similarly-valued
actions, which is something useful in the cart-pole environment.

Function approximators, such as a neural network, have errors, that's expected. In a network
with the architecture we were using before, these errors are potentially very different for
all of the state-actions pairs, as they are all separate. But, given the fact that the state-value
function is the component of the action-value function that is common to all actions in a
state, by using a dueling architecture, we reduce the function error and error variance. This
is because now the error in the component with the most significant magnitude in similarly-
valued actions (the state-value function V(s)) is now the same for all actions.

If the dueling network is improving policy evaluation in our agent, then a fully-trained
Dueling DDQN agent should have better performance than the DDQN when the left and
right actions have almost the same value. I ran an experiment by collecting the states of 100
episodes for both, the DDQN and the Dueling DDQN agents. My intuition tells me that
if one agent is better than the other at evaluating similarly-valued actions, then the better
agent should have a smaller range along the track. This is because a better agent should
learn the difference between going left and right, even when the pole is exactly upright.
Warning! I didn't do ablation studies, but the results of my hand-wavy experiment suggest
that the Dueling DDQN agent is indeed able to evaluate in those states better.

State-space visited by fully-trained cart-pole agents
I’m not going to make the mistake to draw any conclusions here. But you can notice the state-space of the cart-pole
environment that was visited by a fully-trained DDQN and Dueling DDQN agents. The results reveal the better
performance of the Dueling DDQN agent and it suggests this better performance is due to better policy evaluation,
perhaps due to the dueling network. Have time to improve on this brief experiment and let others know your findings?

1

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

307

WOW! eBook
www.wowebook.org

13Dueling DDQN: A reinforcement-learning-aware neural network architecture

it's in the DetAils

The Dueling Double Deep Q-Network (Dueling DDQN) algorithm

Dueling DDQN is almost identical to DDQN, and DQN, with only a few tweaks. My
intention is to keep the differences of the algorithms to a minimal while still showing
you the many different improvements that can be made. I'm certain that changing only
a few hyperparameters by just a little bit has big effects in performance of many of these
algorithms, therefore I don't optimize the agents. That being said, now let me go through
the things that are still the same as before:

• Network outputs the action-value function Q(s,a; θ).
• Optimize the action-value function to approximate the optimal action-value func-
tion q*(s,a).
• Use off-policy TD targets (r + gamma*max_a'Q(s',a'; θ)) to evaluate policies.
• Use an adjustable Huber loss, but still with 'max_gradient_norm' variable set to
'float('inf')'. Therefore, we are using MSE.
• Use RMSprop as our optimizer with a learning rate of 0.0007.
• An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly
20,000 steps) to improve policies.
• A greedy action selection strategy for evaluation steps.
• A replay buffer with 320 samples min, 50,000 max, and a batch of 64.

We replaced:

• The neural network architecture. We now use a state-in-values-out dueling net-
work architecture (nodes: 4, 512,128, 1; 2, 2).
• The target network that use to freeze for 15 steps and update fully, now uses a
Polyak averaging: every time step we mix in 0.1 of the online network and 0.9 of the
target network to form the new target network weights.

Dueling DDQN, is the same exact algorithm than DDQN, just a different network:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert into the replay buffer.

2. Pull a batch out of the buffer and calculate the off-policy TD targets: R +
gamma*max_a'Q(s',a'; θ), using double learning.
3. Fit the action-value function Q(s,a; θ), using MSE and RMSprop.

One pretty cool thing to notice is that all of these improvements are like Lego blocks for
you to get creative. Maybe you like to try Dueling DQN, without the double learning, maybe
you want the Huber loss to actually clip gradients, or maybe you like the Polyak averaging
to mix 50:50 every 5 time steps. It's up to you! Hopefully, the way I have organized the code
will give you the freedom to try things out.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

308

WOW! eBook
www.wowebook.org

14 Chapter 10 I sample-efficient value-based methods

tAlly it Up

Dueling DDQN is more data efficient than all previous methods

Dueling DDQN and DDQN have very similar performance in the cart-pole environment.
Dueling DDQN is slightly more data-efficient. The number of samples DDQN needs to pass
the environment is higher than that of Dueling DDQN. However, Dueling DDQN takes
slightly longer than DDQN.

(1) The training curves of
Dueling DDQN are narrower and
end sooner than DDQN. This
suggest that Dueling DDQN
is not only learning in fewer
number of samples, but also
learning more stable policies.

(2) The evaluation plot shows
the same pattern. One
interesting thing to note is
that bump at around episode
50. Both agents show it, but
the Dueling DDQN has a higher
lower bound throughout the
entire training process.

(3) Dueling DDQN consumes
less data, a fewer number of
steps.

(4) But takes longer to train!
About 50 seconds longer
in average. Why would this
be? Maybe because we now
updating the target network
every time step? Maybe the
dueling network? Experiment
and find out!

(5) No much difference between
the two time plots.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

309

WOW! eBook
www.wowebook.org

15PER: Prioritizing the replay of meaningful experiences

PER: Prioritizing the replay
of meaningful experiences
In this section, we introduce a more intelligent experience replay technique. The goal is to
allocate resources for experience tuples that have the most significant potential for learning.
Prioritized Experience Replay (PER) is a specialized replay buffer that does just that.

A smarter way to replay experiences
At the moment, our agent samples experience tuples from the replay buffer uniformly at
random. Mathematically speaking, this feels right, and it is. But intuitively, this seems an
inferior way of replaying experiences. Replaying uniformly at random allocates resources
to unimportant experiences. It doesn't feel right that our agent spends time and compute
power "learning" things that have nothing to offer to the current state of the agent

But, let's be careful here, while it is evident that uniformly at random is not good enough,
it is also the case that human intuition might not work very well in determining a better
learning signal. When I first implemented a prioritized replay buffer, before reading the PER
paper, my first thought was: "Well, I want the agent to get the highest cumulative discounted
rewards possible, I should have it replay experiences with high reward only." Yeah, that
didn't work. I then realized agents also need negative experiences, so I thought: "Aha! I
should have the agent replay experiences with the highest reward magnitude! Besides, I love
using that 'abs' function!", but that didn't work either. Can you think why these experiments
didn't work? It makes sense that if I want the agent to learn to experience rewarding states, I
should have it replay those the most so that it learns to get there. Right?

! MigUel's AnAlogy

Human intuition and the relentless pursuit of happiness

I love my daughter. I love her so much. If fact, so much that I want her "to experience only
the good things in life." No, seriously, if you are a parent, you know what I mean.

I noticed she likes chocolate a lot, or as she would say "a bunch". So, I started opening up
to giving her candies every so often. And then more often than not. But, then she started
getting mad at me when I didn't think she should get a candy.

Too much high-reward experiences, you think? You bet! Agents (maybe even humans) need
to be reminded often of good and bad experiences alike, but they also need "mundane"
experiences with low magnitude rewards. Now, in the end, none of these experiences give
you the most learning, which is what we are after. Isn't that counterintuitive?

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

310

WOW! eBook
www.wowebook.org

16 Chapter 10 I sample-efficient value-based methods

Then, what is a good measure of "important" experiences?
What we are looking for is to learn from unexpectedly valued experiences, surprising
experiences, experiences we thought should be valued this much, and ended up valued that
much. That makes more sense; these experiences bring "reality" to us. We have a view of the
world, we anticipate outcomes, and when the difference between expectation and reality is
significant, we know we need to learn something from that.

In reinforcement learning, this measure of "surprise" is given by the TD error! Well,
technically, the absolute TD error. The TD error provides us with the difference between the
agent's current estimate and target value. The current estimate indicates the value our agent
thinks is going to get for acting in a specific way. The target value suggests a new estimate
for the same state-action pair, which can be seen as a reality check. The absolute difference
between these values indicates how far off we are, how unexpected this experience is,
how much new information we received, which makes it a good indicator for learning
opportunity.

Now, the TD error is not the perfect indicator of the "highest learning opportunity," but
maybe the best reasonable proxy for it. In reality, the best criterion for "learning the most"
is really inside the network and hidden behind parameter updates. But, it seems impractical
to calculate gradients for all experiences in the replay buffer every time step. The good thing
about the TD error is that the machinery to calculate it is in there already. And of course,
the fact that the TD error is still a good signal for prioritizing the replay of experiences.

show Me the MAth

The absolute TD error is the priority

(1) I'm calling it "Dueling DDQN" target to be very specific that we are using a target
network, and a dueling architecture. However, this could be more-simply called TD target.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

311

WOW! eBook
www.wowebook.org

17PER: Prioritizing the replay of meaningful experiences

Greedy prioritization by TD error
Let's pretend we use TD errors for prioritizing experiences are follows:

• Take action a in state s and receive a new state s', a reward r, and a done flag d.
• Query the network for the estimate of the current state Q(s, a; θ).
• Calculate a new target value for that experience as target = r + gamma*max_a'Q(s',a';

θ).
• Calculate the absolute TD error as atd_err = abs(Q(s, a; θ) - target)
• Insert experience into the replay buffer as a tuple (s, a, r, s', d, atd_err)).
• Pull out the top experiences from the buffer when sorted by atd_err.
• Train with these experiences, and repeat.

There are multiple issues with this approach, but let's try to get them one by one. First, we
are calculating the TD errors twice: we calculate the TD error before inserting it into the
buffer, but then again when we train with the network. In addition to this, we are ignoring
the fact that TD errors change every time the network changes because they are calculated
using the network. But, the solution can't be updating all of the TD errors every time step.
It's simply not cost-effective.

A workaround for both these problems is to update the TD errors only for experiences that
are used to update the network (the replayed experiences) and insert new experiences with
the highest magnitude TD error in the buffer to ensure they are all replayed at least once.

However, from this workaround, other issues arise. First, a TD error of zero in the first
update means that experience will likely never be replayed again. Second, when using
function approximators, errors shrink slowly, and this means that updates concentrate
heavily in a small subset of the replay buffer. And finally, TD errors are noisy.

For these reasons, we need a strategy for sampling experiences based on the TD errors,
but stochastically, not greedily. If we sample prioritized experiences stochastic, we can
simultaneously ensure all experiences have a chance of being replayed, and that the
probabilities of sampling experiences are monotonic in the absolute TD error.

Boil it Down

TD errors, priorities and probabilities

The most important takeaway from this page is that TD errors are not enough; We will use
TD errors to calculate priorities, and from priorities we calculate probabilities.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

312

WOW! eBook
www.wowebook.org

18 Chapter 10 I sample-efficient value-based methods

Sampling prioritized experiences stochastically
Allow me to dig deeper into why we need stochastic prioritization. In highly stochastic
environments, learning from experiences sampled greedily based on the TD error may lead
us to where the noise takes us.

TD errors depend on the one-step reward and the action-value function of the next state,
which can be both highly stochastic. So, highly-stochastic environments can have higher
variance TD errors. In such environments, we can get ourselves into trouble if we let our
agents strictly follow the TD error. We don't want our agents to get fixated with "surprising"
situations, that's not the point. An additional source of noise in the TD error is the neural
network. Using highly non-linear function approximators, also contribute to the noise
in TD errors, especially early during training when errors are the highest. If we were to
sample greedily solely based on TD-errors, a lot of the training time would be spent on the
experiences with potentially inaccurately large magnitude TD error.

0001 A Bit of histoRy

Introduction of the Prioritized Experience Replay Buffer

The "Prioritized Experience Replay" (PER) paper was introduced simultaneously with the
Dueling architecture paper in 2015 by the Google DeepMind folks.

Tom Schaul, a Senior Research Scientist at Google DeepMind, is the main author of the PER
paper. Tom obtained his Ph.D. in 2011 from the Technical University of Munich. After 2 years
as a Post Doc at New York University, Tom joined DeepMind Technologies which 6 months
later would be acquired by Google and turned into what today is Google DeepMind.

Tom is a core developer of the PyBrain framework, a modular machine learning library
for Python. PyBrain was probably one of the earlier frameworks to implement machine
learning, reinforcement learning and black-box optimization algorithms. He is also a
core developer of PyVGDL, a high-level video game description language built on top of
PyGame.

Boil it Down

Sampling prioritized experiences stochastically

TD errors are noisy and shrink slowly. We don't want to stop replaying experiences that,
due to noise, get a TD error value of zero. We don't want to get stuck with noisy experiences
that, due to noise, get a significant TD error. And, we don't want to fixate on experiences
with an initially high TD error.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

313

WOW! eBook
www.wowebook.org

19PER: Prioritizing the replay of meaningful experiences

Proportional prioritization
Let's calculate priorities for each sample in the buffer based on TD errors. A first approach
to do so is to sample experiences in proportion to their absolute TD error. We can use the
absolute TD error of each experience and add a small constant, epsilon, to make sure zero
TD error samples still have a chance of being replayed.

We scale this priority value by exponentiating it to alpha, a hyperparameter between zero
and one. That allows us to interpolate between uniform and prioritized sampling. It allows
us to perform the stochastic prioritization we discussed.

When alpha is zero, all values become one, therefore an equal priority. When alpha is one,
all values stay the same as the absolute TD error; therefore, the priority is proportional to
the absolute TD error — a value in between blends the two sampling strategies.

These scaled priorities are converted to actual probabilities only by dividing their values by
the sum of the values. Then, we can use these probabilities for drawing samples from the
replay buffer.

show Me the MAth

Proportional prioritization

(1) The priority of sample i.
(2) Is the absolute TD error.

(3) And a small constant,
epsilon, to avoid zero priority.

show Me the MAth

Priorities to probabilities

(1) We calculate the
probabilities.

(2) By raising the priorities
by alpha to blend uniform and
prioritized experience replay.

(3) And then normalize them so that the sum of the probabilities add up to one.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

314

WOW! eBook
www.wowebook.org

20 Chapter 10 I sample-efficient value-based methods

Rank-based prioritization
One issue with the proportional-prioritization approach is that it is sensitive to outliers.
That means that experiences with much higher TD error than the rest, whether by fact or
noise, are sampled more often than those with low magnitudes, which may be an undesired
side effect.

A slightly different experience prioritization approach to calculating priorities is to sample
them using the rank of the samples when sorted by their absolute TD error.

Rank here simply means the position of the sample when sorted in descending order by the
absolute TD error — nothing else. For instance, prioritizing based on the rank makes the
experience with the highest absolute TD error rank 1, the second is rank 2, and so on.

After we rank them by TD error, we calculate their priorities as the reciprocal of the rank.
And again, for calculating priorities, we proceed by scaling the priorities with alpha, just
as with the proportional strategy. And then, we calculate actual probabilities from these
priorities. Also, just as before, by normalizing the values so that the sum is one.

Boil it Down

Rank-based prioritization

While proportional prioritization uses the absolute TD error and a small constant for
including zero TD error experiences, rank-based prioritization uses the reciprocal of the rank
of the sample when sorted in descending order by absolute TD error.

Both prioritization strategies then create probabilities from priorities the same way.

show Me the MAth

Rank-based prioritization

(1) For rank-based prioritization,
we calculate the priorities as the
reciprocal of the rank of that sample.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

315

WOW! eBook
www.wowebook.org

21PER: Prioritizing the replay of meaningful experiences

Prioritization bias
Using a distribution for estimating another one introduces bias in the estimates. So, because
we are sampling based on these probabilities, priorities, and TD errors, we need to account
for that.

First, let me explain in more depth the problem. The distribution of the updates must be
from the same distribution as its expectation. When we update the action-value function of
state s and an action a, we must be cognizant that we always update with targets.

Targets are samples of expectations. That means the reward and state at the next step could
be stochastic; there could be many possible different rewards and states when taking action
a in a state s.

If we were to ignore this fact and update a single sample more often than it appears in that
expectation, we would create a bias toward this value. This issue is particularly impactful at
the end of training when our methods are near convergence.

The way to mitigate this bias is to use a technique called weighted importance sampling. It
consists of scaling the TD errors by weights calculated with the probabilities of each sample.

What weighted importance sampling does is reverting the changing the magnitude of the
updates so that it appears the samples came from a uniform distribution.

show Me the MAth

Weighted Importance Sampling weights calculation

(1) We calculate the importance-
sampling weights by multiplying
each probabilities by number of
samples in the replay buffer. (2) We then raise that value

to the additive inverse of beta.

(3) We also down-scale the weights
so that the largest weights are 1,
and everything else lower.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

316

WOW! eBook
www.wowebook.org

22 Chapter 10 I sample-efficient value-based methods

To do weighted importance sampling very effective with a prioritized replay buffer, we add a
convenient hyperparameter, beta, that allows us to tune the degree of the corrections. When
beta is zero, there is no correction, when beta is one, there is a full correction of the bias.

Additionally, we want to normalize the weights by their max so that the max weight
becomes one, and all other weights scale down the TD errors. This way, we keep TD errors
from growing too much and keep training stable.

These importance sampling weights are used in the loss function. Instead of using the
TD errors straight in the gradient updates, in PER, we multiply them by the importance-
sampling weights and scale all TD errors down to compensate for the mismatch in the
distributions.

show Me the MAth

Dueling DDQN with PER gradient update

(1) I don't really want to keep bloating this equation,
so I'm only using theta to represent all parameters,
the shared, for the action-advantage function,
alpha, and for the state-value function, beta.

(2) Notice how
I changed the U
for a P, because
we are doing
a prioritized
sampling, and
not uniformly at
random.

(3) Finally, notice how we are using the
normalized importance sampling weights to
modify the magnitude of the TD error.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

317

WOW! eBook
www.wowebook.org

23PER: Prioritizing the replay of meaningful experiences

i speAk python

Prioritized Replay Buffer 1/2

class PrioritizedReplayBuffer():
 <...>
 def store(self, sample):

 priority = 1.0
 if self.n_entries > 0:
 priority = self.memory[
 :self.n_entries,
 self.td_error_index].max()

 self.memory[self.next_index,
 self.td_error_index] = priority
 self.memory[self.next_index,
 self.sample_index] = np.array(sample)

 self.n_entries = min(self.n_entries + 1,
 self.max_samples)

 self.next_index += 1
 self.next_index = self.next_index % self.max_samples

 def update(self, idxs, td_errors):

 self.memory[idxs,
 self.td_error_index] = np.abs(td_errors)

 if self.rank_based:
 sorted_arg = self.memory[:self.n_entries,
 self.td_error_index].argsort()[::-1]
 self.memory[:self.n_entries] = self.memory[
 sorted_arg]

(1) The 'store' function of the 'PrioritizedReplayBuffer' class is very straightforward. The
first thing we do is calculate the priority for the sample. Remember, we set the priority to the
maximum. Below is 1 as default, then overwritten with the max value.

(2) With the priority and sample (experience) in hand, we insert it into the memory.

(3) We increase the variable that indicates the number of experiences in the buffer, but we
need to make sure the buffer doesn't increase beyond the 'max_samples'.

(4) This next variable indicates the index at which the next experience will be inserted. This
variable loops back around from 'max_samples' to 0 and goes back up.

(5) The update function takes an array of experiences ids, and new TD error values. Then, we
just simply insert the absolute TD errors into the right place.

(6) If we are doing the rank based sampling, we additionally sort the array. Notice that arrays
are sub-optimal for implementing a prioritized replay buffer mainly because of this 'sort' that
depends on the number of samples. Not good for performance.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

318

WOW! eBook
www.wowebook.org

24 Chapter 10 I sample-efficient value-based methods

i speAk python

Prioritized Replay Buffer 2/2

class PrioritizedReplayBuffer():
 <...>
 def sample(self, batch_size=None):

 batch_size = self.batch_size if batch_size == None \
 else batch_size
 self._update_beta()
 entries = self.memory[:self.n_entries]

 if self.rank_based:
 priorities = 1/(np.arange(self.n_entries) + 1)
 else: # proportional
 priorities = entries[:, self.td_error_index] + EPS

 scaled_priorities = priorities**self.alpha
 pri_sum = np.sum(scaled_priorities)
 probs = np.array(scaled_priorities/pri_sum,
 dtype=np.float64)

 weights = (self.n_entries * probs)**-self.beta

 normalized_weights = weights/weights.max()

 idxs = np.random.choice(self.n_entries,
 batch_size, replace=False, p=probs)

 samples = np.array([entries[idx] for idx in idxs])

 samples_stacks = [np.vstack(batch_type) for \
 batch_type in np.vstack(samples[:, self.sample_index]).T]
 idxs_stack = np.vstack(idxs)
 weights_stack = np.vstack(normalized_weights[idxs])
 return idxs_stack, weights_stack, samples_stacks

(1) Calculate the 'batch_size', anneal 'beta', and remove zeroed rows from entries.

(2) We now calculate priorities. If it's a rank-based prioritization, it's just one over the rank
(we sorted these in the 'update' function). Proportional is the absolute TD error plus a small
constant epsilon to avoid zero priorities.

(3) Now, we go from priorities to probabilities. First, we blend with uniform, then probs.

(4) We then calculate the importance sampling weights using the probabilities.

(5) Normalize the weights. The maximum weight will be 1.

(6) We sample indices of the experiences in the buffer using the probabilities.

(7) Get the samples out of the buffer.

(8) Finally, stack the samples by ids, weights and experience tuples, and return them.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

319

WOW! eBook
www.wowebook.org

25PER: Prioritizing the replay of meaningful experiences

i speAk python

Prioritized Replay Buffer Loss Function 1/2

class PER():
 <...>

 def optimize_model(self, experiences):

 idxs, weights, \
 (states, actions, rewards,
 next_states, is_terminals) = experiences
 <...>

 argmax_a_q_sp = self.online_model(next_states).max(1)[1]
 q_sp = self.target_model(next_states).detach()
 max_a_q_sp = q_sp[np.arange(batch_size), argmax_a_q_sp]
 max_a_q_sp = max_a_q_sp.unsqueeze(1)
 max_a_q_sp *= (1 - is_terminals)
 target_q_sa = rewards + (self.gamma * max_a_q_sp)

 q_sa = self.online_model(states).gather(1, actions)

 td_error = q_sa - target_q_sa

 value_loss = (weights * td_error).pow(2).mul(0.5).mean()

 self.value_optimizer.zero_grad()
 value_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_model.parameters(),
 self.max_gradient_norm)
 self.value_optimizer.step()

 priorities = np.abs(td_error.detach().cpu().numpy())
 self.replay_buffer.update(idxs, priorities)

(1) As I've pointed out in other occasions, this is just a part of the
code. These are snippets that I feel are worth showing here.

(2) One thing to notice is that now we have ids and weights coming
along with the experiences.

(3) We calculate the target values, just as before.

(4) We query the current estimates, nothing new.

(5) We calculate the TD errors, the same way.

(6) But, now the loss function has TD errors downscaled by the weights.

(7) We continue the optimization just as before.

(8) And update the priorities of the replayed batch using the absolute TD errors.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

320

WOW! eBook
www.wowebook.org

26 Chapter 10 I sample-efficient value-based methods

i speAk python

Prioritized Replay Buffer Loss Function 2/2

class PER():
 <...>

 def train(self, make_env_fn, make_env_kargs, seed, gamma,
 max_minutes, max_episodes, goal_mean_100_reward):

 <...>
 for episode in range(1, max_episodes + 1):

 <...>
 for step in count():
 state, is_terminal = \
 self.interaction_step(state, env)

 <...>
 if len(self.replay_buffer) > min_samples:

 experiences = self.replay_buffer.sample()

 idxs, weights, samples = experiences
 experiences = self.online_model.load(
 samples)

 experiences = (idxs, weights) + \
 (experiences,)

 self.optimize_model(experiences)

 if np.sum(self.episode_timestep) % \
 self.update_target_every_steps == 0:
 self.update_network()

 if is_terminal:
 break

(1) This is the same 'PER' class, but we are
now in the 'train' function.

(2) Inside the episode loop.

(3) Inside the time step loop.

(4) So, every time step during training time.

(5) Look how we pull the 'experiences' from the buffer.

(6) From the experiences, we pull the idxs, weights and experience tuple.
Notice how we load the 'samples' variables into the GPU.

(7) Then, we stack the variables again. Note that we did that only to load the
samples into the GPU, and have them ready for training.

(8) Then, we optimize the model (this is the function in the previous page).

(9) And, everything proceeds as usual.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

321

WOW! eBook
www.wowebook.org

27PER: Prioritizing the replay of meaningful experiences

it's in the DetAils

The Dueling DDQN with Prioritized Replay Buffer algorithm

One final time, we improve on all previous value-based deep reinforcement learning
methods. This time, we do so by improving on the replay buffer. As you can imagine, most
hyperparameter stay the same as the previous methods. Let's go into the details. These are
the things that are still the same as before:

• Network outputs the action-value function Q(s,a; θ).
• We use a state-in-values-out dueling network architecture (nodes: 4, 512,128, 1; 2,
2).
• Optimize the action-value function to approximate the optimal action-value func-
tion q*(s, a).
• Use an off-policy TD targets (r + gamma*max_a'Q(s',a'; θ)) to evaluate policies.
• Use an adjustable Huber loss with 'max_gradient_norm' variable set to 'float('inf')'.
Therefore, MSE.
• Use RMSprop as our optimizer with a learning rate of 0.0007.
• An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly
20,000 steps) to improve policies.
• A greedy action selection strategy for evaluation steps.
• A target network that updates every time step using Polyak averaging with a tau
(the mix-in factor) of 0.1.
• A replay buffer with 320 samples minimum and a batch of 64.

Things we've changed:

• Use weighted important sampling to adjust the TD errors (which changes the loss
function).
• Use a prioritized replay buffer with proportional prioritization, with a max number
of samples of 10,000, an alpha (degree of prioritization vs uniform − 1 is full priority)
value of 0.6, a beta0 (initial value of beta, which is bias correction − 1 is full correction)
value of 0.1 and a beta annealing rate of 0.99992 (fully annealed in roughly 30,000
time steps).

PER is the same base algorithm than Dueling DDQN, DDQN and DQN:

1. Collect experience: (St, At, Rt+1, St+1, Dt+1), and insert into the replay buffer.

2. Pull a batch out of the buffer and calculate the off-policy TD targets: R +
gamma*max_a'Q(s',a'; θ), using double learning.
3. Fit the action-value function Q(s,a; θ), using MSE and RMSprop.

4. Adjust TD errors in the replay buffer.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

322

WOW! eBook
www.wowebook.org

28 Chapter 10 I sample-efficient value-based methods

tAlly it Up

PER improves data efficiency even more

The prioritized replay buffer uses fewer samples than any of the previous methods. And as
you can see it in the graphs below, it even makes things look more stable. Maybe?

(1) PER uses data much more
efficiently, and as you can see,
it passes the environment in
fewer episodes.

(2) Nothing really different
in the evaluation plot in
terms of sample complexity,
but you can also see a bit
more stability than previous
methods near the 50 episode
mark.

(3) The real indication
of sample complexity is
the number of steps, not
episodes, because episodes
contain a variable number of
steps in this environment.
However, the pattern is the
same. PER is more sample
efficient than all previous
methods.

(4) But look at this! PER is
much slower than Dueling
DDQN. But know that this is
an implementation-specific
issue. If you get a high-quality
implementation of PER, this
should not happen.

(5) Again, no much difference
between the two time plots.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

323

WOW! eBook
www.wowebook.org

29Summary

Summary
This chapter concludes the in-depth survey of value-based deep reinforcement learning
methods. In this chapter, we explored ways to make value-based methods more data-
efficient. You learned about the dueling architecture, and how it leverages the nuances of
value-based reinforcement learning by separating the action-value function Q(s, a) into its
two components: the state-value function V(s) and the action-advantage function A(s, a).
This separation allows every experience used for updating the network to add information
to the estimate of the state-value function V(s), which is common to all actions. The final
consequence of this is arriving at the correct estimates more quickly, therefore reducing
sample complexity.

You also looked into the prioritization of experiences. You learned that TD errors are a good
criterion for creating priorities and that from priorities, you can calculate probabilities.
You learned that we must compensate for changing the distribution of the expectation we
are estimating. For this, we used weighted importance sampling, which is a technique for
correcting the bias.

In the past three chapters, we dived deep into the field of value-based deep reinforcement
learning. We started with a simple approach, NFQ. Then, we made this technique more
stable with the improvements presented in DQN and DDQN. Then, we made it more
sample-efficient with Dueling DDQN and PER. Overall we have a pretty robust algorithm.

But, just like with everything in life, value-based methods also have cons. First, they
are sensitive to hyperparameters. This something well-known, but you should try it for
yourself; go and change a learning rate, or the size of the replay buffer, or the value of tau,
epsilon, you can find more values that don't work, than values that do. Second, value-based
methods assume they interact with a Markovian environment. They assume that the states
contain all the information required by the agent. This assumption dissipates as we move
away from bootstrapping and value-based methods in general. Lastly, the combination of
bootstrapping, off-policy learning, and function approximators are known conjointly as 'the
deadly triad.' While the 'deadly triad' is known to produce divergence, researchers still don't
know exactly how to prevent it.

Now, by no means, I'm saying that value-based methods are inferior to the methods we
survey in future chapters. Those methods have issues of their own, too. The fundamental
takeaway is to know that value-based deep reinforcement learning methods are well-known
to diverge, and that is their weakness. How to fix it is still a research question, but sound
practical advice is to use target networks, replay buffers, double learning, sufficiently small
learning rates (but not too small), and maybe a little bit of patience. I'm sorry about that; I
don't make the rules.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

324

WOW! eBook
www.wowebook.org

30 Chapter 10 I sample-efficient value-based methods

Finally, there are additional improvements available for value-based deep RL methods. And
even though I'm not going to explain them in this book, I'd like to mention a few of them
so that those with the inclination can go further and explore. If you like to learn more about
value-based deep reinforcement learning, I recommend you checkout: Distributional DQN,
N-step DQN, and Noisy DQN.

By now you:

• Can solve reinforcement learning problems with continuous state-spaces.
• Know how to stabilize value-based deep reinforcement learning agents.
• Know how to make value-based deep reinforcement learning agents more sample

efficient.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

325

WOW! eBook
www.wowebook.org

policy-gradient and
actor-critic methods 11

In this chapter

• You learn about a family of deep reinforcement
learning methods that can optimize their performance
directly, without the need for value functions.

• You learn how to use value function to make these
algorithms even better.

• You implement deep reinforcement learning
algorithms that use multiple processes at once for very
fast learning.

There is no better than adversity. Every defeat, every
heartbreak, every loss, contains its own seed, its own lesson on
how to improve your performance the next time.

— Malcolm X
American Muslim minister and

Human Rights activist.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

326

WOW! eBook
www.wowebook.org

2 Chapter 11 I policy-gradient and actor-critic methods

So far, in this book, we have explored methods that can find optimal and near-optimal
policies with the help of value functions. However, all of those algorithms learn value
functions when what we need are policies.

In this chapter, we explore the other side of the spectrum and what is in the middle. We start
exploring methods that optimize policies directly. These methods, referred to as policy-
based or policy-gradient methods, parameterize a policy and adjust it to maximize expected
returns.

After introducing foundational policy-gradient methods, we explore a combined class
of methods that learn both policies and value functions. These methods are referred to
as actor-critic because the policy, which selects actions, can be seen as an actor, and the
value function, which evaluates policies, can be seen as a critic. Actor-critic methods often
perform better than value-based or policy-gradient methods alone on many of the deep
reinforcement learning benchmarks. Learning about these methods allow you to tackle
more challenging problems.

These methods combine what you learned in the previous three chapters concerning
learning value functions and what you learn about in the first part of this chapter, about
learning policies. Actor-critic methods often yield state-of-the-art performance in diverse
sets of deep reinforcement learning benchmarks.

REINFORCE: Outcome-based policy learning
In this section, we begin motivating the use of policy-based methods, first with and
introduction, then some of the advantages you can expect when using these kinds
of methods, and finally, we introduce the simplest-policy gradient algorithm, called
REINFORCE.

Policy-based, value-based and actor-critic methods

Policy-based Actor-critic Value-based
(2) You are here
for the next
two sections.

(3) And here
through the end
of the chapter.

(1) Last three
chapters you
were here.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

327

WOW! eBook
www.wowebook.org

3REINFORCE: Outcome-based policy learning

Introduction to policy-gradient methods

The first point I'd like to emphasize is that in policy-gradient methods, unlike in value-
based methods, we are trying to maximize a performance objective. In value-based
methods, the main focus is to learn to evaluate policies. For this, the objective is to minimize
a loss between predicted and target values. More specifically, our goal was to match the true
action-value function of a given policy, and therefore, we parameterized a value function,
and minimize the mean squared error between predicted and target values. Note that we
didn't have true target values, and instead, we used actual returns in Monte-Carlo methods
or predicted returns in bootstrapping methods.

In policy-based methods, on the other hand, the objective is to maximize the performance
of a parameterized policy, so we are running gradient ascent (or minimizing the negative
performance and executing regular gradient descent.) Now, it is rather evident that the
performance of an agent is the expected total discounted reward from the initial state, which
is the same thing as the expected state-value function from all initial states of a given policy.

ŘŁ With An RL Accent

Value-based vs. policy-based vs. policy-gradient vs. actor-critic methods

Value-based methods: Refers to algorithms that learn value functions and only value
functions. Q-learning, Sarsa, DQN, and company are all value-based methods.

Policy-based methods: Refers to a broad range of algorithms that optimize policies,
including black-box optimization methods, such as Genetic Algorithms.

Policy-gradient methods: Refers to methods that solve an optimization problem on the
gradient of the performance of a parameterized policy. Methods you learn in this chapter.

Actor-critic methods: Refers to methods that learn both a policy and a value function,
primarily if the value-function is learned with bootstrapping and used as the score for the
stochastic policy gradient. You learn about these methods in this and the next chapter.

ShoW Me the MAth

Value-based vs. policy-based methods objectives
(1) In value-based methods, the
objective is to minimize the loss
function, which is the mean squared
error between the true Q-function
and the parameterized Q-function.

(2) In policy-based methods the objective
is to maximize a performance measure,
which is the true value-function of the
parameterized policy from all initial states.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

328

WOW! eBook
www.wowebook.org

4 Chapter 11 I policy-gradient and actor-critic methods

Advantages of policy-gradient methods
The main advantage of learning parameterized policies is that policies can now be any
learnable function. In value-based methods, we worked with discrete action-spaces mostly
because we calculate the maximum value over the actions. In high-dimensional action-
spaces, this max could be prohibitively expensive. Moreover, in the case of continuous
action-spaces, value-based methods are severely limited.

Policy-based methods, on the other hand, can more easily learn stochastic policies, which
in turn has multiple additional advantages. First, learning stochastic policies means better
performance under partially observable environments. The intuition is that because we
can learn arbitrary probabilities of actions, the agent is less dependent on the Markov
assumption. For example, if the agent can't distinguish a handful of states from their emitted
observations, the best strategy is often to act randomly with specific probabilities.

Interestingly, even though we are learning stochastic policies, nothing prevents the learning
algorithm from approaching a deterministic policy. This is unlike value-based methods, in
which, throughout training, we have to force exploration with some probability to ensure
optimality. In policy-based methods with stochastic policies, exploration is embedded in the
learned function and converging to a deterministic policy for a given state while training is
possible.

Learning stochastic policies could
get us out of trouble

(1) Consider a Foggy Lake environment in which we don't slip like in the
Frozen Lake, but instead we can't see which state we're in.

(2) If we could see well
in every state, the
optimal policy would
be something like this.

(3) If we couldn't see in these
two states, the optimal
action in these states would
be something like 50% left
and %50 right.

(4) The more partially
observable, the more
complex the probability
distribution to learn for
optimal action selection.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

329

WOW! eBook
www.wowebook.org

5REINFORCE: Outcome-based policy learning

Another advantage of learning stochastic policies is that it could be more straightforward
for function approximation to represent a policy than a value function. Sometimes value
functions are too much information for what is truly needed. It could be that calculating the
exact value of a state or state-action pair is complicated, or just unnecessary.

A final advantage to mention is that because policies are parameterized with continuous
values, the action probabilities change smoothly as a function of the learned parameters.
Therefore, policy-based methods often have better convergence properties. As you
remember from previous chapters, value-based methods are prone to oscillations and even
divergence. One of the reasons for this is that tiny changes in value-function space may
imply significant changes in action space. A significant difference in actions can create
entirely unusual new trajectories, and therefore create instabilities.

In value-based methods, we use an aggressive operator to change the value function; we
take the maximum over Q-value estimates. In policy-based methods, we, instead, follow the
gradient with respect to stochastic policies, which only progressively and smoothly change
the actions. If you directly follow the gradient of the policy, you are guaranteed convergence
to, at least, a local optimum.

Learning policies could be an easier, more
generalizable problem to solve

(1) Consider a Near-infinite Corridor deterministic environment in which there is a very
large number of cells, say 1,000,001. There are two goals, one in the leftmost cell, the
other in the rightmost cell, and every non-terminal states is in the set of initial states.

(2) In an environment like this, the optimal policy would look as follows. In
the middle cell, cell 500,000, a 50% left and a 50% right is optimal. The
rest of the actions should point to the closest goal.

(3) The optimal policy in this environment is rather obvious, but what is not so
obvious is that learning and generalizing over policies is likely easier and more
straightforward than learning value functions. For instance, do I care whether
cell 1000 is 0.0001 or 0.00014 or anything else, if the action is obviously
left? Allocating resources for accurately estimating value functions is unlikely
to yield any advantages over simply discovering the pattern over actions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

330

WOW! eBook
www.wowebook.org

6 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Stochastic policy for discrete action-spaces 1/2

class FCDP(nn.Module):
 def __init__(self,
 input_dim,
 output_dim,
 hidden_dims=(32,32),
 init_std=1,
 activation_fc=F.relu):
 super(FCDP, self).__init__()
 self.activation_fc = activation_fc

 self.input_layer = nn.Linear(
 input_dim, hidden_dims[0])

 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(
 hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.output_layer = nn.Linear(
 hidden_dims[-1], output_dim)

 def forward(self, state):
 x = state
 if not isinstance(x, torch.Tensor):
 x = torch.tensor(x, dtype=torch.float32)
 x = x.unsqueeze(0)

 x = self.activation_fc(self.input_layer(x))

 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))

 return self.output_layer(x)

(1) This class `FCDP` stands for Fully-
Connected Discrete-action Policy.

(2) The parameters allow you
to specify a fully-connected
architecture, activation function,
and weight and bias max magnitude.

(3) The `__init__` function
creates a linear connection
between the input and the
first hidden layer.

(4) Then, it creates
connections across
all hidden layers.

(5) Lastly, it connects the
final hidden layer to the output
nodes, creating the output layer.

(6) Here we have the method that takes care of the forward functionality.

(7) First, we make sure the state is of the type of variable and shape we expect before we can
pass it through the network.
(8) Next, we pass the properly formatted state into the input layer and then through the
activation function.

(9) Then, we pass the output of the first activation through the sequence of hidden
layers and respective activations.

(10) Finally, we obtain the output, which
are logits, preferences over actions.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

331

WOW! eBook
www.wowebook.org

7REINFORCE: Outcome-based policy learning

i SpeAk python

Stochastic policy for discrete action-spaces 2/2

 return self.output_layer(x)

 def full_pass(self, state):

 logits = self.forward(state)

 dist = torch.distributions.Categorical(logits=logits)

 action = dist.sample()

 logpa = dist.log_prob(action).unsqueeze(-1)

 entropy = dist.entropy().unsqueeze(-1)

 is_exploratory = action != np.argmax(\
 logits.detach().numpy())

 return action.item(), is_exploratory.item(), \
 logpa, entropy

 def select_action(self, state):
 logits = self.forward(state)
 dist = torch.distributions.Categorical(logits=logits)
 action = dist.sample()
 return action.item()

 def select_greedy_action(self, state):
 logits = self.forward(state)
 return np.argmax(logits.detach().numpy())

(11) This line is just a repeat from
the last line on the previous page.

(12) Here we do the full forward pass. This is
just a handy function to obtain probabilities,
actions, and everything needed for training.

(13) The forward pass returns the logits, the preferences over actions.

(14) Next, we sample the action from the probability distribution.

(15) Then, calculate the log probability of that action and format it for training.

(16) Here we calculate the entropy of the policy.

(17) And in here, for stats, we determine whether the policy selected was exploratory or not.

(18) Finally, we return an action that can be directly passed into the
environment, the flag indicating whether the action was exploratory,
the log probability of the action, and the entropy of the policy.

(19) This is a helper function for
when we only need sampled action.

(20) And this one is for selecting the
greedy action according to the policy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

332

WOW! eBook
www.wowebook.org

8 Chapter 11 I policy-gradient and actor-critic methods

Learning policies directly
One of the main advantage of optimizing policies directly is that, well, it's the right
objective. We learn a policy that optimizes the value function directly, without learning a
value function, and without taking into account the dynamics of the environment. How is
this possible? Let me show you.

ShoW Me the MAth

Deriving the policy gradient

(1) First, let's bring a simplified version of the
objective equation a couple of pages back.
(2) We know what we want is to find the gradient
with respect to that performance metric.
(3) To simplify notation, let's use Tau as a variable
representing the full trajectory.
(4) This way we can abuse notation and use
the `G` function to obtain the return of the full
trajectory.
(5) We can also get the probability of a
trajectory.

(6) This is just the probability of thee initial states, then the action, then the transition and so
on until we have the product of all the probabilities that make the trajectory likely.

(7) After all that notation change, we
can say that the objective is this.
(8) Next, let's look at a way for
estimating gradients of expectations,
called the score function gradient
estimator.
(9) With that identity, we can
substitute values and get.
(10) Notice the dependence on the
probability of the trajectory.
(11) Now, if substitute the probability of trajectory, take the logarithm, turn products into
thee sum and differentiate with respect to theta, all dependence of the transition function is
drops, and we are left with a function that we can work with.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

333

WOW! eBook
www.wowebook.org

9REINFORCE: Outcome-based policy learning

Reducing the variance of the policy gradient
It's useful to have a way to compute the policy gradient without knowing anything about the
environment's transition function. This algorithm increases the log-probability of all actions
in a trajectory, proportional to the goodness of the full return. In other words, we first
collect a full trajectory and calculate the full discounted return, then use that score to weight
the log-probabilities of every action taken in that trajectory: At, At+1, ..., AT-1.

0001 A Bit of hiStoRy

Introduction of the REINFORCE algorithm

Ronald J. Williams introduced the REINFORCE-family of algorithms in 1992 on a paper
titled: "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning."

In 1986, he co-authored a paper with Geoffrey Hinton et al. called "Learning representations
by back-propagating errors," triggering growth in ANN research at the time.

ShoW Me the MAth

Reducing the variance of the policy gradient

(1) This is the gradient we try to estimate in the REINFORCE algorithm coming up next.

(2) All this
is saying is,
we sample a
trajectory.

(3) Then, for each step
in the trajectory, we
calculate the return
from that step.

(4) And use that value as
the score to weight the
log-probability of the action
taken at that time step.

(1) This is somewhat counterintuitive
because we are increasing the likelihood
of action A2 in the same proportion than
action A0, even if the return after A0 is
greater than the return after A2. We know
we can't go back on time and current
actions are not responsible for past
reward. We can do something about that.

Let's use only rewards consequence of actions

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

334

WOW! eBook
www.wowebook.org

10 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

REINFORCE 1/2

class REINFORCE():
 <...>

 def optimize_model(self):
 T = len(self.rewards)
 discounts = np.logspace(0, T, num=T, base=self.gamma,
 endpoint=False)

 returns = np.array(
 [np.sum(discounts[:T-t] * self.rewards[t:]) \
 for t in range(T)])

 <...>
 policy_loss = -(discounts * returns * \
 self.logpas).mean()

 self.policy_optimizer.zero_grad()
 policy_loss.backward()
 self.policy_optimizer.step()

 def interaction_step(self, state, env):
 action, is_exploratory, logpa, _ = \
 self.policy_model.full_pass(state)
 new_state, reward, is_terminal, _ = env.step(action)
 <...>
 return new_state, is_terminal

(1) This is the REINFORCE algorithm. When you see
the <...>, that means code was removed for simplicity.
Go to the chapter's Notebook for the complete code.

(2) First, we calculate the discounts as in all Monte-Carlo methods. The `logspace` function
with these parameters returns the series of per timestep gammas. E.g.: [1, 0.99, 0.9801, ...].

(4) To emphasize, this is the returns for every timestep in the episode,
from the initial state at timestep 0, to one before the terminal T-1.

(3) Next, we calculate
the sum of discounted
returns for all timesteps.

(5) This is policy loss; it's the log probability of the actions
selected weighted by the returns obtained after that action
was selected. Notice that because we are minimizing this loss,
we use the negative mean. Also, we account for discounted
policy gradients, so we multiply the returns by the discounts. (6) In these three steps, we

first zero the gradients in the
optimizer, then do a backward
pass, and then step in the
direction of the gradient.

(7) This function is obtain an action to be passed to
the environment and all variables required for training.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

335

WOW! eBook
www.wowebook.org

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_11/chapter-11.ipynb

11REINFORCE: Outcome-based policy learning

i SpeAk python

REINFORCE 2/2

class REINFORCE():
 <...>

 def train(self, make_env_fn, make_env_kargs, seed, gamma,
 max_minutes, max_episodes, goal_mean_100_reward):
 for episode in range(1, max_episodes + 1):

 state, is_terminal = env.reset(), False

 <...>

 self.logpas, self.rewards = [], []

 for step in count():
 state, is_terminal = \
 self.interaction_step(state, env)

 if is_terminal:
 break

 self.optimize_model()

 def evaluate(self, eval_policy_model,
 eval_env, n_episodes=1,
 greedy=True):
 rs = []
 for _ in range(n_episodes):
 <...>
 for _ in count():

 if greedy:
 a = eval_policy_model.\
 select_greedy_action(s)
 else:
 a = eval_policy_model.select_action(s)
 s, r, d, _ = eval_env.step(a)
 <...>
 return np.mean(rs), np.std(rs)

(8) Still exploring functions of the `REINFORCE` class.

(9) The `train` method is the entry point for training the agent.

(10) We begin by looping through the episodes.

(11) Each new episode, we initialize the
variables needed for training and stats.

(12) Then, do the following for each timestep.

(13) First, we
collect experiences
until we hit a
terminal state.

(14) Then, we run one optimization step with
the batch of all timesteps in the episode.

(15) Another thing I want you to
see is the way I select the policy
during evaluation. Instead of
selecting a greedy policy I sample
from the learned stochastic
policy. The correct thing to do
here depends on the environment,
but sampling is the safe bet.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

336

WOW! eBook
www.wowebook.org

12 Chapter 11 I policy-gradient and actor-critic methods

VPG: Learning a value function
The REINFORCE algorithm that learned about in the previous section works well in simple
problems, and it has convergence guarantees. But because we are using full Monte-Carlo
returns for calculating the gradient, its variance is a problem. In this section, we discuss
a few approaches for dealing with this variance in an algorithm called Vanilla Policy
Gradient or REINFORCE with baseline.

Further reducing the variance of the policy gradient

REINFORCE is a principled algorithm, but it has a high variance. You probably
remember from the discussion in chapter 5 about Monte-Carlo targets, but let restate. The
accumulation of random events along a trajectory, including the initial state sampled from
the initial state distribution, transition function probabilities, but now in this chapter with
stochastic policies, the randomness action selection adds to the mix. All this randomness is
compounded inside the return, making it a high-variance signal challenging to interpret.

One way for reducing the variance is to use partial returns instead of the full return for
changing the log-probabilities of actions. We already implemented this improvement.
But another issue is that action log-probabilities change in the proportion of the return.
Meaning, if we receive a significant positive return, the probabilities of the actions that led
to that return are increased by a large margin. And if the return is a significant negative
magnitude, then the probabilities are decreased by a large margin.

However, imagine an environment such as the Cart Pole, in which all rewards and returns
are positive. In other to accurately separate OK actions from the best, we need lots of data.
The variance is, otherwise, very hard to muffle. It would be handy if we could, instead of
using noisy returns, use something that allows us to differentiate the values of actions in the
same state. Recall?

F5 RefReSh My MeMoRy

Using estimated advantages in policy gradient methods

(1) Remember the definition of the true action-
advantage function.
(2) We can say that the advantage function is
approximatelly the following.

(3) A not-too-bad estimate of it is the return
Gt minus the estimated expected return from
that state. This we can use very easily.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

337

WOW! eBook
www.wowebook.org

13VPG: Learning a value function

Learning a value function

As you see on the previous page, we can further reduce the variance of the policy gradient
by using an estimate of the action-advantage function, instead of the actual return. Using
the advantage somewhat centers scores around zero; better than average actions have a
positive score, worse than average, a negative score. The former decreases the probabilities,
and the latter increases them.

We're going to do just that. Let's now create two neural networks, one for learning the
policy, the other for learning a state-value function, V. Then, we use the state-value function
and the return for calculating an estimate of the advantage function, as we see next.

ŘŁ With An RL Accent

REINFORCE, Vanilla Policy Gradient, Baselines, Actor-Critic

Some of you with prior DRL exposure may be wondering, is this a so-called "actor-critic"? It's
learning a policy and a value-function, so it seems it should be. Unfortunately, this is one of
those concepts where the "RL accent" confuses newcomers. Here why.

First, according to one of the fathers of RL, Rich Sutton, policy-gradient methods
approximate the gradient of the performance measure, whether or not they learn an
approximate value-function. However, David Silver, one of the most prominent figures
in DRL, and a former student of Sutton disagrees. He says that policy-based methods do
not additionally learn a value function, only actor-critic methods do. But, Sutton further
explains that only methods that learn the value-function using bootstrapping should be
called actor-critic, because it's bootstrapping what adds bias to the value function, and thus
makes it a "critic." I like this distinction, therefore, REINFORCE and VPG, as presented in this
book, are not considered actor-critic methods. But beware of the lingo, it's not consistent.

(1) The policy
network we use
for the cart-pole
environment is the
same exact as we
use in REINFORCE: a
4-node input layer,
and a 2-node output
layer. I provide
more details on the
experiments later.

Two neural networks, one for the policy, one for the value function

Policy network Value network (2) The value network
we use for the cart-
pole environment is
4-node input as well,
representing the state,
and a 1-node output,
represented the value of
that state. This network
output the expected
return from the input
state. More details soon.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

338

WOW! eBook
www.wowebook.org

14 Chapter 11 I policy-gradient and actor-critic methods

Encouraging exploration

Another essential improvement to policy-gradient methods is to add an entropy term to
the loss function. We can interpret entropy in many different ways, from the amount of
information one can gain by sampling from a distribution, to the number of ways one can
order a set.

The way I like to think of entropy is
straightforward. A uniform distribution, which
has evenly distributed samples, has high entropy,
in fact, the highest it can be. For instance, if you
have two samples, and both can be drawn with
a 50% chance, then the entropy is the highest
it can be for a two-sample set. If you have four
samples, each with a 25% chance, the entropy
is the same, the highest it can be for a four-sample set. Conversely, if you have two samples,
one has a 100% chance the other 0%, then the entropy is the lowest it can be, which is always
zero. In PyTorch, the natural log is used for calculating the entropy instead of the binary
log. Mostly because the natural log uses Euler's number e, and makes math more 'natural'.
Practically speaking, however, there is no difference and the effects are the same. So, the
entropy in the cart-pole environment, which has two actions, is between 0 and 0.6931.

The way to use entropy in policy-gradient methods is to add the negative weighted entropy
to the loss function to encourage having evenly distributed actions. That way, a policy with
evenly distributed actions, which yield the highest entropy, contributes to minimizing the
loss. On the other hand, converging to a single action, which means entropy is zero, doesn't
reduce the loss. So, the agent better converged to the optimal action, in that case.

ShoW Me the MAth

Losses to use for VPG
(1) This is the loss for the value function. It's
simple, the mean squared Monte-Carlo error.

(2) The loss of
the policy is this.

(3) The estimated
advantage. (4) Log-probability of the

action taken.
(5) The weighted
entropy term.

(6) Entropy
is good.(7) Mean over

the samples.

(8) Negative
because we
are minimizing.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

339

WOW! eBook
www.wowebook.org

15VPG: Learning a value function

i SpeAk python

State-value function neural network model

class FCV(nn.Module):

 def __init__(self,
 input_dim,
 hidden_dims=(32,32),
 activation_fc=F.relu):
 super(FCV, self).__init__()
 self.activation_fc = activation_fc

 self.input_layer = nn.Linear(input_dim,
 hidden_dims[0])

 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(
 hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.output_layer = nn.Linear(
 hidden_dims[-1], 1)

 def forward(self, state):
 x = state
 if not isinstance(x, torch.Tensor):
 x = torch.tensor(x, dtype=torch.float32)
 x = x.unsqueeze(0)

 x = self.activation_fc(self.input_layer(x))
 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))

 return self.output_layer(x)

(1) This is the state-value
function neural network. Very
similar to the Q-function network
we have used in the past.
(2) Notice I left handy
hyperparameters for you to play
around, so go ahead and do so.

(3) Here we create linear connections between
the input nodes, and the first hidden layer.

(4) Here we create the connections
between the hidden layers.

(5) Here we connect the last hidden
layer to the output layer, which has
only one node, representing the
value of the state.(6) This is the forward-pass function.

(7) This is formatting the input as we expect it.
(8) Doing
a full
forward
pass.

(9) And returning the value of the state.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

340

WOW! eBook
www.wowebook.org

16 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Vanilla Policy Gradient a.k.a. REINFORCE with Baseline

class VPG():
 <...>

 def optimize_model(self):
 T = len(self.rewards)
 discounts = np.logspace(0, T, num=T, base=self.gamma,
 endpoint=False)
 returns = np.array(
[np.sum(discounts[:T-t] * self.rewards[t:]) for t in range(T)])

 value_error = returns - self.values
 policy_loss = -(
 discounts * value_error.detach() * self.logpas).mean()

 entropy_loss = -self.entropies.mean()
 loss = policy_loss + \
 self.entropy_loss_weight * entropy_loss

 self.policy_optimizer.zero_grad()
 loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.policy_model.parameters(),
 self.policy_model_max_grad_norm)
 self.policy_optimizer.step()

 value_loss = value_error.pow(2).mul(0.5).mean()
 self.value_optimizer.zero_grad()
 value_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.value_model.parameters(),
 self.value_model_max_grad_norm)
 self.value_optimizer.step()

(1) This is the VPG algorithm. I'm going to be removing lost of code, so
if you want the full implementation, head to the chapter's Notebook.

(2) Very handy way for calculating the sum of discounted rewards from time step 0 to T.
(3) I want to emphasize that this loop is going through all steps from 0, then 1, 2, 3 all
the way to the terminal state T, and calculating the return from that state, which is the
sum of discounted rewards from that state at time step t to the terminal state T.

(4) First, calculate the value error, then use it to score the log-probabilities of the actions. Then,
discount these to be compatible with discounted policy gradient. Then, use the negative mean.

(5) Calculate the entropy, and
add a fraction to the loss. (6) Now, we optimize the

policy. Zero the optimizer,
do the backward pass, then
clip the gradients, if desired.

(7) We step the optimizer.

(8) Lastly, we optimize the value-function neural network.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

341

WOW! eBook
www.wowebook.org

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_11/chapter-11.ipynb

17A3C: Parallel policy updates

A3C: Parallel policy updates
VPG is a pretty robust method for simple problems; it is, for the most part, unbiased
because it uses an unbiased target for learning both the policy and value function. That is,
it uses Monte-Carlo returns, which are complete actual returns experienced directly in the
environment, without any bootstrapping. The only bias in the entire algorithm is because we
use function approximation, which is inherently biased, but since the ANN is only a baseline
used to reduce the variance of the actual return, there is very little bias introduced, if at all.

However, biased algorithms are necessarily a thing to avoid. Often, to reduce variance, we
add bias. An algorithm called Asynchronous Advantage Actor-Critic (A3C) does a couple
things to further reduce bias. First, it uses n-step returns, with bootstrapping, to learn the
policy and value function, and second, it uses concurrent actors to generate a broad set of
experience samples in parallel. Let's get into the details.

Using actor-workers

One of the main sources of variance in DRL algorithms is how correlated and non-
stationary online samples are. In value-based methods, we use a replay buffer to uniformly
sample mini-batches of, for the most part, independent and identically distributed data.
Unfortunately, using this experience-replay scheme for reducing variance is limited to off-
policy methods, because on-policy agents cannot reuse data generated by previous policies.
In other words, every optimization step requires a fresh batch of on-policy experience.

Instead of using a replay buffer, what we can do in on-policy methods such as the policy-
gradient algorithms we learn about in this chapter, is to have multiple workers generating
experience in parallel and asynchronously updating the policy and value function. Having
multiple workers generating experience on multiple instances of the environment in parallel
decorrelates the data used for training and reduces the variance of the algorithm.

(1) In A3C, we
create multiple
worker-learners.
Each of them
creates an instance
of the environment,
and the policy and
V-function neural
network weights
use for generating
experiences.

Asynchronous model updates
(2) After an
experience batch
is collected, each
worker updates
the global model
asynchronously,
without coordination
with other workers.
Then, they reload
their copy of the
models and keep at it.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

342

WOW! eBook
www.wowebook.org

18 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

A3C worker logic 1/2

class A3C():
 <...>

 def work(self, rank):

 local_seed = self.seed + rank
 env = self.make_env_fn(
 **self.make_env_kargs,
 seed=local_seed)

 torch.manual_seed(local_seed)
 np.random.seed(local_seed)
 random.seed(local_seed)

 nS = env.observation_space.shape[0]
 nA = env.action_space.n

 local_policy_model = self.policy_model_fn(nS, nA)
 local_policy_model.load_state_dict(
 self.shared_policy_model.state_dict())

 local_value_model = self.value_model_fn(nS)
 local_value_model.load_state_dict(
 self.shared_value_model.state_dict())

 while not self.get_out_signal:
 state, is_terminal = env.reset(), False

 n_steps_start = 0
 logpas, entropies, rewards, values = [], [], [], []

 for step in count(start=1):

(1) This is the A3C agent.
(2) As usual, these are just snippets. You know where to find the
working code.

(3) This is the work function each worker loops around
in. The `rank` parameter is use as an ID for workers.

(4) See how we create a unique
seed per worker. We want diverse
experiences.
(5) We create a uniquely seeded
environment for each worker.
(6) We also use that unique seed
for PyTorch, Numpy and Python.

(7) Handy variables.

(8) Here we create a local policy model. See how we initialize its weights with the weights
of a shared policy network. This network allow us to synchronize the agents periodically.

(9) We do the same thing with the value model. Notice we don't need `nA` for output dimensions.

(10) We start the training loop, until the worker is signaled to get out of it.

(11) The first thing is to reset the environment, and set the done or `is_terminal` flag to false.
(12) As you see next, we use n-step returns for training the policy and value functions.

(13) Let's continue
on the next page.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

343

WOW! eBook
www.wowebook.org

19A3C: Parallel policy updates

i SpeAk python

A3C worker logic 2/2

 for step in count(start=1):

 state, reward, is_terminal, is_exploratory = \
 self.interaction_step(
 state, env, local_policy_model,
 local_value_model, logpas,
 entropies, rewards, values)

 if is_terminal or step - n_steps_start == \
 self.max_n_steps:
 past_limit_enforced = \
 env._elapsed_steps >= env._max_episode_steps

 failure = is_terminal and not past_limit_enforced

 next_value = 0 if failure else \
 local_value_model(state).detach().item()

 rewards.append(next_value)

 self.optimize_model(
 logpas, entropies, rewards, values,
 local_policy_model, local_value_model)

 logpas, entropies, rewards, values = [], [], [], []
 n_steps_start = step

 if is_terminal:
 break
<...>

(14) I removed 8 spaces from the indentation to make it easier to read.
(15) We are the episode loop. First thing is to collect a step of experience.

(16) We collect n-steps maximum. If we hit a terminal state, we stop there.

(17) We check if the time wrapper was triggered by checking on the number of steps.

(18) Next, we determine if we are exiting either due to a failure, or a time out.

(19) If it is a failure, then the value of the next state is 0, otherwise, we bootstrap.

(20) Look! I'm being sneaky here and appending the next_value to the rewards. By doing this the
optimization code from VPG remains largely the same, as you see soon. Make sure you see it.

(21) Next we optimize the model. We dig into that function shortly.

(22) We reset the variables after
the optimization step and continue.

(23) And, if the state is terminal,
of course exit the episode loop.

(24) There is lots removed.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

344

WOW! eBook
www.wowebook.org

20 Chapter 11 I policy-gradient and actor-critic methods

Using n-step estimates

On the previous page, you notice that I append the value of the next state, whether terminal
or not, to the reward sequence. That means that the reward variable contains all rewards
from the partial trajectory and the state-value estimate of that last state. We can also see
this as having the partial return and the predicted remaining return in the same place. The
partial return is the sequence of rewards, and the predicted remaining return is a single-
number estimate. The only reason why this isn't a return is that it is not a discounted sum,
but we can take care of that as well.

Now, realize that this is an n-step return, which you learned about in chapter 5. We go out
for n-steps collecting rewards, and then bootstrap after that nth state, or before if we land on
a terminal state, whichever comes first.

A3C takes advantage of the lower variance of n-step returns when compared to Monte-
Carlo returns. So, now, we use the value function also to predict the return used for
updating the policy. You remember that bootstrapping reduces variance, but it adds bias.
Therefore, we have now added a critic to our policy-gradient algorithm. Welcome to the
world of actor-critic methods.

ShoW Me the MAth

Using n-step bootstrapping estimates

(1) Before we were using full returns
for our advantage estimates.
(2) Now, we are using n-step
returns, with bootstrapping.

(3) We now use this n-step advantage
estimate for updating the action probabilities.

(4) We also use the n-step return to improve the value function estimate. Notice
the bootstrapping here. This is what makes the algorithm an actor-critic method.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

345

WOW! eBook
www.wowebook.org

21A3C: Parallel policy updates

i SpeAk python

A3C optimization step 1/2

class A3C():
 <...>

 def optimize_model(
 self, logpas, entropies, rewards, values,
 local_policy_model, local_value_model):

 T = len(rewards)
 discounts = np.logspace(0, T, num=T, base=self.gamma,
 endpoint=False)

 returns = np.array(
 [np.sum(discounts[:T-t] * rewards[t:]) for t in range(T)])

 discounts = torch.FloatTensor(
 discounts[:-1]).unsqueeze(1)
 returns = torch.FloatTensor(returns[:-1]).unsqueeze(1)

 value_error = returns - values

 policy_loss = -(discounts * value_error.detach() * \
 logpas).mean()
 entropy_loss = -entropies.mean()
 loss = policy_loss + self.entropy_loss_weight * \
 entropy_loss

 self.shared_policy_optimizer.zero_grad()
 loss.backward()

 torch.nn.utils.clip_grad_norm_(
 local_policy_model.parameters(),
 self.policy_model_max_grad_norm)

 for param, shared_param in zip(

(1) A3C, optimization function.

(2) First get the length of the reward. Remember,
`rewards` includes the bootstrapping value.

(3) Next, we calculate all discounts up to n+1.

(4) This now is the n-step predicted return.

(5) To continue, we need to remove the extra elements and format the variables as expected.

(6) Now, we calculate the value errors as the predicted return minus the estimated values.

(7) We calculate the loss just as before.

(8) Notice we now zero the shared
policy optimizer, then calculate the loss.

(9) Then, clip the gradient magnitude.

(10) Continue on the next page.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

346

WOW! eBook
www.wowebook.org

22 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

A3C optimization step 2/2

 for param, shared_param in zip(
 local_policy_model.parameters(),
 self.shared_policy_model.parameters()):

 if shared_param.grad is None:
 shared_param._grad = param.grad

 self.shared_policy_optimizer.step()

 local_policy_model.load_state_dict(
 self.shared_policy_model.state_dict())

 value_loss = value_error.pow(2).mul(0.5).mean()

 self.shared_value_optimizer.zero_grad()
 value_loss.backward()

 torch.nn.utils.clip_grad_norm_(
 local_value_model.parameters(),
 self.value_model_max_grad_norm)

 for param, shared_param in zip(
 local_value_model.parameters(),
 self.shared_value_model.parameters()):
 if shared_param.grad is None:
 shared_param._grad = param.grad

 self.shared_value_optimizer.step()

 local_value_model.load_state_dict(
 self.shared_value_model.state_dict())

(11) OK, so check this out. What
we are doing here is iterating over
all local and shared policy network
parameters.

(12) And what we
want to do is copy
every gradient from
the local to the
shared model.

(13) Once the gradients are copied into the shared optimizer, we run an optimization step.

(14) Immediately after, we load the shared model into the local model.

(15) Next, we do the same thing but with the state-value network. Calculate the loss.

(16) Zero the shared value optimizer.

(17) Backpropagate
the gradients.
(18) Then, clip them.

(19) Then, copy all the gradients from the local model to the shared model.

(20) Step the optimizer.
(21) Finally, load the
shared model into the
local variable.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

347

WOW! eBook
www.wowebook.org

23A3C: Parallel policy updates

Non-blocking model updates

One of the most critical aspects of A3C is that its network updates are asynchronous and
lock-free. Having a shared model creates a tendency for competent software engineers
to want a blocking mechanism to prevent workers from overwriting other updates.
Interestingly, A3C uses an update-style called a Hogwild!, which is being shown not only to
achieve a near-optimal rate of convergence but also outperform alternative schemes that use
locking by an order of magnitude.

0001 A Bit of hiStoRy

Introduction of the Asynchronous Advantage Actor-Critic (A3C)

Vlad Mnih et al. introduced A3C in 2016 on a paper titled: "Asynchronous Methods for Deep
Reinforcement Learning." If you remember correctly, Vlad also introduced the DQN agent in
two papers, one in 2013 and the other in 2015. While DQN ignited growth in DRL research
in general, A3C directed lots of attention to Actor-Critic methods more precisely.

i SpeAk python

Shared Adam optimizer

class SharedAdam(torch.optim.Adam):
 <...>

 for group in self.param_groups:
 for p in group['params']:
 state = self.state[p]
 state['step'] = 0
 state['shared_step'] = \
 torch.zeros(1).share_memory_()
 state['exp_avg'] = \
 torch.zeros_like(p.data).share_memory_()
 <...>

 def step(self, closure=None):
 for group in self.param_groups:
 for p in group['params']:
 if p.grad is None: continue
 self.state[p]['steps'] = \
 self.state[p]['shared_step'].item()
 self.state[p]['shared_step'] += 1
 super().step(closure)

(1) We need to create an Adam (and
RMSprop in the Notebook) optimizer
that puts internal variables into
shared memory. Gladly, PyTorch
makes this straightforward.
(2) We only need to call the `share_
memory_` method on the variables we
need shared across workers.

(4) Then, override the step function
so that we can manually increment
the step variable, which is not
easily put into shared memory.

(5) Lastly, call the parent's `step`.

(3) More
variables
than showing
here.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

348

WOW! eBook
www.wowebook.org

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_11/chapter-11.ipynb

24 Chapter 11 I policy-gradient and actor-critic methods

GAE: Robust advantage estimation
A3C uses n-step returns for reducing the variance of the targets. Still, as you probably
remember from chapter 5, there is a more robust method that combines multiple n-step
bootstrapping targets in a single target creating even more robust targets than a single
n-step: the λ-target. Generalized Advantage Estimation (GAE) is analogous to the λ-target
in TD(λ), but for advantages.

Generalized advantage estimation

GAE is not an agent on its own, but a way of estimating targets for the advantage function
that most actor-critic methods can leverage. More specifically, GAE uses an exponentially-
weighted combination of n-step action-advantage function targets, just like the λ-target is
an exponentially-weighted combination of n-step state-value function targets. This type
of target, which we tune in the same way than the λ-target, can substantially reduce the
variance of policy gradient estimates at the cost of some bias.

ShoW Me the MAth

Possible policy-gradient estimators

(1) In policy-gradient and actor-critic methods,
we are trying to estimate the gradient of the
following form.

(2) We can replace Psi for a number of expressions that
estimate the score with different levels of variance and bias.

(3) This one is the
total return starting
from step 0, all the
way to the end.

(4) But as we did in
REINFORCE, we can start at
the current time step, and
go to the end of the episode.

(5) As we did in VPG, we
can use a baseline, which
in our case was the
state-value function.

(6) In A3C, we used
the n-step advantage
estimate, which is the
lowest variance.

(7) But, we
could also use
the true action-
value function.

(8) Or even the TD
residual, which can be
seen as a one-step
advantage estimate.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

349

WOW! eBook
www.wowebook.org

25GAE: Robust advantage estimation

0001 A Bit of hiStoRy

Introduction of the Generalized Advantage Estimations

John Schulman published a paper titled: "High-dimensional Continuous Control Using
Generalized Advantage Estimation" in which he introduces GAE.

John is a Research Scientist at OpenAI, and the lead inventor behind GAE, TRPO, and PPO,
algorithms that you learn about in the next chapter. In 2018, John was recognized by
Innovators under 35 for creating these algorithms, which are to this date state-of-the-art.

ShoW Me the MAth

GAE is a robust estimate of the advantage function

(1) N-step advantage
estimates.

(2) Which we can mix to make an estimate
analogous to TD lambda but for advantages.
(3) Similarly, a lambda of
0 returns the one-step
advantage estimate,
and a lambda of 1
returns the infinite-step
advantage estimate.

ShoW Me the MAth

Possible value targets
(1) Notice we can use several different targets to train the state-
value function neural network use to calculate GAE values.
(2) We could use the reward to go, a.k.a. Monte-Carlo returns.
(3) The n-step
bootstrapping target,
including the TD target.
(4) Or the GAE, as a TD(lambda) estimate.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

350

WOW! eBook
www.wowebook.org

26 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

GAE's policy optimization step

class GAE():
 <...>
 def optimize_model(
 self, logpas, entropies, rewards, values,
 local_policy_model, local_value_model):

 T = len(rewards)
 discounts = np.logspace(0, T, num=T, base=self.gamma,
 endpoint=False)
 returns = np.array(
 [np.sum(discounts[:T-t] * rewards[t:]) for t in range(T)])

 np_values = values.view(-1).data.numpy()
 tau_discounts = np.logspace(0, T-1, num=T-1,
 base=self.gamma*self.tau, endpoint=False)

 advs = rewards[:-1] + self.gamma * \
 np_values[1:] - np_values[:-1]

 gaes = np.array(
[np.sum(tau_discounts[:T-1-t] * advs[t:]) for t in range(T-1)])

 <...>

 policy_loss = -(discounts * gaes.detach() * \
 logpas).mean()
 entropy_loss = -entropies.mean()
 loss = policy_loss + self.entropy_loss_weight * \
 entropy_loss

 value_error = returns - values
 value_loss = value_error.pow(2).mul(0.5).mean()
 <...>

(1) This is the GAE optimize model logic.

(2) First, we create the discounted returns, just as we did with A3C.

(3) These two lines are creating, first, a Numpy array with all the state values, and second an
array with the `(gamma*lambda)^l`. BTW, lambda is often referred to as tau, too. I'm using that.

(4) This line creates an array of TD errors: R_t + gamma * value_t+1 - value_t, for t=0 to T.

(5) Here we create the GAES, by multiplying the tau discounts times the TD errors.

(6) We now use the gaes to calculate the policy loss.

(7) And proceed as usual.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

351

WOW! eBook
www.wowebook.org

27A2C: Synchronous policy updates

A2C: Synchronous policy updates
In A3C, workers update the neural networks asynchronously. But, asynchronous workers
may not be what makes A3C such a high-performance algorithm. Advantage Actor-Critic
(A2C) is a synchronous version of A3C, which despite the lower numbering order, was
proposed after A3C and showed to perform comparably to A3C. In this section, we explore
A2C, along with a few other changes we can apply to policy-gradient methods.

Weight-sharing model

One change to our current algorithm is to use a single neural network for both the policy
and the value function. Sharing a model can be particularly beneficial when learning from
images since feature extraction can be compute-intensive. However, model sharing can be
challenging due to the potentially different scales of the policy and value function updates.

Sharing weights between policy and value outputs

Policy outputs
(1) We can share a few layers of the network
in policy-gradient methods, too. The network
would look just like the Dueling network you
implemented in chapter 9 with outputs the
size of the action space and another output
for the state-value function.Value output

i SpeAk python

Weight-sharing actor-critic neural network model 1/2

class FCAC(nn.Module):
 def __init__(
 self, input_dim, output_dim,
 hidden_dims=(32,32), activation_fc=F.relu):

 super(FCAC, self).__init__()
 self.activation_fc = activation_fc
 self.input_layer = nn.Linear(input_dim, hidden_dims[0])
 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(
 hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)
 self.value_output_layer = nn.Linear(

(1) This is the Fully-Connected Actor-Critic model.

(2) This is the network instantiation process. Very similar to the independed network model.

(3) Continues...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

352

WOW! eBook
www.wowebook.org

28 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Weight-sharing actor-critic neural network model 2/2

 self.value_output_layer = nn.Linear(
 hidden_dims[-1], 1)
 self.policy_output_layer = nn.Linear(
 hidden_dims[-1], output_dim)

 def forward(self, state):
 x = state
 if not isinstance(x, torch.Tensor):
 x = torch.tensor(x, dtype=torch.float32)
 if len(x.size()) == 1:
 x = x.unsqueeze(0)
 x = self.activation_fc(self.input_layer(x))
 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))
 return self.policy_output_layer(x), \
 self.value_output_layer(x)

 def full_pass(self, state):
 logits, value = self.forward(state)
 dist = torch.distributions.Categorical(logits=logits)
 action = dist.sample()
 logpa = dist.log_prob(action).unsqueeze(-1)
 entropy = dist.entropy().unsqueeze(-1)
 action = action.item() if len(action) == 1 \
 else action.data.numpy()
 is_exploratory = action != np.argmax(
 logits.detach().numpy(), axis=int(len(state)!=1))
 return action, is_exploratory, logpa, entropy, value

 def select_action(self, state):
 logits, _ = self.forward(state)
 dist = torch.distributions.Categorical(logits=logits)
 action = dist.sample()
 action = action.item() if len(action) == 1 \
 else action.data.numpy()
 return action

(4) OK. Here is where
it is build, both the
value output and the
policy output connect
to the last layer of
the hidden layers.

(5) The forward
pass starts by
reshaping the
input to match
the expected
variable type and
shape.

(6) And notice how it
outputs from the policy
and a value layers.

(7) This is
a handy
function to
get log-
probabilities,
entropies
and other
variable at
once.

(8) This selects the action or actions for the given state or batch of states.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

353

WOW! eBook
www.wowebook.org

29A2C: Synchronous policy updates

Restoring order in policy updates

Updating the neural network in a Hogwild!-style can be chaotic, yet introducing a lock
mechanism lowers A3C performance considerably. In A2C, we move the workers from
the agent down to the environment. So, instead of having multiple actor-learners, we have
multiple actors with a single learner. As it turns out, having workers rolling out experiences
is where the gains are in policy-gradient methods.

(1) In A2C, we have a single
agent driving the interaction
with the environment. But, in
this case the environment is
a multi-process class that
gathers samples from multiple
environments at once.

Synchronous model updates

(2) The neural
networks now need
to process batches
of data. Which means
in A2C we can take
advantage of GPUs,
unlike A3C in which
CPUs are the most
important resource.

i SpeAk python

Multi-process environment wrapper 1/2

class MultiprocessEnv(object):
 def __init__(self, make_env_fn,make_env_kargs,
 seed, n_workers):
 self.make_env_fn = make_env_fn
 self.make_env_kargs = make_env_kargs
 self.seed = seed
 self.n_workers = n_workers

 self.pipes = [
 mp.Pipe() for rank in range(self.n_workers)]

 self.workers = [
 mp.Process(target=self.work,
 args=(rank, self.pipes[rank][1])) \
 for rank in range(self.n_workers)]

 [w.start() for w in self.workers]

(1) This is the multi-
process environment
class, which creates
pipes to communicate
with the workers, and
creates the workers
themselves.

(2) Here we create the workers.

(3) Here we start them.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

354

WOW! eBook
www.wowebook.org

30 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

Multi-process environment wrapper 2/2

 [w.start() for w in self.workers]

 def work(self, rank, worker_end):
 env = self.make_env_fn(
 **self.make_env_kargs, seed=self.seed + rank)
 while True:
 cmd, kwargs = worker_end.recv()
 if cmd == 'reset':
 worker_end.send(env.reset(**kwargs))
 elif cmd == 'step':
 worker_end.send(env.step(**kwargs))
 elif cmd == '_past_limit':
 worker_end.send(\
 env._elapsed_steps >= env._max_episode_steps)
 else:
 # close command
 env.close(**kwargs)
 del env
 worker_end.close()
 break

 def step(self, actions):
 assert len(actions) == self.n_workers
 [self.send_msg(('step',{'action':actions[rank]}),rank)\
 for rank in range(self.n_workers)]
 results = []
 for rank in range(self.n_workers):
 parent_end, _ = self.pipes[rank]
 o, r, d, _ = parent_end.recv()
 if d:
 self.send_msg(('reset', {}), rank)
 o = parent_end.recv()
 results.append((o,
 np.array(r, dtype=np.float),
 np.array(d, dtype=np.float), _))

 return \
 [np.vstack(block) for block in np.array(results).T]

(4) Continuation.

(5) Workers first create the environment.

(6) Get in this loop listening for commands.

(7) Each
command calls
the respective
env function
and sends the
response back
to the parent
process..

(8) This is the main `step` function, for instance.
(9) When called it broadcasts the
command and arguments to workers.

(10) Workers do their part
and send back the data
which is collected here.
(11) We automatically
reset on done.

(12) Lastly append and stack the results
by observations, rewards, dones, infos.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

355

WOW! eBook
www.wowebook.org

31A2C: Synchronous policy updates

i SpeAk python

The A2C train logic

class A2C():
 def train(self, make_envs_fn, make_env_fn,
 make_env_kargs, seed, gamma, max_minutes,
 max_episodes, goal_mean_100_reward):

 envs = self.make_envs_fn(make_env_fn,
 make_env_kargs, self.seed,
 self.n_workers)
 <...>

 self.ac_model = self.ac_model_fn(nS, nA)
 self.ac_optimizer = self.ac_optimizer_fn(
 self.ac_model, self.ac_optimizer_lr)

 states = envs.reset()

 for step in count(start=1):
 states, is_terminals = \
 self.interaction_step(states, envs)

 if is_terminals.sum() or \
 step - n_steps_start == self.max_n_steps:

 past_limits_enforced = envs._past_limit()
 failure = np.logical_and(is_terminals,
 np.logical_not(past_limits_enforced))

 next_values = self.ac_model.evaluate_state(
 states).detach().numpy() * (1 - failure)

 self.rewards.append(next_values)
 self.values.append(torch.Tensor(next_values))
 self.optimize_model()
 self.logpas, self.entropies = [], []
 self.rewards, self.values = [], []
 n_steps_start = step

(1) This is how we train with the multi-processor environment.

(2) Here, see how
create, basically,
vectorized
environments.

(3) Here we create a single model. This is the
actor-critic model with policy and value outpus.

(4) Look, we `reset` the multi-processor
environment and get a stack of states back.

(5) The main thing is we work
with stacks now.

(6) But, at
its core,
everything is
the same.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

356

WOW! eBook
www.wowebook.org

32 Chapter 11 I policy-gradient and actor-critic methods

i SpeAk python

The A2C optimize-model logic

class A2C():
 def optimize_model(self):
 T = len(self.rewards)
 discounts = np.logspace(0, T, num=T, base=self.gamma,
 endpoint=False)
 returns = np.array(
 [[np.sum(discounts[:T-t] * rewards[t:, w])
 for t in range(T)] \
 for w in range(self.n_workers)])

 np_values = values.data.numpy()
 tau_discounts = np.logspace(0, T-1, num=T-1,
 base=self.gamma*self.tau, endpoint=False)
 advs = rewards[:-1] + self.gamma * np_values[1:] \
 - np_values[:-1]

 gaes = np.array(
 [[np.sum(tau_discounts[:T-1-t] * advs[t:, w]) \
 for t in range(T-1)]
 for w in range(self.n_workers)])
 discounted_gaes = discounts[:-1] * gaes

 value_error = returns - values
 value_loss = value_error.pow(2).mul(0.5).mean()
 policy_loss = -(discounted_gaes.detach() * \
 logpas).mean()
 entropy_loss = -entropies.mean()

 loss = self.policy_loss_weight * policy_loss + \
 self.value_loss_weight * value_loss + \
 self.entropy_loss_weight * entropy_loss

 self.ac_optimizer.zero_grad()
 loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.ac_model.parameters(),
 self.ac_model_max_grad_norm)
 self.ac_optimizer.step()

(1) This is how we optimize the model in A2C.

(2) The main thing to
notice is now we work with
matrices with vectors of
time steps per worker.

(3) Some operation work the same exact way, surprisingly.

(4) And some, we
just need to add
a loop to include
all workers.(5) Look

how we
build a
single loss
function.

(6) Finally, we
optimize a single
neural network.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

357

WOW! eBook
www.wowebook.org

33A2C: Synchronous policy updates

it'S in the DetAiLS

Running all policy-gradient methods in the CartPole-v1 environment

To demonstrate the policy-gradient algorithms, and to make comparison easier with the
value-based methods explored in the previous chapters, I ran experiments with the same
configurations as in the value-based method experiments. Here are the details:

REINFORCE:

• Runs a policy network with 4-128-64-2 nodes, Adam optimizer and lr 0.0007.
• Trained at the end of each episode with Monte-Carlo returns. No baseline.

VPG (REINFORCE with Monte-Carlo baseline):

• Same policy network as REINFORCE, but now we add an entropy term to the loss
function with 0.001 weight, and clip the gradient norm to 1.
• We now learn a value function and use it as baseline, not as a critic. Meaning MC re-
turns are used without bootstrapping and the value function only reduces the scale of
the returns. Value function is learned with a 4-256-128-1 network, RMSprop optimizer
and a 0.001 learning rate. No gradient clipping, though it is possible.

A3C:

• We use the train the policy and value networks the same exact way.
• We now bootstrap the returns every 50 steps maximum (or when landing on a
terminal state). This means this is an actor-critic method.
• We use 8 workers each with copies of the networks and doing Hogwild! updates.

GAE:

• Same exact hyperparameter as the rest of the algorithms.
• Main difference is GAE adds a `tau` hyperparameter to discount the advantages.
We use 0.95 for tau here. Notice that the agent style has the same n-step bootstrap-
ping logic, which might not make this a pure GAE implementation. Usually, you see
batches of full episodes being processed at once. It still performs pretty well.

A2C:

• A2C does change most of the hyperparameters. To begin with, we have a single
network: 4-256-128-3 (2 and 1). Train with Adam, lr of 0.002, gradient norm of 1.
• The policy is weighted at 1.0, value function at 0.6, entropy at 0.001.
• We go for 10 step bootstrapping, 8 workers, and a 0.95 tau.

These algorithms were not tuned independently, I'm sure they could do even better.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

358

WOW! eBook
www.wowebook.org

34 Chapter 11 I policy-gradient and actor-critic methods

tALLy it Up

Policy-gradient and actor-critic methods on the CartPole environment

(1) I ran all policy-gradient algorithms in the cart-pole environment so
that you can more-easily compare policy-based and value-based methods.

(2) One of the main
thing to notice is how
VPG is more sample
efficient than more-
complex methods,
such as A3C or
A2C. This is mostly
because these two
methods use multiple
workers, which
initially cost lots of
data to get only a bit
of progress.
(3) REINFORCE alone
is too inefficient to be
a practical algorithm.
(4) However, in terms
of training time,
you can see how
REINFORCE uses
very little resources.
Also notice how
algorithms with
workers consume
much more compute.
(5) Interestingly, in
terms of wall-clock
time, parallel methods
and incredibly fast
averaging ~10
seconds to solve
cart pole v1! The
500 steps version.
Impressive!

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

359

WOW! eBook
www.wowebook.org

35A2C: Synchronous policy updates

Summary
In this chapter, we survey policy-gradient and actor-critic methods. First, we set up the
chapter with a few reasons to consider policy-gradient and actor-critic methods. You
learned that directly learning a policy is the true objective of reinforcement learning
methods. You learned that by learning policies, we could use stochastic policies, which can
have better performance than value-based methods in partially-observable environments.
You learned that even though we typically learn stochastic policies, nothing prevents the
neural network from learning a deterministic policy.

You also learned about four algorithms. First, we studied REINFORCE and how it is a very
straightforward way of improving a policy. In REINFORCE, we could use either the full
return or the reward-to-go as the score for improving the policy.

You then learned about Vanilla Policy Gradient, also known as REINFORCE with Baseline.
In this algorithm, we learn a value function using Monte-Carlo returns as targets. Then,
we use the value function as a baseline, and not as a critic. We do not bootstrap in VPG;
instead, we use the reward-to-go, such as in REINFORCE, and subtract the learned value
function to reduce the variance of the gradient. In other words, we use the advantage
function as the policy score.

We also studied the A3C algorithm. In A3C, we bootstrap the value function. Both for
learning the value function and for scoring the policy. More specifically, we use n-step
returns to improve the models. Additionally, we use multiple actor-learners that each rollout
the policy, evaluate the returns, and update the policy and value models using a Hogwild!
approach. In other words, workers update lock-free models.

We then learned about GAE, and how this is a way for estimating advantages analogous
to TD(λ) and the λ-return. GAE uses an exponentially-weighted mixture of all n-step
advantages for creating a more robust advantage estimate that can be easily tuned to use
more bootstrapping, and therefore bias, or actual returns and therefore variance.

Finally, we learned about A2C and how removing the asynchronous part of A3C yields a
comparable algorithm without the need for implementing custom optimizers.

By now you:

• Understand the main differences between value-based, policy-based, policy-gradient,
and actor-critic methods.

• Can implement fundamental policy-gradient and actor-critic methods by yourself.
• Can tune policy-gradient and actor-critic algorithms to pass a variety of environments.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

360

WOW! eBook
www.wowebook.org

advanced
actor-critic methods 12

In this chapter

• You learn about more advanced deep reinforcement
learning methods, which are, to this day, the state-
of-the-art algorithmic advancements in deep
reinforcement learning.

• You learn about solving a variety of deep
reinforcement learning problems, from problems with
continuous-action spaces, to problem with high-
dimensional action spaces.

• You build state-of-the-art actor-critic methods from
scratch and open the door to understanding more
advanced concepts related to artificial general
intelligence.

Criticism may not be agreeable, but it is necessary. It fulfills the
same function as pain in the human body. It calls attention to an
unhealthy state of things.

— Winston Churchill
British politician, army officer, writer, and

Prime Minister of the United Kingdom

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

361
WOW! eBook

www.wowebook.org

2 Chapter 12 I advanced actor-critic methods

In the last chapter, you learned about a different, more direct technique for solving deep
reinforcement learning problems. You first were introduced to policy-gradient methods
in which agents learn policies by approximating them directly. In pure policy-gradient
methods, we do not use value functions as a proxy for finding policies, and in fact, we do
not use value functions at all. We instead learn stochastic policies directly.

However, you quickly noticed that value functions can still play an important role and make
policy-gradient methods better. And so you were introduced to actor-critic methods. In
these methods, the agent learns both a policy and a value function. With this approach, you
could use the strengths of one function approximation to mitigate the weaknesses of the
other approximation. For instance, learning policy can be more straightforward in some
environments than learning a sufficiently accurate value function, as the relationships in
action-space may be more tightly related, than the relationships of values. Still, even though
knowing the value of states precisely can be more complicated, a rough approximation can
be useful for reducing the variance of the policy gradient objective. As you explored in
the previous chapter, learning a value function and using it as a baseline or for calculating
advantages can considerably reduce the variance of the targets used for policy-gradient
updates. Moreover, reducing the variance often leads to faster learning.

However, in the previous chapter, we focused on using the value function as a critic for
updating a stochastic policy. We used different targets for learning the value function and
parallelized the workflows in a few different ways. However, algorithms used the learned
value function in the same general way to train the policy, and the policy learned had the
same properties, it was a stochastic policy. So, we scratched the surface of using a learned
policy and value function. In this chapter, we go deeper into the paradigm of actor-critic
methods and train them in four different challenging environments: Pendulum, Hopper,
Cheetah, and Lunar Lander. As you soon see, in addition to being more challenging
environments, most of these have a continuous action space, which we face for the first
time, and it'll require using unique polices models.

To solve these environments, we first explore methods that learn deterministic policies.
That is policies that, when presented with the same state, return the same action, the action
believed to be optimal. We also study a collection of improvements that make deterministic
policy-gradient algorithms one of the state-of-the-art approaches to date for solving deep
reinforcement learning problems. We then explore an actor-critic method that, instead
of using the entropy in the loss function, it directly uses the entropy in the value function
equation. In other words, it maximizes the return along with the long-term entropy of the
policy. Finally, we close with an algorithm that allows for more stable policy improvement
steps by restraining the updates to the policy to small changes. Small changes in policies
make policy-gradient methods show steady and often monotonic improvements in
performance, allowing for state-of-the-art performance in several DRL benchmarks.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

362
WOW! eBook

www.wowebook.org

3DDPG: Approximating a deterministic policy

DDPG: Approximating a deterministic policy
In this section, we explore an algorithm called Deep Deterministic Policy Gradient
(DDPG). DDPG can be seen as an approximate DQN, or better yet, a DQN for continuous
action-spaces. DDPG uses many of the same techniques found in DQN: it uses a replay
buffer to train an action-value function in an off-policy manner, and target networks to
stabilize training. However, DDPG also trains a policy, which approximates the optimal
action. Because of this, DDPG is a deterministic policy-gradient method restricted to
continuous action spaces.

DDPG uses lots of tricks from DQN
Start by visualizing DDPG as an algorithm with the same architecture as DQN. The training
process is very similar: the agent collects experiences in an online manner and stores these
online experience samples into a replay buffer. On every step, the agent pulls out a mini-
batch from the replay buffer that is commonly sampled uniformly at random. The agent
then uses this mini-batch to calculate a bootstrapped TD target and train a Q-function.

The main difference between DQN and DDPG is that while DQN uses the target
Q-function for getting the greedy action using an argmax, DDPG uses a target
deterministic-policy function that is trained to approximate that greedy action. That means
that instead of using the argmax of the Q-function of the next state to get the greedy action
as we do in DQN, in DDPG, we directly approximate the best action in the next state using a
policy function. Then, in both, we use that action with the Q-function to get the max value.

Show Me the Math

DQN vs. DDPG value function objectives
(1) Recall this function. This is the DQN loss function for the Q-function. It's straightforward...

(2) We sample a mini-
batch from the buffer D,
uniformly at random.

(3) Then, calculate the TD target using the
reward and the discounted maximum value of the
next state, according to the target network.

(4) Also, recall this re-write of the same exact equation. We just change the max for the argmax.

(5) In DDPG, we also
sample the mini-
batch as in DQN.

(6) But, instead of the
argmax according to Q,
we learn a policy, mu.

(7) Mu learns the deterministic greedy
action in the state in question. Also,
notice phi is also a target network (-).

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

363
WOW! eBook

www.wowebook.org

4 Chapter 12 I advanced actor-critic methods

I Speak python

DDPG's Q-function network

class FCQV(nn.Module):
 def __init__(self,
 input_dim,
 output_dim,
 hidden_dims=(32,32),
 activation_fc=F.relu):
 super(FCQV, self).__init__()
 self.activation_fc = activation_fc

 self.input_layer = nn.Linear(input_dim, hidden_dims[0])
 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 in_dim = hidden_dims[i]

 if i == 0:
 in_dim += output_dim

 hidden_layer = nn.Linear(in_dim, hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.output_layer = nn.Linear(hidden_dims[-1], 1)

 <...>

 def forward(self, state, action):
 x, u = self._format(state, action)
 x = self.activation_fc(self.input_layer(x))

 for i, hidden_layer in enumerate(self.hidden_layers):

 if i == 0:
 x = torch.cat((x, u), dim=1)

 x = self.activation_fc(hidden_layer(x))

 return self.output_layer(x)

(1) This is the
Q-function network
used in DDPG.

(2) Here we start the
architecture as usual.

(3) Here we have the first
exception. We increase the
dimension of the first hidden
layer by the output dimension.

(4) Notice the output of the network is a single
node representing the value of the state-action pair.

(5) The forward pass
starts as expected.

(6) But we concatenate the action to the
states right on the first hidden layer.

(6) Then, continue
as expected.

(7) Finally return the output.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

364
WOW! eBook

www.wowebook.org

5DDPG: Approximating a deterministic policy

Learning a deterministic policy
Now, the one thing we need to add to this algorithm to make it work is a policy network. We
want to train a network that can give us the optimal action in a given state. That means that
the network must be differentiable with respect to the action. Therefore, the action must be
continuous to make for efficient gradient-based learning. The objective is simple; we can use
the expected q-value using the policy network, mu. That is, the agent tries to find the action
that maximizes this value. Notice that in practice, we use minimization techniques, and
therefore minimize the negative of this objective.

Also notice, that in this case, we don't use target networks, but the online networks for both
the policy, which is the action selection portion and the value function, which is the action
evaluation portion. Additionally, given that we need to sample a mini-batch of states for
training the value function, we can use these same states for training the policy network.

Show Me the Math

DDPG's deterministic-policy objective

(1) Learning the policy is very straightforward as well, we simply maximize the expected value
of the Q-function using the state, and the policy's selected action for that state.

(2) For this we use the sampled
states from the replay buffer.

(3) Query the policy
for the best action
in those states.

(4) And then query
the Q-function for
the q-value.

0001 a BIt of hIStory

Introduction of the DDPG algorithm

DDPG was introduced in 2015 on a paper titled "Continuous control with deep
reinforcement learning." The paper was authored by Timothy Lillicrap while working at
Google DeepMind as a Research Scientist. Since 2016, Tim has been working as a Staff
Research Scientist at Google DeepMind and as an Adjunct Professor at University College
London.

Tim has contributed to several other DeepMind papers such as the A3C algorithm, AlphaGo,
AlphaZero, Q-prop, and StarCraft II, to name a few. One of the most interesting facts is that
Tim has a background in Cognitive Science, and Systems Neuroscience, not a traditional
Computer Science path into Deep Reinforcement Learning.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

365
WOW! eBook

www.wowebook.org

6 Chapter 12 I advanced actor-critic methods

I Speak python

DDPG's deterministic-policy network

class FCDP(nn.Module):
 def __init__(self,
 input_dim,
 action_bounds,
 hidden_dims=(32,32),
 activation_fc=F.relu,
 out_activation_fc=F.tanh):
 super(FCDP, self).__init__()

 self.activation_fc = activation_fc
 self.out_activation_fc = out_activation_fc
 self.env_min, self.env_max = action_bounds

 self.input_layer = nn.Linear(input_dim, hidden_dims[0])
 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(hidden_dims[i],
 hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.output_layer = nn.Linear(hidden_dims[-1],
 len(self.env_max))

 def forward(self, state):
 x = self._format(state)
 x = self.activation_fc(self.input_layer(x))
 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))
 x = self.output_layer(x)

 x = self.out_activation_fc(x)

 return self.rescale_fn(x)

(1) This is the policy network
used in DDPG. Fully-Connected
Deterministic Policy.

(2) Notice the activation
of the output layer is
different this time. We use
tanh activation function to
squash the output to (-1, 1).

(3) We need to get the minimum and maximum values of the actions, so
that we can rescale the network's output (-1, 1) to the expected range.

(4) The
architecture
is as
expected.
States in,
actions out.

(5) The forward pass is also straightforward.

(6) Input.

(7) Hidden.

(8) Output.

(9) Notice, however, that we activate the output using the output activation function.

(10) Also, very important, we rescale the action from the -1 to 1 range to the range specific to
the environment. The `rescale_fn` is not shown in here, but you can go to the Notebook for details.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

366
WOW! eBook

www.wowebook.org

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_12/chapter-12.ipynb

7DDPG: Approximating a deterministic policy

I Speak python

DDPG's model-optimization step

 def optimize_model(self, experiences):

 states, actions, rewards, \
 next_states, is_terminals = experiences
 batch_size = len(is_terminals)

 argmax_a_q_sp = self.target_policy_model(next_states)
 max_a_q_sp = self.target_value_model(next_states,
 argmax_a_q_sp)
 target_q_sa = rewards + self.gamma * max_a_q_sp * \
 (1 - is_terminals)

 q_sa = self.online_value_model(states, actions)
 td_error = q_sa - target_q_sa.detach()
 value_loss = td_error.pow(2).mul(0.5).mean()

 self.value_optimizer.zero_grad()
 value_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_value_model.parameters(),
 self.value_max_grad_norm)
 self.value_optimizer.step()

 argmax_a_q_s = self.online_policy_model(states)
 max_a_q_s = self.online_value_model(states,
 argmax_a_q_s)
 policy_loss = -max_a_q_s.mean()

 self.policy_optimizer.zero_grad()
 policy_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_policy_model.parameters(),
 self.policy_max_grad_norm)
 self.policy_optimizer.step()

(1) The `optimize_model`
function takes in a mini-
batch of experiences.

(2) With it, we calculate the targets using the predicted max value of the next state,
coming from the actions according to the policy and the values according to the Q-function.

(3) We then get the predictions, calculate the error and the loss.
Notice where we use the `target` and `online` networks.

(4) The optimization step is
just like all other networks.

(5) Next, we get the actions as predicted by the online policy for the states in the mini-
batch, then use those actions to get the value estimates using the online value network.

(6) Next, we get the policy loss.
(7) Finally, we zero the
optimizer, do the backward pass
on the loss, clip the gradients,
and step the optimizer.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

367
WOW! eBook

www.wowebook.org

8 Chapter 12 I advanced actor-critic methods

Exploration with deterministic policies
In DDPG, we train deterministic greedy policies. In a perfect world, this type of policy
takes in a state and returns the optimal action for that state. But, in an untrained policy, the
actions returned won't be accurate enough, yet still deterministic. As mentioned before,
agents need to balance exploiting knowledge with exploring. But again, since the DDPG
agent learns a deterministic policy, it won't explore on-policy. Imagine the agent is stubborn
and always select the same actions. To deal with this issue, we must explore off-policy. And
so in DDPG, we inject Gaussian noise into the actions selected by the policy.

You've learned about exploration in multiple DRL agents. In NFQ, DQN, etc., we use
exploration strategies based on q-values. We get the values of actions in a given state using
the learned Q-function and explore based on those values. In REINFORCE, VPG, etc., we
use stochastic policies, and therefore, exploration is on-policy. That is, exploration is taken
care of by the policy itself because it is stochastic, it has randomness. In DDPG, the agent
explores by adding external noise to actions, using off-policy exploration strategies.

I Speak python

Exploration in deterministic policy gradients

class NormalNoiseDecayStrategy():
 def select_action(self, model,
 state, max_exploration=False):
 if max_exploration:
 noise_scale = self.high
 else:
 noise_scale = self.noise_ratio * self.high

 with torch.no_grad():
 greedy_action = model(state).cpu().detach().data
 greedy_action = greedy_action.numpy().squeeze()

 noise = np.random.normal(loc=0,
 scale=noise_scale,
 size=len(self.high))
 noisy_action = greedy_action + noise
 action = np.clip(noisy_action, self.low, self.high)

 self.noise_ratio = self._noise_ratio_update()
 return action

(1) This is the `select_action`
function of the strategy.

(2) To maximize exploration, we set the
noise scale to the maximum action.

(3) Otherwise, we scale the noise down.

(4) We get the
greedy action
straight from
the network. (5) Next, we get the Gaussian noise for the action using the scale and 0 mean.

(6) Add the noise to the
action, and clip it to be in range.

(7) Next, we update the noise ratio schedule. This could be constant, or linear, exponential, etc.

(8) Lastly, return the action.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

368
WOW! eBook

www.wowebook.org

9DDPG: Approximating a deterministic policy

ConCrete exaMple

The Pendulum environment

The Pendulum-v0 environment consists of an inverted pendulum that the
agent needs to swing-up, so it stays upright with the least effort possible.
The state-space is a vector of 3 variables (cos(theta), sin(theta), theta dot)
indicating the cosine of the angle of the rod, the sine, and the angular speed.

The action space is a single continuous variable from -2 to 2, indicating the
joint effort. The joint is that black dot at the bottom of the rod. The action is
the effort either clockwise or counterclockwise.

The reward function is an equation based on angle, speed, and effort. The
goal is to remain perfectly balanced upright with no effort. In such an ideal
time step, the agent receives 0 rewards, the best it can do. The highest cost
(lowest reward) the agent can get is approximately -16 reward. The precise
equation is: `-(theta^2 + 0.1*theta_dt^2 + 0.001*action^2)`.

This is a continuing task, so there is no terminal state. However, the environment times out
after 200 steps, which serves the same purpose. The environment is considered unsolved,
which means there is no target return. However, -150 is a reasonable threshold to hit.

tally It Up

DDPG in the Pendulum environment

(1) On the right
you see the results
of training DDPG
until it reaches
-150 reward on the
evaluation episodes.
We use 5 seeds
here, but the graph
is truncated on the
number of episodes
the first seed
ends. As you can
see, the algorithm
does a pretty good
job, very quickly.
Pendulum is a simple
environment.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

369
WOW! eBook

www.wowebook.org

10 Chapter 12 I advanced actor-critic methods

TD3: State-of-the-art improvements over DDPG
DDPG has been one of the state-of-the-art deep reinforcement learning methods for control
for several years. However, there have been some improvements proposed that make a big
difference in performance. In this section, we discussed a collection of improvements that
together form a new algorithm called Twin-Delayed DDPG (TD3). TD3 introduces three
main changes to the main DDPG algorithm. First, it adds a double learning technique,
similar to what you learned in Double Q-learning and DDQN, but this time with a unique,
"twin" network architecture. Second, it adds noise, not only to the action passed into the
environment but also to the target actions, making the policy network more robust to
approximation error. And, third, it delays updates to the policy network, its target network,
and the twin target network, so that the twin network updates more frequently.

Double learning in DDPG
In TD3, we use a particular kind of Q-function network with two separate streams that end
on two separate estimates of the state-action pair in question. For the most part, these two
streams are totally independent, so one can think about them as two separate networks.
However, it'd make sense to share feature layers if the environment was image-based.
That way CNN would extract common features, and potentially learn faster. Nevertheless,
sharing layers is also usually harder to train, so this is something you'd have to experiment
and decide by yourself.

In the following implementation, the two streams are completely separate, and the only
thing being shared between these two networks is the optimizer. As you see in the twin
network loss function, we add up the losses for each of the networks and optimize both
network on that joint loss.

Show Me the Math

Twin target in TD3
(1) The Twin
network loss
is the sum of
MSEs of each
of the steams.
(2) We calculate the target
using the minimum between
the two streams. This is not
a complete TD3 target. We'll
add to it in a couple of pages.

(3) But, notice how we use the target networks
for both the policy and value networks.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

370
WOW! eBook

www.wowebook.org

11TD3: State-of-the-art improvements over DDPG

I Speak python

TD3's Twin Q-Network 1/2

class FCTQV(nn.Module):
 def __init__(self,
 input_dim,
 output_dim,
 hidden_dims=(32,32),
 activation_fc=F.relu):
 super(FCTQV, self).__init__()
 self.activation_fc = activation_fc

 self.input_layer_a = nn.Linear(input_dim + output_dim,
 hidden_dims[0])
 self.input_layer_b = nn.Linear(input_dim + output_dim,
 hidden_dims[0])

 self.hidden_layers_a = nn.ModuleList()
 self.hidden_layers_b = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hid_a = nn.Linear(hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers_a.append(hid_a)
 hid_b = nn.Linear(hidden_dims[i], hidden_dims[i+1])
 self.hidden_layers_b.append(hid_b)

 self.output_layer_a = nn.Linear(hidden_dims[-1], 1)
 self.output_layer_b = nn.Linear(hidden_dims[-1], 1)

 def forward(self, state, action):
 x, u = self._format(state, action)

 x = torch.cat((x, u), dim=1)
 xa = self.activation_fc(self.input_layer_a(x))
 xb = self.activation_fc(self.input_layer_b(x))

 for hidden_layer_a, hidden_layer_b in zip(
 self.hidden_layers_a, self.hidden_layers_b):

(1) This is the Fully-Connected
Twin Q-value network. This is what
TD3 uses to approximate the
Q-values, with the twin streams.

(2) Notice we have two input layers. Again, these streams are really two separate networks.

(3) Next, we create hidden layers for each of the streams.

(4) And we end with two output layers, each with a single node representing the Q-value.

(5) We start the forward pass formatting the inputs to match what the network expects.

(6) Next, we concatenate the state and action, and pass them through each stream.

(7) Continues...

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

371
WOW! eBook

www.wowebook.org

12 Chapter 12 I advanced actor-critic methods

Smoothing the targets used for policy updates
Remember how to improve exploration in DDPG, we inject Gaussian noise into the action
used for the environment. In TD3, we take this concept further and add noise, not only to
the action used for exploration but also to the action used to calculate the targets.

Training the policy with noisy targets can be seen as a regularizer because now the network
is forced to generalize over similar actions. This technique prevents the policy network from
converging to incorrect actions since early on during training, Q-functions can prematurely
inaccurately value some actions. The noise over the actions spreads that value over a more
inclusive range of actions than otherwise.

I Speak python

TD3's Twin Q-Network 2/2

 for hidden_layer_a, hidden_layer_b in zip(
 self.hidden_layers_a, self.hidden_layers_b):
 xa = self.activation_fc(hidden_layer_a(xa))
 xb = self.activation_fc(hidden_layer_b(xb))

 xa = self.output_layer_a(xa)
 xb = self.output_layer_b(xb)
 return xa, xb

 def Qa(self, state, action):
 x, u = self._format(state, action)

 x = torch.cat((x, u), dim=1)
 xa = self.activation_fc(self.input_layer_a(x))

 for hidden_layer_a in self.hidden_layers_a:
 xa = self.activation_fc(hidden_layer_a(xa))

 return self.output_layer_a(xa)

(8) Here we pass through all the hidden layers and their respective activation function.

(9) Finally, we do a pass through the output layers, and return their direct output.

(10) This is the forward pass through
the `Qa` stream. This is useful for
getting the values when calculating
the targets to the policy updates.

(11) We format the inputs, and concatenate them before passing it through the `a` stream.

(12) The pass through the `a`'s hidden layers.

(13) All the way through the output layer, just as if we had only one network to begin with.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

372
WOW! eBook

www.wowebook.org

13TD3: State-of-the-art improvements over DDPG

Show Me the Math

Target smoothing procedure
(1) Let's consider a `clamp` function,
which basically "clamps" or "clips" a value
`x` between a low `l`, and a high `h`.

(2) In TD3, we smooth the action by adding clipped Gaussian noise, E. We first sample E, and
clamp it to be between a preset min and max for E. We add that clipped Gaussian noise to the
action, and then clamp the action to be between the min and max allowable according to the
environment. Finally, we use that smoothed action.

I Speak python

TD3's model-optimization step 1/2

 def optimize_model(self, experiences):
 states, actions, rewards, \
 next_states, is_terminals = experiences
 batch_size = len(is_terminals)

 with torch.no_grad():
 env_min = self.target_policy_model.env_min
 env_max = self.target_policy_model.env_max
 a_ran = env_max - env_min
 a_noise = torch.randn_like(actions) * \
 self.policy_noise_ratio * a_ran

 n_min = env_min * self.policy_noise_clip_ratio
 n_max = env_max * self.policy_noise_clip_ratio

 a_noise = torch.max(
 torch.min(a_noise, n_max), n_min)

 argmax_a_q_sp = self.target_policy_model(
 next_states)

 noisy_argmax_a_q_sp = argmax_a_q_sp + a_noise
 noisy_argmax_a_q_sp = torch.max(torch.min(
 noisy_argmax_a_q_sp, env_max), env_min)

(1) To optimize the
TD3 models, we
take in a mini-batch
of experiences.

(2) We first get the min and
max of the environment.

(3) Get the
noise and scale
it to the range
of the actions.
(4) Get the noise clip min and max.

(5) Then, clip the noise.

(6) Get the action from the target policy model.

(7) Then, add the noise to the action, and clip the action, too.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

373
WOW! eBook

www.wowebook.org

14 Chapter 12 I advanced actor-critic methods

I Speak python

TD3's model-optimization step 2/2

 noisy_argmax_a_q_sp = torch.max(torch.min(
 noisy_argmax_a_q_sp, env_max), env_min)
 max_a_q_sp_a, max_a_q_sp_b = \
 self.target_value_model(next_states,
 noisy_argmax_a_q_sp)

 max_a_q_sp = torch.min(max_a_q_sp_a, max_a_q_sp_b)
 target_q_sa = rewards + self.gamma * max_a_q_sp * \
 (1 - is_terminals)

 q_sa_a, q_sa_b = self.online_value_model(states,
 actions)
 td_error_a = q_sa_a - target_q_sa
 td_error_b = q_sa_b - target_q_sa
 value_loss = td_error_a.pow(2).mul(0.5).mean() + \
 td_error_b.pow(2).mul(0.5).mean()

 self.value_optimizer.zero_grad()
 value_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_value_model.parameters(),
 self.value_max_grad_norm)
 self.value_optimizer.step()

 if np.sum(self.episode_timestep) % \
 self.train_policy_every_steps == 0:

 argmax_a_q_s = self.online_policy_model(states)
 max_a_q_s = self.online_value_model.Qa(
 states, argmax_a_q_s)
 policy_loss = -max_a_q_s.mean()

 self.policy_optimizer.zero_grad()
 policy_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_policy_model.parameters(),
 self.policy_max_grad_norm)
 self.policy_optimizer.step()

(8) We use the
clamped noisy
action to get
the max value.
(9) Recall we get the max value by getting the minimum predicted
value between the two streams, and use it for the target.

(10) Next, we get the predicted values coming from both of the
streams to calculate the errors and the joint loss.

(11) Then, we do the
standard back-propagation
steps for the twin network.

(12) Notice how we delay the policy updates here, I explain this a bit more on the next page.

(13) The update is very similar to DDPG, but using the single stream `Qa`.

(14) But, the loss is the same.

(15) Here are the policy optimization steps. The standard stuff.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

374
WOW! eBook

www.wowebook.org

15TD3: State-of-the-art improvements over DDPG

Delaying updates
The final improvement that TD3 applies over DDPG is delaying the updates to the policy
network and target networks so that the online Q-function updates at a higher rate than
the rest. Delaying these networks is beneficial because often, the online Q-function changes
shape abruptly early on in the training process. Slowing down the policy so that it updates
after a couple of value function updates, allows the value function to settle into more
accurate values before we let it guide the policy. The recommended delay for the policy and
target networks is every other update to the online Q-function.

The other thing that you may notice in the policy updates is that we must use one of the
streams of the online value model for getting the estimated q-value for the action coming
from the policy. In TD3, we use one of the two streams, but the same stream every time.

0001 a BIt of hIStory

Introduction of the TD3 agent

TD3 was introduced by Scott Fujimoto in 2018 on a paper titled "Addressing Function
Approximation Error in Actor-Critic Methods."

Scott is a graduate student at McGill University working on a Ph.D. in Computer Science and
Supervised by Prof. David Meger and Prof. Doina Precup.

ConCrete exaMple

The Hopper environment

The Hopper environment we use is an open-source version of the MuJoCo and Roboschool
Hopper environments, powered by the Bullet Physics engine. MuJoCo is a physics engine
with a variety of models and tasks. While MuJoCo is widely used in DRL research, it requires
a license. If you are not a student, it can cost you a couple of thousand dollars. Roboschool
was an attempt by OpenAI to create open-source versions of MuJoCo environments, but it
was discontinued in favor of Bullet. Bullet Physics is an open-source project with lots of the
same environments found in MuJoCo.

The Hopper environment features a vector with 15
continuous variables as an unbounded observation space,
representing the different joints of the hopper robot. It
features a vector of 3 continuous variables bounded between
-1 and 1 and representing actions for the thigh, leg, and foot
joints. Note that a single action is a vector with 3 elements at
once. The task of the agent is to move the hopper forward,
and the reward function reinforces that, also promoting minimal energy cost.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

375
WOW! eBook

www.wowebook.org

16 Chapter 12 I advanced actor-critic methods

It'S In the DetaIlS

Training TD3 in the Hopper environment

If you head to the chapter's Notebook, you may notice that we train the agent until it
reaches a 1,500 mean reward for 100 consecutive episodes. In reality, the recommended
threshold is 2,500. However, since we train using 5 different seeds, and each training run
takes about an hour, I thought to reduce the time it takes to complete the Notebook by
merely reducing the threshold. Even at 1,500, the hopper does a pretty decent job at
moving forward, as you can see on the GIFs in the Notebook.

Now, you must know that all the book's implementations takes a very long time because
they executes one evaluation episode after every episode. Evaluating performance on every
episode is not necessary and likely overkill for most purposes. For our purposes, it's okay,
but if you want to re-use the code, I recommend you remove that logic and instead check
evaluation performance once every 10-100 or so episodes.

Also, take a look at the implementation details. The book's TD3 optimizes the policy and the
value networks separately. If you wanted to train using CNNs, for instance, you may want to
share the convolutions and optimize all at once. But again, that'd require lots of tunning.

tally It Up

TD3 in the Hopper environment
(1) TD3 does pretty
well in the Hopper
environment, even
though this is a
challenging one.
You can see how
the evaluation
performance takes
off a bit after
1,000 episodes.
You should head to
the Notebook and
enjoy the GIFs. In
particular, take a
look at the progress
of the agent. It's
fun to see the
progression of the
performance.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

376
WOW! eBook

www.wowebook.org

https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_12/chapter-12.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_12/chapter-12.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_12/chapter-12.ipynb
https://github.com/mimoralea/gdrl/blob/master/notebooks/chapter_12/chapter-12.ipynb

17SAC: Maximizing the expected return and entropy

SAC: Maximizing the expected return and entropy
The previous two algorithms, DDPG, and TD3 are off-policy methods that train a
deterministic policy. Recall, off-policy means that the method uses experiences generated
by a behavior policy that is different from the policy optimized. In the case of DDPG and
TD3, they both use a replay buffer that contains experiences generated by several previous
policies. Also, because the policy being optimized is deterministic, meaning that it returns
the same action every time it is queried, they both use off-policy exploration strategies. On
our implementation, they both used Gaussian noise injection to the action vectors going
into the environment.

To put it into perspective, the agents that you learned about in the previous chapter, in
contrast, learn on-policy. Remember, they train stochastic policies which by themselves
introduce randomness and, therefore, exploration. To promote randomness in stochastic
policies, we add an entropy term to the loss function.

In this section, we discuss an algorithm called Soft Actor-Critic (SAC), which is a hybrid
between these two paradigms. On the one hand, SAC is an off-policy algorithm, just like
DDPG and TD3, but on the other hand, it trains a stochastic policy like in REINFORCE,
A3C, and company, instead of a deterministic policy, like in DDPG and TD3.

Adding the entropy to the Bellman equations
The most crucial characteristic of SAC is that the entropy of the stochastic policy becomes
part of the value function that the agent attempts to maximize. As you see in this section,
jointly maximizing the expected total reward and the expected total entropy naturally
encourages behavior that is as diverse as possible while still maximizing the expected return.

Show Me the Math

The agent needs to also maximize the entropy

(1) In SAC, we define
the action-value
function as follows.

(2) Here is the expectation
over the reward, next
state, and next action.

(3) We are going to add up the
reward, and the discounted value
of the next state-action pair.

(4) However, we add the entropy of the
policy at the next state. Alpha tunes the
importance we give to the entropy term.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

377
WOW! eBook

www.wowebook.org

18 Chapter 12 I advanced actor-critic methods

Learning the action-value function
In practice, SAC learns the value function in a similar way than TD3. That is, we use
two networks approximating the Q-function and take the minimum estimate for most
calculations. A few differences, however, is that, first, with SAC, the authors found that
independently optimizing each Q-function yields better results, so we do that. Second,
we add the entropy term to the target values. And lastly, we don't use the target action
smoothing directly as we did in TD3. Other than that, the pattern is the same than TD3.

Learning the policy
This time for learning the stochastic policy, we use a squashed Gaussian policy that in the
forward pass, it outputs the mean and standard deviation. Then we can use those to sample
from that distribution, squash the values with a hyperbolic tangent function `tanh,` and
then rescale the values to the range expected by the environment.

For training the policy, we use the reparameterization trick. This "trick" consists of
moving the stochasticity out of the network and into an input. This way, the network
is deterministic, and we can train it without problems. This trick is straightforwardly
implemented in PyTorch, as you see next.

Show Me the Math

Action-value function target (we train doing MSE on this target)
(1) This is the target
we use on SAC.

(2) We grab the reward
plus the discounted...

(3) Minimum value of the
next state-action pair.

(4) Notice the current policy
provides the next actions.

(5) And the we use
target networks.

(6) And subtract the
weighted log probability.

Show Me the Math

Policy objective (we train minimizing the negative of this objective)
(1) This is the
objective of the policy.

(2) Notice we sample the state from the
buffer, but the action from the policy.

(3) We want the value minus the weighted
log probability to be as high as possible.

(4) That means we want to minimize
the negative of what's inside brackets.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

378
WOW! eBook

www.wowebook.org

19SAC: Maximizing the expected return and entropy

Automatically tuning the entropy coefficient
The cherry on the cake of SAC is that alpha, which is the entropy coefficient, can be tuned
automatically. SAC employs gradient-based optimization of alpha towards a heuristic
expected entropy. The recommended target entropy is based on the shape of the action
space. More specifically, the negative of the vector product of the action shape. Using
this target entropy, we can automatically optimize alpha so that there is virtually no
hyperparameter to tune, related to regulating the entropy term.

Show Me the Math

Alpha objective function (we train minimizing the negative of this objective)
(1) This is the
objective for alpha.

(2) Same as with the policy, we get the state
from the buffer, and the action from the policy.

(3) We want the weighted H, which is the target entropy
heuristic, plus the log probability to be as high as possible.

(4) Which means we minimize
the negative of this.

I Speak python

SAC Gaussian policy 1/2

class FCGP(nn.Module):
 def __init__(self,
 <...>
 self.input_layer = nn.Linear(input_dim,
 hidden_dims[0])
 self.hidden_layers = nn.ModuleList()
 for i in range(len(hidden_dims)-1):
 hidden_layer = nn.Linear(hidden_dims[i],
 hidden_dims[i+1])
 self.hidden_layers.append(hidden_layer)

 self.output_layer_mean = nn.Linear(hidden_dims[-1],
 len(self.env_max))

 self.output_layer_log_std = nn.Linear(
 hidden_dims[-1],
 len(self.env_max))

(1) This is the Gaussian
policy that we use in SAC.

(2) We start
everything
the same way
other policy
networks.
Input, to
hidden layers.

(3) But the hidden layers connect to the two streams. One represents the mean of the
action and the other the log standard deviation.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

379
WOW! eBook

www.wowebook.org

20 Chapter 12 I advanced actor-critic methods

I Speak python

SAC Gaussian policy 2/2

 self.output_layer_log_std = nn.Linear(
 hidden_dims[-1],
 len(self.env_max))

 self.target_entropy = -np.prod(self.env_max.shape)
 self.logalpha = torch.zeros(1,
 requires_grad=True,
 device=self.device)
 self.alpha_optimizer = optim.Adam([self.logalpha],
 lr=entropy_lr)

 def forward(self, state):
 x = self._format(state)
 x = self.activation_fc(self.input_layer(x))
 for hidden_layer in self.hidden_layers:
 x = self.activation_fc(hidden_layer(x))
 x_mean = self.output_layer_mean(x)
 x_log_std = self.output_layer_log_std(x)
 x_log_std = torch.clamp(x_log_std,
 self.log_std_min,
 self.log_std_max)
 return x_mean, x_log_std

 def full_pass(self, state, epsilon=1e-6):
 mean, log_std = self.forward(state)

 pi_s = Normal(mean, log_std.exp())

 pre_tanh_action = pi_s.rsample()
 tanh_action = torch.tanh(pre_tanh_action)

 action = self.rescale_fn(tanh_action)

 log_prob = pi_s.log_prob(pre_tanh_action) - torch.log(
 (1 - tanh_action.pow(2)).clamp(0, 1) + epsilon)

 log_prob = log_prob.sum(dim=1, keepdim=True)
 return action, log_prob, self.rescale_fn(
 torch.tanh(mean))

(4) Same line to help you keep the flow of the code.
(5) Here we calculate H, the target entropy heuristic.

(6) Next, we create a variable, initialize to zero,
and create an optimizer to optimize the log alpha.

(7) The forward function is just as we'd expect.

(8) We format the
input variables,
and pass them
through the whole
network.
(9) Clamp the
log std to -20
to 2, to control
the std range to
reasonable values.

(10) And return the values.

(11) In the full
pass, we get the
mean and log std.(12) Get a Normal distribution with those values.

(13) 'r'sample here does the reparameterization trick.

(14) Then we squash the action to be in range -1, 1.

(15) Then, rescale to be the environment expected range.

(16) We also need to re-scale the log probability, and the mean.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

380
WOW! eBook

www.wowebook.org

21SAC: Maximizing the expected return and entropy

I Speak python

SAC optimization step 1/2

 def optimize_model(self, experiences):
 states, actions, rewards, \
 next_states, is_terminals = experiences
 batch_size = len(is_terminals)

 current_actions, \
 logpi_s, _ = self.policy_model.full_pass(states)

 target_alpha = (logpi_s + \
 self.policy_model.target_entropy).detach()
 alpha_loss = -(self.policy_model.logalpha * \
 target_alpha).mean()

 self.policy_model.alpha_optimizer.zero_grad()
 alpha_loss.backward()
 self.policy_model.alpha_optimizer.step()

 alpha = self.policy_model.logalpha.exp()

 current_q_sa_a = self.online_value_model_a(
 states, current_actions)
 current_q_sa_b = self.online_value_model_b(
 states, current_actions)

 current_q_sa = torch.min(current_q_sa_a,
 current_q_sa_b)

 policy_loss = (alpha * logpi_s - current_q_sa).mean()

 ap, logpi_sp, _ = self.policy_model.full_pass(
 next_states)

(1) This is the
optimization step in SAC.

(2) First, get the experiences
from the mini-batch.

(3) Next, we get the current actions, a-hat, and log probabilities of state s.

(4) Here, we calculate the loss of alpha, and here we step alpha's optimizer.

(5) This is how we get the current value of alpha.

(6) In these lines, we get the q-values using the online models, and a-hat.

(7) Then, we use the minimum q-value estimates.

(8) Here, we calculate the policy loss using that minimum q-value estimate.

(9) On the next page, we calculate the Q-functions loss.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

381
WOW! eBook

www.wowebook.org

22 Chapter 12 I advanced actor-critic methods

I Speak python

SAC optimization step 2/2

 ap, logpi_sp, _ = self.policy_model.full_pass(
 next_states)

 q_spap_a = self.target_value_model_a(next_states, ap)
 q_spap_b = self.target_value_model_b(next_states, ap)
 q_spap = torch.min(q_spap_a, q_spap_b) - \
 alpha * logpi_sp

 target_q_sa = (rewards + self.gamma * \
 q_spap * (1 - is_terminals)).detach()

 q_sa_a = self.online_value_model_a(states, actions)
 q_sa_b = self.online_value_model_b(states, actions)
 qa_loss = (q_sa_a - target_q_sa).pow(2).mul(0.5).mean()
 qb_loss = (q_sa_b - target_q_sa).pow(2).mul(0.5).mean()

 self.value_optimizer_a.zero_grad()
 qa_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_value_model_a.parameters(),
 self.value_max_grad_norm)
 self.value_optimizer_a.step()

 self.value_optimizer_b.zero_grad()
 qb_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.online_value_model_b.parameters(),
 self.value_max_grad_norm)
 self.value_optimizer_b.step()

 self.policy_optimizer.zero_grad()
 policy_loss.backward()
 torch.nn.utils.clip_grad_norm_(
 self.policy_model.parameters(),
 self.policy_max_grad_norm)
 self.policy_optimizer.step()

(10) To calculate the value loss, we get the predicted next action.

(11) Using the target value models, we calculate the q-value estimate of the next state-action pair.

(12) Get the minimum Q-value estimate, and factor in the entropy.
(13) This is how we calculate the target. Using the reward plus the
discounted minimum value of the next state along with the entropy.

(14) Here we get the predicted values of the state-action pair using the online model.

(15) Calculate the loss and optimize each Q-function separately. First, a.

(16) Then, b.

(17) Finally, the policy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

382
WOW! eBook

www.wowebook.org

23SAC: Maximizing the expected return and entropy

0001 a BIt of hIStory

Introduction of the SAC agent

SAC was introduced by Tuomas Haarnoja in 2018 on a paper titled "Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor." At the time
of publish, Tuomas was a graduate student at Berkeley working on a Ph.D. in Computer
Science under the supervision of Prof. Pieter Abbeel and Prof. Sergey Levine, and a Research
Intern at Google. Since 2019, Tuomas is a Research Scientist at Google DeepMind.

ConCrete exaMple

The Cheetah environment

The Cheetah environment features a vector with 26
continuous variables for the observation space, representing
the joints of the robot. It features a vector of 6 continuous
variables bounded between -1 and 1 and representing the
actions. The task of the agent is to move the cheetah forward,
and just like with the hopper, the reward function reinforces
that also promoting minimal energy cost.

tally It Up

SAC on the Cheetah environment
(1) SAC does
pretty well on
the Cheetah
environment. In
only ~300-600
episodes it learns
to control the
robot. Notice that
this environment
has a recommended
reward threshold
of 3,000, but at
2,000 the agent
does sufficiently
well. Also, it already
takes a few hours
to train.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

383
WOW! eBook

www.wowebook.org

24 Chapter 12 I advanced actor-critic methods

PPO: Restricting optimization steps
In this section, we introduce an actor-critic algorithm called Proximal Policy Optimization
(PPO). Think of PPO as an algorithm with the same underlying architecture as A2C.
PPO can reuse lots of code developed for A2C. That is, we can roll out using multiple
environments in parallel, aggregate the experiences into mini-batches, use a critic to get
GAE estimates, and train the actor and critic in a similar way as in A2C.

The critical innovation in PPO is a surrogate objective function that allows an on-policy
algorithm to perform multiple gradient steps on the same mini-batch of experiences. As you
learned in the previous chapter, A2C, being an on-policy method, cannot reuse experiences
for the optimization steps. In general, on-policy methods need to discard experience
samples immediately after stepping the optimizer.

However, PPO introduces a clipped objective function that prevents the policy from getting
too different after an optimization step. By optimizing the policy conservatively, we not only
prevent performance collapse due to the innate high-variance of on-policy policy gradient
methods but also can reuse mini-batches of experiences and perform multiple optimization
steps per mini-batch. The ability to reuse experiences makes PPO a more sample efficient
method than other on-policy methods, such as those you learned about in the previous
chapter.

Using the same actor-critic architecture as A2C
Think of PPO as an improvement to A2C. What I mean by that, is that even though in this
chapter we have learned about DDPG, TD3, and SAC, and all these algorithms have some
commonness to them, PPO should not be confused as an improvement to SAC. TD3 is a
direct improvement to DDPG. SAC was developed concurrently with TD3. However, the
SAC author published a second version of the SAC paper shortly after the first one, which
includes some of the features of TD3. So, while SAC is not a direct improvement to TD3,
it does share some features. PPO, however, is an improvement to A2C, and we reuse some
of the A2C code. More specifically, we sample parallel environments to gather the mini-
batches of data and use GAE for policy targets.

0001 a BIt of hIStory

Introduction of the PPO agent

PPO was introduced by John Schulman et al. in 2017 on a paper titled "Proximal Policy
Optimization Algorithms." John is a Research Scientist, a co-founding member, and the
co-lead of the reinforcement learning team at OpenAI. He received his Ph.D. in Computer
Science from Berkeley, advised by Pieter Abbeel.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

384
WOW! eBook

www.wowebook.org

25PPO: Restricting optimization steps

Batching experiences
One of the features of PPO that A2C did not have is that with PPO, we can reuse experience
samples. To deal with this, we could gather large trajectory batches, like in NFQ, and 'fit' the
model to the data optimizing it over and over again. However, a better approach is to create
a replay buffer and sample a large mini-batch from it on every optimization step. That way,
there is this effect of stochasticity on each mini-batch because samples are not always the
same, yet we likely reuse all samples in the long term.

I Speak python

Episode replay buffer 1/4

class EpisodeBuffer():
 def fill(self, envs, policy_model, value_model):
 states = envs.reset()
 we_shape = (n_workers, self.max_episode_steps)
 worker_rewards = np.zeros(shape=we_shape,
 dtype=np.float32)
 worker_exploratory = np.zeros(shape=we_shape,
 dtype=np.bool)
 worker_steps = np.zeros(shape=(n_workers),
 dtype=np.uint16)
 worker_seconds = np.array([time.time(),] * n_workers,
 dtype=np.float64)

 buffer_full = False
 while not buffer_full and \
 len(self.episode_steps[self.episode_steps>0]) < \
 self.max_episodes/2:
 with torch.no_grad():
 actions, logpas, \
 are_exploratory = policy_model.np_pass(states)
 values = value_model(states)

 next_states, rewards, terminals, \
 infos = envs.step(actions)
 self.states_mem[self.current_ep_idxs,
 worker_steps] = states
 self.actions_mem[self.current_ep_idxs,
 worker_steps] = actions
 self.logpas_mem[self.current_ep_idxs,
 worker_steps] = logpas

(1) This is the `fill` of the `EpisodeBuffer` class.

(2) Variables
to keep
worker
information
grouped.

(3) Here we enter the main
loop to fill up the buffer.

(4) We start by getting the current
actions, log probabilities, and stats.

(5) We pass the actions to the environments, and get the experiences.

(6) Then,
store the
experiences
into the
replay
buffer.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

385
WOW! eBook

www.wowebook.org

26 Chapter 12 I advanced actor-critic methods

I Speak python

Episode replay buffer 2/4

 self.logpas_mem[self.current_ep_idxs,
 worker_steps] = logpas

 worker_exploratory[np.arange(self.n_workers),
 worker_steps] = are_exploratory
 worker_rewards[np.arange(self.n_workers),
 worker_steps] = rewards

 for w_idx in range(self.n_workers):
 if worker_steps[w_idx] + 1 == self.max_episode_steps:
 terminals[w_idx] = 1
 infos[w_idx]['TimeLimit.truncated'] = True

 if terminals.sum():
 idx_terminals = np.flatnonzero(terminals)
 next_values = np.zeros(shape=(n_workers))
 truncated = self._truncated_fn(infos)
 if truncated.sum():
 idx_truncated = np.flatnonzero(truncated)
 with torch.no_grad():
 next_values[idx_truncated] = value_model(\
 next_states[idx_truncated]).cpu().numpy()

 states = next_states
 worker_steps += 1

 if terminals.sum():
 new_states = envs.reset(ranks=idx_terminals)
 states[idx_terminals] = new_states

 for w_idx in range(self.n_workers):
 if w_idx not in idx_terminals:
 continue

 e_idx = self.current_ep_idxs[w_idx]

(8) We create these two variables for each worker. Remember, workers are inside environments.

(7) Same line. Also, I removed
spaces to make it easier to read.

(9) Here we manually truncate episodes that go for too many steps.

(10) We check for terminal states, and pre-process them.

(11) We
bootstrap if
the terminal
state was
truncated.

(12) We update the `states`
variable and increase the step count.

(13) Here we process the
workers if we have terminals.

(14) We process
each terminal worker
one at a time.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

386
WOW! eBook

www.wowebook.org

27PPO: Restricting optimization steps

I Speak python

Episode replay buffer 3/4

 e_idx = self.current_ep_idxs[w_idx]
 T = worker_steps[w_idx]
 self.episode_steps[e_idx] = T

 self.episode_reward[e_idx] = worker_rewards[w_idx,:T].sum()
 self.episode_exploration[e_idx] = worker_exploratory[\
 w_idx, :T].mean()
 self.episode_seconds[e_idx] = time.time() - \
 worker_seconds[w_idx]

 ep_rewards = np.concatenate((worker_rewards[w_idx, :T],
 [next_values[w_idx]]))
 ep_discounts = self.discounts[:T+1]
 ep_returns = np.array(\
 [np.sum(ep_discounts[:T+1-t] * ep_rewards[t:]) \
 for t in range(T)])
 self.returns_mem[e_idx, :T] = ep_returns

 ep_states = self.states_mem[e_idx, :T]
 with torch.no_grad():
 ep_values = torch.cat((value_model(ep_states),
 torch.tensor(\
 [next_values[w_idx]],
 device=value_model.device,
 dtype=torch.float32)))

 np_ep_values = ep_values.view(-1).cpu().numpy()
 ep_tau_discounts = self.tau_discounts[:T]
 deltas = ep_rewards[:-1] + self.gamma * \
 np_ep_values[1:] - np_ep_values[:-1]
 gaes = np.array(\
 [np.sum(self.tau_discounts[:T-t] * deltas[t:]) \
 for t in range(T)])
 self.gaes_mem[e_idx, :T] = gaes

 worker_exploratory[w_idx, :] = 0
 worker_rewards[w_idx, :] = 0
 worker_steps[w_idx] = 0
 worker_seconds[w_idx] = time.time()

(15) Further removed spaces.

(16) Here we collect statistics to
display and analyze after the fact.

(17) We append the bootstrapping value to the reward vector. Calculate the predicted returns.

(18) Here we get the predicted values, and also append the bootstrapping value to the vector.

(19) Here we calculate the generalized advantage estimators, and save them into the buffer.

(20) And start
resetting all
worker variables
to process next
episode.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

387
WOW! eBook

www.wowebook.org

28 Chapter 12 I advanced actor-critic methods

I Speak python

Episode replay buffer 4/4

 worker_seconds[w_idx] = time.time()

 new_ep_id = max(self.current_ep_idxs) + 1
 if new_ep_id >= self.max_episodes:
 buffer_full = True
 break

 self.current_ep_idxs[w_idx] = new_ep_id

 ep_idxs = self.episode_steps > 0
 ep_t = self.episode_steps[ep_idxs]

 self.states_mem = [row[:ep_t[i]] for i, \
 row in enumerate(self.states_mem[ep_idxs])]
 self.states_mem = np.concatenate(self.states_mem)
 self.actions_mem = [row[:ep_t[i]] for i, \
 row in enumerate(self.actions_mem[ep_idxs])]
 self.actions_mem = np.concatenate(self.actions_mem)
 self.returns_mem = [row[:ep_t[i]] for i, \
 row in enumerate(self.returns_mem[ep_idxs])]
 self.returns_mem = torch.tensor(np.concatenate(\
 self.returns_mem), device=value_model.device)
 self.gaes_mem = [row[:ep_t[i]] for i, \
 row in enumerate(self.gaes_mem[ep_idxs])]
 self.gaes_mem = torch.tensor(np.concatenate(\
 self.gaes_mem), device=value_model.device)
 self.logpas_mem = [row[:ep_t[i]] for i, \
 row in enumerate(self.logpas_mem[ep_idxs])]
 self.logpas_mem = torch.tensor(np.concatenate(\
 self.logpas_mem), device=value_model.device)

 ep_r = self.episode_reward[ep_idxs]
 ep_x = self.episode_exploration[ep_idxs]
 ep_s = self.episode_seconds[ep_idxs]

 return ep_t, ep_r, ep_x, ep_s

(21) Same line, indentation edited again.

(22) Check which episode
is next in queue and break
if have too many.

(23) If buffer is not full, we set the
id of the new episode to the worker.

(24) If we are in these lines, it means the episode is full, so we process the memory for sampling.

(25) Because we initialize the whole buffer at once, we need remove from the
memory everything that is not a number, in the episode and the steps dimensions.

(26) Finally, we extract the statistics to display.

(27) And return the stats.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

388
WOW! eBook

www.wowebook.org

29PPO: Restricting optimization steps

Clipping the policy updates
The main issue with the regular policy gradient is that even a small change in parameter
space can lead to a big difference in performance. The discrepancy between parameter space
and performance is why we need to use small learning rates in policy-gradient methods, and
even so, the variance of these methods can still be too large. The whole point of clipped PPO
is to put a limit on the objective such that on each training step, the policy is only allowed
to be so far away. Intuitively, you can think of this clipped objective as a coach preventing
overreacting to outcomes. Did the team get a good score last night with a new tactic? Great,
but don't exaggerate. Don't throw away a whole season of results for a new result. Instead,
keep improving just a little bit at a time.

Clipping the value function updates
We can apply a similar clipping strategy to the value function with the same core concept:
only let the changes in parameter space change the Q-values this much, but not more. As
you can tell, this clipping technique keeps the variance of the things we care about smooth,
whether changes in parameter space are smooth or not. We don't necessarily need small
changes in parameter space; however, we'd like level changes in performance and values.

Show Me the Math

Clipped policy objective
(1) For the policy objective, we first extract
the states, actions and GAEs from the buffer.

(2) Next, we calculate the ratio between the
new and old policy, and use it for the objective.

(3) We want to use the minimum
between the weighted GAE

(4) And the clipped-ratio
version of the same objective.

Show Me the Math

Clipped value loss
(1) For the value function, we also sample from
the replay buffer. G is the return, V the value.

(2) Look how we first move the predicted
values, then clip the difference and shift it back.

(3) Notice, we take the maximum
magnitude of the two errors.

(4) To estimate this through sampling, we do
MSE on the path that the `max` chooses.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

389
WOW! eBook

www.wowebook.org

30 Chapter 12 I advanced actor-critic methods

I Speak python

PPO optimization step 1/3

 def optimize_model(self):

 states, actions, returns, \
 gaes, logpas = self.episode_buffer.get_stacks()

 values = self.value_model(states).detach()

 gaes = (gaes - gaes.mean()) / (gaes.std() + EPS)
 n_samples = len(actions)

 for i in range(self.policy_optimization_epochs):

 batch_size = int(self.policy_sample_ratio * \
 n_samples)
 batch_idxs = np.random.choice(n_samples,
 batch_size,
 replace=False)

 states_batch = states[batch_idxs]
 actions_batch = actions[batch_idxs]
 gaes_batch = gaes[batch_idxs]
 logpas_batch = logpas[batch_idxs]

 logpas_pred, entropies_pred = \
 self.policy_model.get_predictions(\
 states_batch, actions_batch)

 ratios = (logpas_pred - logpas_batch).exp()
 pi_obj = gaes_batch * ratios

 pi_obj_clipped = gaes_batch * ratios.clamp(\
 1.0 - self.policy_clip_range,
 1.0 + self.policy_clip_range)

(1) Now, let's look at those
two equations in code.

(2) First, extract the full batch of experiences from the buffer.

(3) Get the values before we start optimizing the models.

(4) Get the gaes and normalize the batch.

(5) Now, start optimizing the policy first for at most the preset epochs.

(6) We sub-sample from the full batch a mini-batch.

(7) Extract the mini-batch using the randomly sample indices.

(8) We use the online model to get the predictions.

(9) Here we calculate the ratios. Log probabilities to ratio of probabilities.

(10) Then, calculate the objective and the clipped objective.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

390
WOW! eBook

www.wowebook.org

31PPO: Restricting optimization steps

I Speak python

PPO optimization step 2/3

 pi_obj_clipped = gaes_batch * ratios.clamp(\
 1.0 - self.policy_clip_range,
 1.0 + self.policy_clip_range)

 policy_loss = -torch.min(pi_obj,
 pi_obj_clipped).mean()

 entropy_loss = -entropies_pred.mean() * \
 self.entropy_loss_weight

 self.policy_optimizer.zero_grad()
 (policy_loss + entropy_loss).backward()
 torch.nn.utils.clip_grad_norm_(\
 self.policy_model.parameters(),
 self.policy_model_max_grad_norm)
 self.policy_optimizer.step()

 with torch.no_grad():
 logpas_pred_all, _ = \
 self.policy_model.get_predictions(states,
 actions)

 kl = (logpas - logpas_pred_all).mean()

 if kl.item() > self.policy_stopping_kl:
 break

 for i in range(self.value_optimization_epochs):
 batch_size = int(self.value_sample_ratio * \
 n_samples)

 batch_idxs = np.random.choice(n_samples,
 batch_size,
 replace=False)
 states_batch = states[batch_idxs]

(11) We calculate the loss using the negative of the minimum of the objectives.

(12) Also, we calculate the entropy loss, and weight it accordingly.

(13) Zero the optimizing, and start training.

(14) After stepping the optimizer, we do this nice trick of ensuring we only
optimize again if the new policy is within some bounds of the original policy.

(15) Here we calculate the KL-divergence of the two policies.

(16) And break out of the training loop if it is greater than a stopping condition.

(17) Here, we start doing a very similar updates steps to the value function.

(18) We grab the mini-batch from the full batch, just as with the policy.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

391
WOW! eBook

www.wowebook.org

32 Chapter 12 I advanced actor-critic methods

I Speak python

PPO optimization step 3/3

 states_batch = states[batch_idxs]
 returns_batch = returns[batch_idxs]
 values_batch = values[batch_idxs]

 values_pred = self.value_model(states_batch)
 v_loss = (values_pred - returns_batch).pow(2)

 values_pred_clipped = values_batch + \
 (values_pred - values_batch).clamp(\
 -self.value_clip_range,
 self.value_clip_range)

 v_loss_clipped = (values_pred_clipped - \
 returns_batch).pow(2)

 value_loss = torch.max(\
 v_loss, v_loss_clipped).mul(0.5).mean()

 self.value_optimizer.zero_grad()
 value_loss.backward()
 torch.nn.utils.clip_grad_norm_(\
 self.value_model.parameters(),
 self.value_model_max_grad_norm)
 self.value_optimizer.step()

 with torch.no_grad():
 values_pred_all = self.value_model(states)

 mse = (values - values_pred_all).pow(2)
 mse = mse.mul(0.5).mean()
 if mse.item() > self.value_stopping_mse:
 break

(19) Get the predicted values according to the model, and calculate the standard loss.

(20) Here we calculate the clipped predicted values.

(21) Then, calculate the clipped loss.

(22) We use the MSE of the maximum between the standard and clipped loss.

(23) Finally, we zero the optimizer, back-propagate the loss, clip the gradient and step.

(24) We can do something similar to early stopping, but with the value function.

(25) Basically we check for the MSE of the predicted values of the new and old policies.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

392
WOW! eBook

www.wowebook.org

33PPO: Restricting optimization steps

ConCrete exaMple

The Lunar Lander environment

Unlike all the other environments we have explored in
this chapter, the Lunar Lander environment features a
discrete action space. Algorithms, such as DDPG and
TD3, only work with continuous-action environments.
Whether single-variable, such as Pendulum, or a vector,
such as in Hopper and Cheetah. Agents such as DQN
only work in discrete action-space environments, such
as the Cart Pole. Actor-critic methods such as A2C
and PPO have a big plus, which is that you can use
stochastic policy models that are compatible with virtually any action space.

So, in this environment, the agent needs to select one out of four possible actions on every
step. That is 0 for do nothing, or 1 for fire the left engine, or 2 for fire the main engine, or 3
for fire the right engine. The observation space is a vector with 8 elements, representing the
coordinates, angles, velocities, and whether its legs touch the ground. The reward function
is based on distance from the landing pad and fuel consumption. The reward threshold for
solving the environment is 200, and the time step limit is 1,000.

tally It Up

PPO in the Lander environment

(1) The
Lunar Lander
environment is
not a difficult
environment, and
PPO, being a great
algorithm, solves
it in 10 minutes or
so. You may notice
the curves are not
continuous. This
is because in this
algorithm, we only
run an evaluation
step after each
episode batch
collection.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

393
WOW! eBook

www.wowebook.org

34 Chapter 12 I advanced actor-critic methods

Summary
In this chapter, we survey the state-of-the-art of actor-critic methods and even of deep
reinforcement learning methods in general. You first learned about deep deterministic
policy gradient methods, in which a deterministic policy is learned. Because these methods
learn deterministic policies, they use off-policy exploration strategies and update equations.
For instance, with DDPG and TD3, we inject Gaussian noise into the action-selection
process, allowing deterministic policies to become exploratory.

In addition, you learned that TD3 improves DDPG with three key adjustments. First, TD3
uses a double learning technique similar to that of DDQN, in which we "cross-validate" the
estimates coming out of the value function by using a twin Q-network. Second, TD3, in
addition to adding Gaussian noise to the action passed into the environment, it also adds
Gaussian noise to target actions, to ensure the policy does not learn actions based on bogus
Q-value estimates. Third, TD3 delays the updates to the policy network, so that the value
networks get better estimates before we use them to change the policy.

We then explored an entropy-maximization method called SAC, which consists of
maximizing a joint objective of the value function and policy entropy, which intuitively
translates into getting the most reward with the most diverse policy. The SAC agent, just
like DDPG and TD3, learns in an off-policy way, which means these agents can reuse
experiences to improve policies. However, unlike DDPG and TD3, SAC learns a stochastic
policy, which implies exploration can be on-policy, embedded in the learned policy.

Finally, we explored an algorithm called PPO, which is a more direct descendant of A2C,
being an on-policy learning method that also uses an on-policy exploration strategy.
However, because of a clipped objective that makes PPO improve the learned policy more
conservatively, PPO is able to reuse past experiences for its policy improvement steps.

In the next, we review some of the research areas surrounding DRL that are pushing the
edge of a field that many call artificial general intelligence AGI. AGI is an opportunity to
understand human intelligence by recreating it. Physicist Richard Feynman said, "What I
cannot create, I do not understand." Wouldn't it be nice to understand intelligence?

By now you:

• Understand more advanced actor-critic algorithms and relevant tricks.
• Can implement state-of-the-art deep reinforcement learning methods and perhaps

device improvements to these algorithms that you can share with others.
• Can apply state-of-the-art deep reinforcement learning algorithms to a variety of envi-

ronments, hopefully even environments of your own.

©Manning Publications Co. To comment go to liveBook
https://forums.manning.com/forums/grokking-deep-reinforcement-learning

394

	Grokking Deep Reinforcement Learning MEAP V11
	Copyright
	Welcome
	Brief contents
	Chapter 1: Introduction to deep reinforcement learning
	What is deep reinforcement learning?
	Deep reinforcement learning is a machine learning approachto artificial intelligence
	Deep reinforcement learning is concernedwith creating computer programs
	Deep reinforcement learning agentscan solve problems that require intelligence
	Deep reinforcement learning agentsimprove their behavior through trial-and-error learning
	Deep reinforcement learning agentslearn from sequential feedback
	Deep reinforcement learning agentslearn from evaluative feedback
	Deep reinforcement learning agentslearn from sampled feedback
	Deep reinforcement learning agentsutilize powerful non-linear function approximation

	The past, present, and futureof deep reinforcement learning
	Recent history of artificial intelligenceand deep reinforcement learning
	Artificial intelligence winters
	The current state of artificial intelligence
	Progress in deep reinforcement learning
	Opportunities ahead

	The suitability of deep reinforcement learning
	What are the pros and cons?
	Deep reinforcement learning's strengths
	Deep reinforcement learning's weaknesses

	Setting clear two-way expectations
	What to expect from the book?
	How to get the most out of the book?
	Deep reinforcement learning development environment

	Summary

	Chapter 2: Mathematical foundations of reinforcement learning
	Components of reinforcement learning
	Examples of problems, agents, and environments
	The agent: The decision-maker
	The environment: Everything else
	Agent-environment interaction cycle

	MDPs: The engine of the environment
	States: Specific configurations of the environment
	Action: A mechanism to influence the environment
	Transition function: Consequences of agent actions
	Reward signal: Carrots and sticks
	Horizon: Time changes what's optimal
	Discount: The future is uncertain, value it less
	Extensions to MDPs
	Putting it all together

	Summary

	Chapter 3: Balancing immediate and long-term goals
	The objective of a decision-making agent
	Policies: Per-state action prescriptions
	State-value function: What to expect from here?
	Action-value function: What to expect from here if I do this?
	Action-advantage function: How much better if I do that?
	Optimality

	Planning optimal sequences of actions
	Policy Evaluation: Rating policies
	Policy Improvement: Using ratings to get better
	Policy Iteration: Improving upon improved behaviors
	Value Iteration: Improving behaviors early

	Summary

	Chapter 4: Balancing the gathering and utilization of information
	The challenge of interpreting evaluative feedback
	Bandits: Single state decision problems
	Regret: The cost of exploration
	Approaches to solving MAB environments
	Greedy: Always exploit
	Random: Always explore
	Epsilon-Greedy: Almost always greedy and sometimes random
	Decaying Epsilon-Greedy: First maximize exploration, then exploitation
	Optimistic Initialization: Start off believing it's a wonderful world

	Strategic exploration
	SoftMax: Select actions randomly in proportion to their estimates
	UCB: It's not about just optimism; it's about realistic optimism
	Thompson Sampling: Balancing reward and risk

	Summary

	Chapter 5: Evaluating agents' behaviors
	Learning to estimate the value of policies
	First-visit Monte-Carlo: Improving estimates after each episode
	Every-visit Monte-Carlo: A different way of handling state visits
	Temporal-Difference Learning: Improving estimates after each step

	Learning to estimate from multiple steps
	N-step TD Learning: Improving estimates after a couple of steps
	Forward-view TD(λ): Improving estimates of all visited states
	TD(λ): Improving estimates of all visited states after each step

	Summary

	Chapter 6: Improving agents' behaviors
	The anatomy of reinforcement learning agents
	Most agents gather experience samples
	Most agents estimate something
	Most agents improve a policy
	Generalized Policy Iteration

	Learning to improve policies of behavior
	Monte-Carlo Control: Improving policies after each episode
	Sarsa: Improving policies after each step

	Decoupling behavior from learning
	Q-Learning: Learning to act optimally, even if we choose not to
	Double Q-Learning: a max of estimates for an estimate of a max

	Summary

	Chapter 7: Achieving goals more effectively and efficiently
	Learning to improve policies using robust targets
	Sarsa(λ): Improving policies after each step based on multi-step estimates
	Watkins's Q(λ): Decoupling behavior from learning, again

	Agents that interact, learn and plan
	Dyna-Q: Learning sample models
	Trajectory Sampling: Making plans for the immediate future

	Summary

	Chapter 8: Introduction to value-based deep reinforcement learning
	The kind of feedback deep reinforcement learning agents use
	Deep reinforcement learning agents deal with sequential feedback
	But, if it is not sequential, what is it?
	Deep reinforcement learning agents deal with evaluative feedback
	But, if it is not evaluative, what is it?
	Deep reinforcement learning agents deal with sampled feedback
	But, if it is not sampled, what is it?

	Introduction to function approximation for reinforcement learning
	Reinforcement learning problems can have high-dimensional state and action spaces
	Reinforcement learning problem scan have continuous state and action spaces
	There are advantages when using function approximation

	NFQ: The first attempt to value-based deep reinforcement learning
	First decision point: Selecting a value function to approximate
	Second decision point: Selecting a neural network architecture
	Third decision point: Selecting what to optimize
	Fourth decision point: Selecting the targets for policy evaluation
	Fifth decision point: Selecting an exploration strategy
	Sixth decision point: Selecting a loss function
	Seventh decision point: Selecting an optimization method
	Things that could (and do) go wrong

	Summary

	Chapter 9: More stable value-based methods
	DQN: Making reinforcement learning more like supervised learning
	Common problems in value-based deep reinforcement learning
	Using target networks
	Using larger networks
	Using experience replay
	Using other exploration strategies

	Double DQN: Mitigating the overestimation of action-value functions
	The problem of overestimation, take two
	Separating action selection and action evaluation
	A solution
	A more practical solution
	A more forgiving loss function
	Things we can still improve on

	Summary

	Chapter 10: Sample-efficient value-based methods
	Dueling DDQN: A reinforcement-learning-aware neural network architecture
	Reinforcement learning is not a supervised learning problem
	Nuances of value-based deep reinforcement learning methods
	Advantage of using advantages
	A reinforcement-learning-aware architecture
	Building a dueling network
	Reconstructing the action-value function
	Continuously updating the target network
	What does the dueling network bring to the table?

	PER: Prioritizing the replay of meaningful experiences
	A smarter way to replay experiences
	Then, what is a good measure of "important" experiences?
	Greedy prioritization by TD error
	Sampling prioritized experiences stochastically
	Proportional prioritization
	Rank-based prioritization
	Prioritization bias

	Summary

	Chapter 11: Policy-gradient and actor-critic methods
	REINFORCE: Outcome-based policy learning
	Introduction to policy-gradient methods
	Advantages of policy-gradient methods
	Learning policies directly
	Reducing the variance of the policy gradient

	VPG: Learning a value function
	Further reducing the variance of the policy gradient
	Learning a value function
	Encouraging exploration

	A3C: Parallel policy updates
	Using actor-workers
	Using n-step estimates
	Non-blocking model updates

	GAE: Robust advantage estimation
	Generalized advantage estimation

	A2C: Synchronous policy updates
	Generalized advantage estimation

	A2C: Synchronous policy updates
	Generalized advantage estimation

	A2C: Synchronous policy updates
	Weight-sharing model
	Restoring order in policy updates

	Summary

	Chapter 12: Advanced actor-critic methods
	DDPG: Approximating a deterministic policy
	DDPG uses lots of tricks from DQN
	Learning a deterministic policy
	Exploration with deterministic policies

	TD3: State-of-the-art improvements over DDPG
	DDPG uses lots of tricks from DQN
	Learning a deterministic policy
	Exploration with deterministic policies

	TD3: State-of-the-art improvements over DDPG
	Double learning in DDPG
	Smoothing the targets used for policy updates
	Delaying updates

	SAC: Maximizing the expected return and entropy
	Adding the entropy to the Bellman equations
	Learning the action-value function
	Learning the policy
	Automatically tuning the entropy coefficient

	PPO: Restricting optimization steps
	Using the same actor-critic architecture as A2C
	Batching experiences
	Clipping the policy updates
	Clipping the value function updates

	Summary

